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Abstract: Image generation technology is currently one of the popular directions in computer vision
research, especially regarding infrared imaging, bearing critical applications in the military field.
Existing algorithms for generating infrared images from visible images are usually weak in perceiving
the salient regions of images and cannot effectively highlight the ability to generate texture details in
infrared images, resulting in less texture details and poorer generated image quality. In this study,
a cycle generative adversarial network method based on gradient normalization was proposed to
address the current problems of poor infrared image generation, lack of texture detail and unstable
models. First, to address the problem of limited feature extraction capability of the UNet generator
network that makes the generated IR images blurred and of low quality, the use of the residual
network with better feature extraction capability in the generator was employed to make the generated
infrared images highly defined. Secondly, in order to solve issues concerning severe lack of detailed
information in the generated infrared images, channel attention and spatial attention mechanisms
were introduced into the ResNet with the attention mechanism used to weight the generated infrared
image features in order to enhance feature perception of the prominent regions of the image, helping
to generate image details. Finally, to tackle the problem where the current training models of
adversarial generator networks are insufficiently stable, which leads to easy collapse of the model, a
gradient normalization module was introduced in the discriminator network to stabilize the model
and render it less prone to collapse during the training process. The experimental results on several
datasets showed that the proposed method obtained satisfactory data in terms of objective evaluation
metrics. Compared with the cycle generative adversarial network method, the proposed method in
this work exhibited significant improvement in data validity on multiple datasets.

Keywords: cycle generative adversarial networks; spatial attention; channel attention; gradient
normalization; residual networks

1. Introduction

The traditional source of infrared image data is through an infrared camera device that
uses the temperature difference between the target and the background to capture infrared
light and generate infrared images. The advantage of infrared camera image acquisition is
that it can be adopted to locate and track targets at night or in harsh weather. However,
infrared images acquired in such harsh environments tend to be of poor quality, with severe
loss of textured detail, and expensive infrared equipment, and are thus less used in civilian
applications. With the rapid development of deep learning, infrared image generation
using neural networks has received increasing attention from researchers. Infrared images
obtained through using deep learning methods cannot only compensate for defects in
infrared cameras employed in harsh environments but also save costs. Therefore, infrared
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images generated by neural networks are extensively employed in military research and
civilian applications.

In recent years, deep neural networks have been widely used in various fields, such as
target detection, computer vision, and image migration [1,2]. Based on the idea of gaming,
in 2014, Goodfellow et al. proposed generative adversarial networks [3,4], representing
one of the widely applied methods in deep learning at present. Generative adversarial
networks include generator networks and discriminator networks. The basic idea is that
the task generator generates fake data and the discriminator’s task is to discriminate fake
data generated by the generator from the real data; in essence, to distinguish real data from
fake data. The generative adversarial network achieves the conversion of source-domain
images to target-domain images based on this game idea. Nevertheless, researchers have
found that the network suffers from easy collapse and limited image generation capability
in model training.

In the field of image generation research, in order to achieve better image generation
techniques and to obtain more realistic images in the target domain, researchers have
proposed many new ideas and methods for generative adversarial networks to overcome
problems and difficulties in image generation techniques. In the area of supervised image
generation, Alec Dadford and Luke Metz et al. proposed the deep convolutional gener-
ative adversarial network [5–7] (DCGAN) in 2015. Compared to traditional generative
adversarial networks, deep convolutional generative adversarial networks use leaky ReLU
activation function and provide better enhancement of the generated image features. How-
ever, the problem with DCGAN networks in image generation is that training requires
paired datasets that are small and difficult to collect under normal circumstances. In 2017,
P Isola et al. proposed a supervised-learning-based pix2pix network based on pix2pix
image generation algorithm [8]. The pix2pix algorithm was based on CGAN, using UNet
as the generator of the network and PatchGAN as the discriminator to reconstruct accuracy
through reconstruction loss and adversarial joint optimization of low and high frequencies.
The method achieves generation from semantically segmented images to visible images
and can achieve more desirable results in image generation tasks, yet the method is similar
to the DCGAN method in that it requires the use of paired datasets to generate images from
the source domain to the target domain, making the preliminary data collection workload
particularly high. Meanwhile, the pix2pix algorithm produces unsatisfactory images when
the input dataset deviates significantly from the training dataset. To resolve the problems
of the pix2pix algorithm, P Isola et al. proposed the pix2pixHD algorithm [9–11] in 2018 to
generate high-definition images. The pix2pixHD algorithm was optimized based on the
pix2pix algorithm. The authors adopted a global generative network and a local boosting
network in the generator and by optimizing the generator network, 2048*1024 HD images
could be generated. In the discriminator, the authors utilized three discriminators of the
same structure responsible for the discriminative task at different scales and increased the
image resolution at a deeper level to obtain high-definition images. However, the training
process of the pix2pixHD algorithm was not stable enough. Arjovsky et al. presented the
Wasserstein generative adversarial network (WGAN) in 2018 [12,13]. The WGAN method
restricts the parameters in the discriminator by cutting the weights of the discriminator
to render the discriminator less discriminative, and thus completely solved the instability
problem of the generative adversarial network model. In 2018, Zhang H et al. put forward
the self-attentive generative adversarial network (SAGAN) [14,15]. The SAGAN method
addressed the limitation of convolutional local perceptual field. A self-attentive mechanism
was introduced in the discriminator and generator, and global feature information was
obtained in this way. Although this method achieved better results with fewer iterations, it
was highly unstable and prone to crashing during model training.

In the field of unsupervised learning for image generation, Liu M Y et al. 2016
proposed coupled generative adversarial networks (COGANs) for unpaired datasets [16].
This approach set out to learn the joint distribution of multi-domain images by partial
weight sharing. The generators share the weights of the first half, and the discriminators
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extract the high-level features of the second half. Taigman Y et al. 2016 presented the
domain transfer network (DTN) [17–19]. The DTN network employs a compound loss
function to solve the general analogy problem by separating unlabeled samples in the
given domain via a multivariate function to learn new mapping relationships for image
conversion, while the domain asymmetry and the small amount of information contained
in the new source domain leads to unsatisfactory results. In 2017, Zhu J Y et al. put
forward a cycle generative adversarial network [20], which used a dual generator with
a dual discriminator to implement bidirectional conversion of source-domain images to
target-domain images. Zhu J Y et al. concluded that if it was possible to generate target-
domain images from source-domain images, then generating source-domain images from
target-domain images is also feasible; however, this model does not easily converge during
training and the quality of the generated images is usually not high. In 2018, Choi Y et al.
proposed StarGAN [21,22]. StarGAN implements transformation between multiple domain
images and has the advantage that for x-field transformation, CycleGAN needs to learn
x•(x − 1) models, while StarGAN only needs to learn one model. The disadvantage of
StarGAN is a large sample size requirement. Huang X et al. proposed the Munit algorithm
in 2018 [23]. The Munit algorithm uses both shared content space and differentiated
style space for image generation. When generating an image, the same content and
different styles were combined and encoded for output, thus allowing multimodal image
generation and multimodal image conversion. In 2019, Liu M Y et al. presented the FUNIT
algorithm [24,25], which mainly solved the image conversion problem for small sample
images and untouched regions. Its network framework is composed of a conditional image
generation network and a multitask adversarial discriminative network, which achieves
image generation by computing a small number of samples. The method bears strong
generalization capability.

Despite many researchers having continuously improve and optimize the algorithms
to make the generated images consistent with the target images, the problems of model
instability, easy collapse and low quality of image generation have not been sufficiently
recognized. The gradient-based normalization method proposed in the current study
focuses on solving the aforementioned problems of easy model collapse and insufficient
prominent texture detail information in the generated infrared images to improve the
quality of image generation and obtain realistic infrared images with realistic effects.

2. Related Theoretical Work
2.1. Cycle Generation of Adversarial Networks

Cycle generative adversarial networks were proposed by Jun-Yan Zhu et al. to im-
plement image generation tasks between unpaired datasets. In contrast to generative
adversarial networks, the cycle generative adversarial networks use dual generators and
discriminators. The main idea of cycle generative adversarial networks is that after gen-
erating a target-domain image from a source-domain image, the source-domain image
can be generated again based on the style of target-domain image. In the traditional ap-
proach of cycle generative adversarial network, the generators and discriminators use the
UNet [26,27] and PatchGAN network structures [28], respectively. General framework
diagram of cycle generative adversarial network structure is shown in Figure 1 below.
The general flow of network implementation is as follows: the real visible image is input
into Generator_A to generate a fake infrared image, and then the fake infrared image is
input into Discriminator_B together with the real infrared image for discrimination. The re-
sult obtained from the discrimination is fed back to Generator_A. Similarly, the real infrared
image is input into Generator_B to generate a fake visible image, the fake visible image
is then input into Discriminator_B together with the real visible image to discriminate
between the real and fake images, and the results are fed back to Generator_B.
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Figure 1. General framework diagram of cycle generative adversarial network structure.

2.2. Channel Attention Mechanism and Spatial Attention Mechanism

In 2018, Woo S et al. proposed a method combining channel attention and spatial
attention mechanisms to solve the problem of neural networks failing to focus on the
important region features during training [29–31]. The authors used the given feature map
to weight attention to the image features in both spatial and channel dimensions. Then
they featured matching with the original image to achieve the adaptive adjustment for
solving the focusing problem in key feature regions. The structure of attention mechanism
is shown in Figure 2 below.

Figure 2. Structural diagrams of the channel and spatial attention mechanisms, which are used to
weight the infrared image features to highlight the textural details of the generated image.
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The specific process is to feed the feature maps of input H ×W × C into the average
pooling layer and maximum pooling layer to obtain the feature maps of two 1× 1× C.
Then, the feature maps are subjected to the feature extraction by MLP neural network,
and the extracted features are weighted and sigmoid-activated to obtain the final feature
maps of channel attention. Spatial attention is based on the premise of channel attention,
and the input of spatial attention module is the feature map obtained by multiplying the
channel attention feature map with the original feature map. First, the input feature maps
are subjected to the maximum and average pooling to obtain the two H ×W × 1 feature
maps. Then, the two H ×W × 1 feature maps are obtained by 7 × 7 convolution and
channel dimensionality reduction, and the spatial attention feature map is obtained by
sigmoid-activation. This feature map is multiplied by the input feature map to form a new
feature map with the incorporation of spatial attention and channel attention.

2.3. Gradient Normalization

Cycle generative adversarial networks are volatile, prone to breakdowns during
training, and slow to converge, mainly due to the wide gradient space of discriminator.
Some researchers have proposed methods such as L2 normalization [32], gradient penalty
and weight clipping to address this problem, which can indeed make the network model
stable. Still, these methods limit the model capacity of discriminator to a certain extent.
Parameter clipping and spectral normalization are similar in the sense, ensuring that the
L-constant at each layer of the model is bounded by constraining the parameters so that the
total L-constant is also bounded. Whereas the gradient penalization notices that a sufficient
condition for ‖ f ‖L ≤ 1 is∇x f (x) ≤ 1 and therefore imposes a soft constraint on the model
by using a penalty term (‖ ∇x f (x) ‖ −1)2.

The gradient normalization introduced in this paper [33–35] also uses the gradient
to transform f (x) into such that it can automatically satisfy ‖ ∇x f̂ (x) ‖≤ 1. Specifically,
by regarding leakyReLU as the activation function in which f (x) is actually viewed as a
segmented linear function, it shows that, except for the boundary, f (x) is a linear function
in a locally continuous region, and the corresponding ∇x f (x) then becomes a constant.
Therefore, gradient normalization contemplates f̂ (x) = f (x)/ ‖ ∇x f (x) ‖, which gives the
formula as shown in (1).

‖ ∇x f̂ (x) ‖=‖ ∇x f (x)
‖ ∇x f (x) ‖ ‖= 1 (1)

To avoid errors caused by dividing the model by zero, function norm | f (x)| should be
introduced into the denominator, thus ensuring that the function is bounded, which gives
the formula as shown in (2).

f̂ (x) =
f (x)

‖ ∇x f (x) ‖ +| f (x)| ∈ [−1, 1] (2)

In this paper, a gradient-normalized discriminator is introduced to solve the prob-
lem of difficult model convergence without limiting the model capacity of discriminator.
By weighting the normalized gradient loss with the loss of original discriminator, the model
convergence is accelerated and the training process is stabilized. The overall gradient nor-
malization function is shown in Equation (3) below.

f̂ (x) = | f (x)
‖ ∇x f (x) ‖ +ζ(x)

|2 (3)

ζ(x) is a universal term that can be associated with f (x) or a constant. As f (x) tends
to infinity, ∇x f (x) tends to 0, and ζ(x) approximates | f (x)|. When the discriminator is
saturated by overfitting, the normalized gradient norm approaches 0. This self-control
mechanism prevents the generator from acquiring exploding gradients, thus stabilising the
model training process of cycle generative adversarial networks.
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2.4. Loss Functions

The loss function of the network consists of generator loss and discriminator loss.
The former consists of generative adversarial loss, cycle consistency loss and the loss from
converting the target domain to the source domain after generating the image. The genera-
tive adversarial loss is the loss obtained by the generator from converting the source-domain
image to target-domain image. The constructed generative adversarial loss function of
generating the target-domain image (infrared image) from the source domain (visible
image) is shown in Equation (4).

LossGAN(GA_B, DY, X, Y) = Ey−Pdata(y)[log10DY(y)] + Ex−Pdata(x)[log10(1− DY(GA_B(x)))] (4)

of which, Ey−Pdata(y) in the generator GA_B is the expected value of the sample image taken
in the target domain; Ex−Pdata(x) is the expected value of the sample image taken in the
source domain; y in the function is a sample in the Y sample space (infrared image), and x
is a sample in the sample space X (visible image). GA_B(x) is the image generated by the
generator GA_B; DY(y) is the probability that discriminator D discriminates whether y is a
sample from the Y sample space, and 1− DY(G(x)) is the probability of discriminator D
discriminating the image generated by generator GA_B and judging whether the image is
a sample taken from the Y sample space.

The generative adversarial loss function with the target domain (infrared image)
generating the source domain (visible image) is shown in Equation (5).

LossGAN(GB_A, DX , X, Y) = Ex−Pdata(x)[log10DX(x)] + Ey−Pdata(y)[log10(1− DX(GB_A(y)))] (5)

This loss function is similar to that is used to generate the target-domain image from
the source domain.

The cycle consistency loss function learns both GA_B and GB_A mappings simulta-
neously. It expects GA_B(GB_A(y)) to generate an image as close to y as possible and
GB_A(GA_B(x)) to generate an image as close to x as possible. The purpose of cycle consis-
tency loss function is to prevent generator G from overlearning the samples in the Y sample
space and thus over-altering the samples in the X sample space. The cycle consistency loss
function is shown in Equation (6).

Losscycle(GA_B, GB_A) = Ex−Pdata(x)[||GB_A(GA_B(x))− x||] + Ey−Pdata(y)[||GA_B(GB_A(y))− y||] (6)

Thus, the final loss function is shown in Equation (7).

Loss(GA_B, GB_A, DX , DY) = LossGAN(GA_B, DY , X, Y) + LossGAN(GB_A, DX , X, Y) + λLosscycle(GA_B, GB_A) (7)

where λ is the weighting factor of the cycle consistency loss function.

3. Methodologies

In order to generate better IR images, we must not only consider the feature extraction
capability of the generator to prevent too much detail information from being lost. In
addition, we also need to consider the model collapse problem of cycle generative ad-
versarial networks during the model training process, which directly affects the effect of
infrared image generation. Therefore, this paper will focus on solving the quality problem
of infrared image generation and preventing model collapse. the specific contributions of
this paper are as follows:

1. A new generative network with ResNet is used instead of the traditional U-Net
network structure, because the feature extraction capability of ResNet is much higher than
that of U-Net. The new generative network makes the generated image features richer
as well.

2. In this paper, we introduce the spatial attention and channel attention mechanisms
to the ResNet network structure. The spatial attention and channel attention mechanism
enhances the textured detail information of image generation and reduces the loss of
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details. In doing so, this solves the problems of severe textural information loss and low
generated-image quality as observed in the traditional method.

3. To address the problem of the model being unstable and prone to collapse during
the training process of cycle generative adversarial networks, we introduce a gradient
normalization module to the discriminator to stabilize the training process of the model
and increase its convergence speed in the training process. In addition, the gradient
normalization module ensures that the model does not easily collapse.

Network Framework Structure

This paper adopts a cycle generative adversarial network-based framework structure.
The generator in this paper adopts the ResNet network with a stronger feature extraction
capability and introduces the channel and spatial attention mechanisms to the ResNet
network, improving the quality of generated images and solving the severe problem of
lacking texture information in the generated images.In the discriminator, we introduce a
gradient normalization module to stabilize the training process of the model and prevent
the model from collapsing due to the unstable state during the training process. The overall
network framework structure is shown in Figure 3 below. The general flow of network
implementation is as follows: the real visible image is input into Generator_A to generate a
fake infrared image, and then the fake infrared image is input into Discriminator_B together
with the real infrared image for discrimination. The result obtained from the discrimination
is fed back to Generator_A. Similarly, the real infrared image is input into Generator_B to
generate a fake visible image, the fake visible image is then input into Discriminator_B
together with the real visible image to discriminate between the real and fake images,
and the results are fed back to Generator_B.

Figure 3. Flowchart of the overall framework of the cycle generative adversarial network.

In this paper, the specific training process of the network model is represented in a
pseudocode form, as shown in Table 1. The prerequisite to ensure the output of infrared
images is whether the discriminator can accurately distinguish between true and false
infrared images. For this, a batched cycle training form of training the dual discriminator K
times in line and then training the generator once, and continuing to iterate to the maximum
training number M, is adopted.
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Table 1. Training process of the network model.

Input: Infrared image /Ii,visible image /Iv
Output: False infrared image /Iv generated

from visible image /Ij
step 1 For M epochs do
step 2 For K steps do

step 3 n samples taken from the IR image
distribution /{I1

i , I2
i , I3

i , ..., In
i }

step 4 n samples taken from the visible image
distribution /{I1

j , I2
j , I3

j , ..., In
j }

step 5 Training the discriminator Discriminator_A
and updating the parametric model.

step 6 Training the discriminator Discriminator_B
and updating the parametric model.

step 7 End for

step 8 Training the generator Generator_A and
updating the model parameters.

step 9 Training the generator Generator_B and
updating the model parameters.

step 10 End for

4. Analysis of Experimental Results
4.1. Dataset and Experimental Procedure

The platform configuration used to train the deep learning model in this paper is
as follows: the graphics card is a GeForce RTX 2080Ti, the memory is 32 GB, and the
framework is PyTorch. This model was built on a Linux system using Python 3.7. The ex-
perimental results after model testing and the experimental ablation data were obtained
using MATLAB R2019a on a Windows 10 operating system.

The two datasets used in the training process were the visible and infrared images from
the OSU colour thermal dataset [36] and visible-infrared images from the Flir dataset [37].
Five hundred pairs of infrared-visible image sequence pairs from each dataset were selected
as the training dataset, and another 20 pairs were selected as the test set used in this
experiment. The training epoch was set to 200, and the learning rate was set to 0.0002
from 1 to 100 epochs and to a linear gradient descent at 100 to 200 epochs, with a total
of 1450 learned steps. The batch_size was set to 1, and the Adam optimization strategy
was adopted.

4.2. Experimental Results

This paper uses objective evaluation metrics to evaluate the quality of generated IR
images. The objective evaluation uses the peak signal-to-noise ratio [38,39] and structural
similarity [40,41] to assess the sharpness and richness of image texture detail. In the field
of image generation, structural similarity is a more authoritative image evaluation metric
widely used within the current image processing field. It is used to obtain information
about the image structure in visible region by the strong correlation between image pixels
and to obtain approximate information about the image using whether the perceived
structural information has changed to express the similarity difference between images.

The peak signal-to-noise ratio is commonly used in image compression, image fusion,
and image generation evaluation methods, mainly to compare the difference between two
images. A higher signal-to-noise ratio value indicates better quality of the generated image
and less difference between images, in which PSNR is defined by the mean square error
(MSE). Given a noise-free mn monochrome image I and its noise approximation K, the MSE
is defined as shown in Equation (8).

MSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 [I(i, j)− K(i, j)]2 (8)
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The PSNR is therefore defined as shown in Equation (9).

PSNR = 10 · log10(
MAX2

i
MSE

) (9)

where MAX indicates the possible maximum pixel in the image.
The control experiments in this paper were conducted using the same CycleGAN

framework structure by implementing control experiments in different generators. The con-
trol experiments mainly used UNet_256, ResNet_6blocks and ResNet_9blocks, CUT in the
two datasets. CUT [42] is proposed in 2020. CUT is a state-of-the-art image translation
implemented using contrast learning. CUT does not require paired datasets as training data,
and generates clear quality images. CUT is now widely used in the field of image genera-
tion. This paper’s method comprises ResNet_9blocks, channel attention, spatial attention
mechanism, and gradient normalization. In order to make it easier to read, the method is
named GN_CycleGAN, and the method composed of ResNet_9blocks, channel attention,
and spatial attention mechanism is called CBAM_CycleGAN. It will be applied in the
later experimental part, and the experimental results are shown in Table 2. The visualized
images are shown in Figures 3 and 4. Compared with the original CycleGAN method in the
Flir dataset, the PSNR and SSIM metrics of the proposed method in this paper improved
by 2.3% and 9.7%, respectively. The PSNR metric improved by 32.2% on the OSU colour
thermal dataset, and the SSIM metric improved from 0.2479 to 0.7491. The objective metrics
of the two datasets in Data Table 2 show that the quality pf infrared images generated by
the method are significantly improved, and based on this proposed method, the desired
results in terms of objective evaluation metrics have also been obtained, which objectively
validates the effectiveness of algorithm in this paper.

Table 2. Objective evaluation results of the comparative experiment.

Mathod OSU Flir

Evaluation indicators PSNR/dB SSIM PSNR/dB SSIM
CycleGAN+unet_128 13.6867 0.2479 13.2131 0.4167
CycleGAN+unet_256 13.7892 0.2686 12.7318 0.4444

CycleGAN+resnet_6blocks 17.3956 0.7071 13.3745 0.4700
CycleGAN+resnet_9blocks 17.0300 0.6900 13.3275 0.4368

CUT [42] 13.3502 0.3168 13.1813 0.4214
Ours(GN_CycleGAN) 18.0699 0.7491 13.5195 0.4572

As seen from the visualization results in the first data set (first row) of Figure 4,
the image generated by original method suffers from blurred white shadows and a severe
lack of detail in the region marked in red, with a poor degree of infrared image effect. In the
ResNet experiment, there is a small amount of white shading in the edge information at the
image details, and the ability to generate more texture detail information is significantly
improved compared to the original method, with a small amount of detail information
loss. From our proposed method, the generated infrared image is rich in texture detail,
with more apparent contour information, and is close to the real picture. In the second set
of experiments, the original method has more white shadows and severe feature loss in
the region marked in red. In the ResNet experiments, there are only a few white shadows,
which are more blurred in the image, and there is a large loss of detailed information. In the
cut method, there is no good generation for all three sample datasets; the generated images’
quality is more blurred, and the infrared effect is not apparent. In comparison with the
two previous methods, the method in this paper produces images with no white shadows,
significant feature information, and no loss of detail information. In the third data group,
the red-marked area is the road line. Compared with the real infrared image, the original
method and the method based on ResNet network cannot generate the features in the
red area well. While the method in this paper can show better area feature information,
correctly-represented texture details, and a better image-generation effect.
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Figure 4. Comparison of CycleGAN and our generation results on the Flir dataset.

As seen from the visualization results in the first data set (first row) of Figure 5, in the
CycleGAN+Unet_128 (original) experiment, there is a severe lack of detailed information
within the lower left red annotated region compared to the real IR image, and the features
in the image are not recognizable. In the ResNet generator network experiments, the image
is able to exhibit good discrimination, but there are more heavily shaded overlapping
feature sections within the upper right red-labeled area. In the cut method, the resulting
image is blurred, and the texture detail is severely missing. In our proposed method,
the shortcomings of the two experiments mentioned above are overcome within the red-
labelled regions, generating highly discriminative images, rich in detailed information
generation, and closest to the real IR image. In the red region of the second data set,
the other methods generate images with severe information loss in the red region, while
our proposed method is able to avoid the loss of detailed information. The red area of
the third data set shows the ground texture detail information. Through observation, it
suggests that the other methods that generate the ground image texture clarity are not as
good as the proposed method.

To address the problem prone to collapse of the current model training process, a gra-
dient normalization method is used to verify the stability of the model training in this
paper by testing the overall direction of the cyclic loss function values of generator A and
generator B during the training process. In this paper, the original CycleGAN method and
the CBAM_CycleGAN method, which introduces an attention mechanism, are used as
control groups. The following visualization results of the loss function obtained during
model training are shown in Figures 6 and 7: the cycle loss of generator A and generator B
shows that the cycle loss value of the CycleGAN method is high and low until 400 step,
which has poor stability; the CBAM_CycleGAN method has less local fluctuations, which
has average stability; the cycle loss value of the generator in the proposed method shows a
regular gradient downward trend, converges faster and the overall process is smoother.
Between 400 step and 1000 step, all three methods tend to be smooth, but the CycleGAN
method and CBAM_CycleGAN are more volatile with poor model generation ability. Af-
ter 1000 steps, compared with CycleGAN and CBAM_CycleGAN methods, the loss value
of the proposed gradient cycle generation adversarial network (GN_CycleGAN) tends to
stabilize as the gradient decreases, and the cycle loss is lower than that of cycleGAN and
CBAM_CycleGAN methods, laterally reflecting that the model has a better generative abil-
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ity. On the whole, the gradient-based cyclic adversarial network method (GN_CycleGAN)
has an obvious gradient descent pattern and converges quickly, which reflects the excel-
lent stability of the generator network, and, therefore, can prove the effectiveness of the
proposed method.

Figure 5. Comparison of CycleGAN and our generation results on the OSU coloured hot dataset.

Figure 6. Visualisation of the cycle loss gradient results for generator_A.

Through the experimental data of image evaluation metrics on several datasets and
the visualization results of the training model, it can be concluded that the gradient normal-
ization method proposed in this paper has better generative performance in infrared image
generation. To address the problem of poor quality and texture details loss in the infrared
images obtained by infrared devices in harsh environments, this paper uses a network with
stronger feature extraction capability in the generator network, and introduces channel
attention and spatial attention mechanisms into the network structure, which have better
effects on the extraction of texture details in image generation. To prevent the problem
of easy model collapse during the training process, we added a gradient normalization
module into the discriminator to further strengthen the convergence speed of model train-
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ing. Through experiments, it is shown that the model’s convergence speed is faster after
introducing this module, and the model training presents gradient descent with better
stability. Meanwhile, the experimental data in Table 2 shows that, for the image data
obtained from the introduced residual network and attention mechanism, the effect is
significantly improved, indicating that the effect of image generation is very satisfactory.

Figure 7. Visualisation of the cycle loss gradient results for generator_B.

4.3. Ablation Experiments

This paper conducts ablation experiments using the Flir dataset to analyze the role of
the proposed method in the network structure. The experiments consist of 4 parts.

(1) CycleGAN (baseline): the original method network.
(2) CycleGAN+ResNet: a residual network used in the generator apparatus.
(3) CycleGAN+ResNet+CBAM: a residual network incorporating an attention mecha-

nism is used in the generator.
(4) CycleGAN+ResNet+CBAM+Gradients Normalization(Ours): the gradient normal-

ized cycle generative adversarial network method proposed in this paper.
The statistical results are shown in Table 3. The table shows that, compared to the

original method, the PSNR and SSIM metrics, where the residual network was introduced,
improved slightly in the experiments. In the experiments with the residual network
incorporating the attention mechanism, the PSNR values improved slightly, and the SSIM
values improved more than the original method. In the experimental method proposed
in this paper, there is an improvement of 2.32% and 9.72% in the PSNR and SSIM metrics,
respectively, compared to other methods.

Table 3. Results of objective evaluation indicators for ablation experiments.

Method PSNR/dB SSIM

Baseline(CycleGAN) 13.2131 0.4167
CycleGAN+ResNet 13.3275 0.4368

CycleGAN+ResNet+CBAM 13.2403 0.4530
Ours (GN_CycleGAN) 13.5195 0.4572

The results of the ablation experiments are shown in Figure 8. As seen from the figure,
the first group data (first row) in the CycleGAN experiment, compared with the original
real IR image, differs significantly from the real data in the red annotated region, and the
CycleGAN method has a significant feature loss to generate images with a large degree
of blurring. Compared with the original method, the red annotated regions of the first
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group data in the experiment with the introduction of ResNet generator show less feature
loss, and the image details are not sufficiently detailed. By introducing our proposed
gradient normalization network method, the loss in the red region of the first dataset is
minimal, and the generated image features are more adequate and closest to the original
real image. In the second (second row) and third (third row) datasets, compared with the
real data, the images generated by the Cyclegan method have insufficient texture detail
information in the red annotated area as well as a large loss, and the generated images are
blurred with some white shadows resulting in poor image visibility. In the experiments
with the introduction of ResNet generator, the quality of generated images is better, with no
white shadows and good image visibility. In the experiments after introducing the ResNet
generator, the quality of generated images is better. There is no white shadow, and the
image visibility is good, but in terms of detail generation, the images from the ResNet
generator experiments differ significantly from the real images. In our proposed gradient
normalization method, the loss of texture detail information in the generated image quality
is minimal, the best image quality is obtained, and the detail information generation is
more prosperous.

Figure 8. Results of ablation experiments for the Flir dataset.

The visualization results of ablation tests and the evaluation index data show that our
proposed method has a more remarkable improvement in the generation of image texture
details, and that the generated infrared images are closest to the real infrared images, thus
better validating the effectiveness of our method.

5. Discussion

In the current mainstream algorithms for generating infrared images from visible
images, we have found that the current methods suffer from poor image quality, loss of
texture detail and lack of model stability during the training process. Researchers have
made outstanding contributions to address some of these problems. Our work focuses on
the inability of infrared cameras to acquire high-quality infrared images with rich texture
detail in harsh environments, and uses deep learning methods to compensate for the
shortcomings. We propose a gradient-normalized recurrent generative adversarial network
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approach for IR images by a ResNet residual network with better image feature extraction
capabilities. To reduce the loss of texture details, we add a spatial attention and channel
attention mechanism to the generator network, highlighting the ability to perceive image
detail regions to improve image generation quality, and to prevent the training model from
crashing. In this paper, we introduce a gradient normalization module in the discriminator
to speed up the model convergence and maintain the model training stability. The method
achieves excellent performance in terms of image quality, texture detail and model stability.
It outperforms the current mainstream CycleGAN method in the structural similarity
metrics and peak signal-to-noise ratio metrics. In particular, it yields more satisfactory
data results on the OSU colour-heat dataset with a 32.2% improvement in peak signal-
to-noise ratio metric and an improvement from 0.2479 to 0.7491 in structural similarity.
Meanwhile, on the FLIR dataset, our proposed method achieves a 2.3% improvement in
peak signal-to-noise ratio, and improves the peak S/N ratio by 2.3% and the structural
similarity by 9.7%.

In order to address the problems of low image quality, lack of detail in texture infor-
mation and unstable model training in the field of infrared image generation, the solution
proposed in this paper is compared to the current mainstream generative networks. For ex-
ample, the method has an advantage in data results compared to the Sparse GANS IR
image generation method [43], which mainly focuses on the lack of prominent texture
details resulting in poor image quality. The method in this paper is more stable than the
conditional generative adversarial networks [44], which have better image generation
capabilities but prone to collapse during model training. In contrast to previous work on
image generation, we introduce for the first time a gradient normalization module into the
field of image generation methods for recurrent generative adversarial networks to stabilise
the model training process. The approach in this paper, focusing on the quality of image
generation and the model stability, can achieve a good image quality to a certain extent,
but the proposed approach also has shortcomings, such as neglecting the cost of model
training. The future work will focus on improving the model efficiency with a balance
between image quality and model stability.

6. Conclusions

To solve problems concerning poor quality, lack of detail, unstable training models,
and easy collapse during infrared image generation, we propose a cycle generative ad-
versarial network method based on gradient normalization. First, the ResNet residual
network is employed in the generator to improve image-feature extraction ability. Sec-
ond, channel attention and spatial attention modules are introduced in the residual network
to enhance the image features and texture information highlighted during model training,
enhance image generation details, and improve the quality of generated images. Finally,
in the discriminator network, a gradient normalization module is adopted to constrain
the discriminator network training model and thus ensure its stability. The experimental
results show that the gradient-normalised recurrent generative adversarial network method
proposed in this paper bears better detail generation capability and model stability.
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