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Abstract: The purpose of this study was to enhance the accuracy of the calorific value estimation of
coal by applying data preprocessing methods in laser-induced breakdown spectroscopy (LIBS). The
Savitzky–Golay (SG)-smoothing and SG derivative preprocessing methods were adopted to improve
the accuracy of the prediction model. The relationship among the original, SG-smoothing-pretreated,
and SG derivative-pretreated LIBS data and their elemental concentrations were determined using
the partial least squares regression (PLSR) model. In order to compare the reliability of each PLSR
model, the coefficient of determination, root mean square error (RMSE), relative error, and RMSE
average were used. As a result, the reliability of the PLSR model processed with the SG derivative
method was the highest, and the root mean square average was the lowest among the three models.
The predictability of the concentration of each element using the PLSR model pre-processed by the
SG derivative was confirmed with the residual predictive deviation parameter. The predicted calorific
value was estimated from the predicted concentrations of elements in coal using Dulong’s equation.
The PLSR model pretreated by the SG derivative showed the lowest error compared to the calorific
value of mixed coals obtained via the chemical analysis.

Keywords: laser-induced breakdown spectroscopy; mixed coal; elemental analysis; partial least
squares regression; data pre-processing; calorific value

1. Introduction

In Korea, the amount of power generated from different sources consists of 39.6% from
coal-fired power plants, 30.0% from nuclear power plants, 22.4% from liquefied natural
gas combined cycle power plants, 4.2% from renewable energy sources, and 1.2% from
hydroelectric power plants. Although the proportion of coal-fired power generation should
be reduced due to environmental pollution-related problems, for which legislation has been
in place since 2000, coal-fired power generation has accounted for a consistent, significant
portion of about 40% from 2010 to 2016 [1]. To reduce the cost of electricity production,
low-quality coal with low calorific value is used and mixed with various types of coal
in Korea.

Coal is roughly composed of 69% carbon, 15% oxygen, 8.5% coal ash, 5% hydrogen,
1.5% nitrogen, 0.7% sulfur, and 0.3% other components. Carbon is an important component
with respect to the calorific value of coal. However, nitrogen and sulfur cause environmental
problems, such as air pollution. It is important to quantitatively analyze carbon, hydrogen,
oxygen, and sulfur components to calculate coal’s calorific value, and the precise analysis
of coal’s nitrogen and sulfur components is necessary to address environmental pollution-
related problems such as air pollution.
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Research on the components of coal has been actively conducted with X-ray fluo-
rescence spectrometry (XRF), prompt gamma neutron activation analysis (PGNAA), and
laser-induced breakdown spectroscopy (LIBS). XRF has the disadvantage of a long measure-
ment time [2]. The neutron source used in PGNAA can have potentially hazardous effects
on the human body [3]. In LIBS plasma is produced on the surface of a given sample for a
short time via laser irradiation. A continuum spectrum occurs during the initial process of
plasma formation. Consequently, light with the characteristic wavelengths of the sample’s
elements is emitted, and the emitted light is collected by a spectroscope. The collected
LIBS spectral data can be used for qualitative and quantitative analysis. Furthermore, it is
possible to analyze these data in real time. All the elements present in the periodic table are
theoretically measurable.

Due to the above advantages, studies on various materials such as coal, water, soil,
thin films, and fly ash are being actively conducted using LIBS [4–8]. LIBS can be used to
analyze volatile materials in powdered coals [9,10]. Wang et al. [11] used 24 samples of
bituminous coal and measured carbon, hydrogen, and nitrogen as the main elements in
coal using LIBS. The measured carbon and hydrogen components were examined using a
partial least squares (PLS) model. Pei et al. [12] used partial least squares regression (PLSR)
model to estimate the oxygen content in 34 coal samples by using time-of-flight secondary
ion mass spectrometry. Bona et al. [13] measured the carbon, hydrogen, nitrogen, and
sulfur content in coals using transmissive diffuse reflectance infrared Fourier transform
and the attenuated total reflectance method. The authors determined the carbon, hydrogen,
and sulfur content through a PLSR model with the root mean square error (RMSE) for
calibration and cross-validation. Wang et al. [14] measured 199 samples of coal using
near-infrared reflectance spectra (NIRS). These samples were divided into four groups, and
the sulfur content of the coal was measured. The original data without pre-processing were
compared with PLSR data pre-processed by Savitzky–Golay (SG) smoothing. Li et al. [15]
analyzed the calorific value of 44 coal samples using LIBS and analyzed the data with the
original data and the data pre-treated with Savitzky–Golay (SG) derivative method by
constructing a PLSR model.

In this study, experimental samples were made by mixing powder coals into pellets.
These pellets were analyzed using LIBS. The data were pre-processed with two methods,
namely, SG smoothing and the SG derivative, to produce PLSR models via multivariate
analysis. To compare the reliability of the PLSR models, the coefficient of determination
(R2), root mean square error (RMSE), relative error, and average RMSE were adopted
as parameters. Through the above PLSR models, the concentration of each element can
be predicted, and a predicted calorific value can be obtained from the concentration of
each element.

2. Materials and Methods

The schematic diagram of LIBS system is presented in Figure 1. A nanosecond-pulsed
Nd:YAG laser operating at a wavelength of 1064 nm is used to irradiate the sample’s
surface to generate plasma. An optical fiber transmits light emitted from the plasma to a
spectrometer (J200 Applied Spectra, Inc., Fremont, CA, USA). The spectrometer covers a
wavelength range from 190 to 890 nm with 5 channels. The LIBS system is controlled by a
computer, which also analyzes the spectral data. Pelletized samples are created by blending
various powdered types of coals. A 4th-harmonic Nd: YAG laser was used for irradiation,
which employed a 30 mJ/pulse and operated at 1 Hz at a wavelength of 1064 nm.
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Figure 1. Schematic diagram of the J200 LIBS measurement system. 

To improve measurement accuracy, a total of 49 spots are irradiated in a 7 × 7 pattern 
on the sample’s surface, as shown in Figure 2. The atoms and ions are excited to a high 
energy level after a certain period of time and then return to the ground state. In the initial 
stage, continuous spectra with small intensities appear, and the peak emission lines are 
produced after a few microseconds. It is important to set an appropriate delay time when 
collecting signals by a spectrometer after laser pulse irradiation. If the delay time is set to 
be too long, the plasma will cool down and the peak emission lines will not be distinguish-
able [16]. In this study, in order to obtain the best signal to background ratio, a gate delay 
time and a repetition rate were chosen as 1.4 μs with 1 Hz detection. 

 
Figure 2. Mixed coal sample pellet. 

Ten coal samples imported from Indonesia, Australia, etc., were used: MSJ-1, MSJ-2, 
Gunvor, Peabody, Noble, Lanna Harita, Whitehaven, MacQuarie, Glencore, and Carbo 
One. To produce blended coal samples in a pellet form, 2 of the 10 coal samples were 
selected, their weights were adjusted to 0.3 g with various mixing ratios, and they were 
then pressed using a pelletizing machine (PN 181-1110) with a hydraulic press. Pellets 
with a 13 mm diameter and 2 mm thickness were produced by applying 10 tons of force. 
The concentration ranged from 65.75 to 74.1% for carbon, from 4.69 to 5.26% for hydrogen, 
from 8.96 to 18.02% for oxygen, and from 0.52 to 1.44% for sulfur. The calorific values lay 
between 6360 and 7275 kcal/kg. The concentration and calorific value of each coal sample 
were analyzed at Daeduck Analytical Research Institute for carbon, hydrogen (using the 
5E Series C/H/N elemental analyzer), and sulfur (using the 5E-S3200 Coulomb sulfur 

Figure 1. Schematic diagram of the J200 LIBS measurement system.

To improve measurement accuracy, a total of 49 spots are irradiated in a 7 × 7 pattern
on the sample’s surface, as shown in Figure 2. The atoms and ions are excited to a high
energy level after a certain period of time and then return to the ground state. In the
initial stage, continuous spectra with small intensities appear, and the peak emission lines
are produced after a few microseconds. It is important to set an appropriate delay time
when collecting signals by a spectrometer after laser pulse irradiation. If the delay time
is set to be too long, the plasma will cool down and the peak emission lines will not be
distinguishable [16]. In this study, in order to obtain the best signal to background ratio, a
gate delay time and a repetition rate were chosen as 1.4 µs with 1 Hz detection.
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Ten coal samples imported from Indonesia, Australia, etc., were used: MSJ-1, MSJ-2,
Gunvor, Peabody, Noble, Lanna Harita, Whitehaven, MacQuarie, Glencore, and Carbo
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One. To produce blended coal samples in a pellet form, 2 of the 10 coal samples were
selected, their weights were adjusted to 0.3 g with various mixing ratios, and they were
then pressed using a pelletizing machine (PN 181-1110) with a hydraulic press. Pellets
with a 13 mm diameter and 2 mm thickness were produced by applying 10 tons of force.
The concentration ranged from 65.75 to 74.1% for carbon, from 4.69 to 5.26% for hydrogen,
from 8.96 to 18.02% for oxygen, and from 0.52 to 1.44% for sulfur. The calorific values lay
between 6360 and 7275 kcal/kg. The concentration and calorific value of each coal sample
were analyzed at Daeduck Analytical Research Institute for carbon, hydrogen (using the
5E Series C/H/N elemental analyzer), and sulfur (using the 5E-S3200 Coulomb sulfur
analyzer). The oxygen concentration was calculated by subtracting the concentration of
the remaining elements and the concentration of ash from 100%. The calorific value was
determined by the 5E-C5508 automatic calorimeter. The precision accuracy was 200 ppm.

Unscrambler X version 10.3 (CAMO) software was used to evaluate the concentration
and calorific value of each element in mixed coals. The PLSR model is known as a form of
PLS2 method [17].

In this study, the concentration and calorific value of each element of mixed coals were
used as reference values, which constitute the response variable Y of the PLSR model, and
the measured LIBS spectrum data were used as the prediction value. In most cases a data-
processing method is adopted for the data obtained from LIBS, but in other spectroscopic
methods, such as near-infrared spectroscopy, are employed alongside to perform qualitative
and quantitative content analysis.

The first spectrum data obtained through LIBS are called the original data, and the
original data obtained via PLSR models are compared with the data obtained via pre-
processing. The data pre-processing methods used were the SG-smoothing method and
the SG derivative method. The SG-smoothing method reduces random noise and removes
information that is not clearly useful. It is important to properly select the polynomial
order and number of smoothing points to use this method. The SG derivative method
uses the SG algorithm and extracts relevant information but increases noise. In the SG
derivative method, the spectra are derived to reduce interference from spectral lines,
separate overlapping peaks, and improve resolution.

3. Results and Discussion
3.1. Mixed Coal Major Elements Analysis

Figure 3 shows the entire set of the LIBS spectra of the four mixed coal samples’
carbon peaks at 193 and 247 nm. With different concentrations, they show distinguished
spectral characteristics. The characteristic wavelengths of carbon, hydrogen, oxygen, and
sulfur are 247.856, 656.286, 777.421, and 416.247 nm, respectively. Due to the minute
fraction of sulfur, its peaks are not clearly noticeable. However, the characteristic peaks for
carbon, hydrogen, and oxygen are clearly distinguished. In the case of the peak at 193 nm,
the intensity is relatively small. However, the intensity at 247 nm is large enough to be
clearly distinguished. Therefore, 247 nm was selected for this study, and statistical analysis
was performed.
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3.1.1. Partial Least Squares Regression (PLSR) of Major Elements of Mixed Coal

Quantitative analysis of carbon, hydrogen, oxygen, and sulfur in the mixed coal was
conducted. The relationship between the concentration of major elements in the mixed
coals obtained by conventional analysis and the LIBS spectrum intensity data obtained by
the laser irradiation of the mixed coals was expressed using the PLSR model. In addition,
the data obtained via the SG-smoothing and SG derivative data-pre-processing methods
applied to the original data were used to construct a PLSR model, which was compared to
the PLSR model of the unprocessed data, i.e., the original data. As a type of multivariate
analysis method, the PLSR model can provide a relationship between a set of predictor
variables X and a set of response variables Y.

The parameters for comparing the PLSR models were compared using the coefficient
of determination, R2, and the RMSE. The R2 can be defined by the following equation:

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

= 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(1)

where n, (ŷi − y)2, (yi − y)2, and (yi − ŷi)
2 are the number of samples, the sum of squares

regression, the sum of total squares, and the sum of squares error, respectively. The R2

ranges from 0 to 1. As the R2 is closer to 1, the model’s reliability is considered to be higher.
In this study, the root mean square error of calibration (RMSEC) and the root mean

square error of cross-validation (RMSECV) were employed as the testing parameters for
investigating the performance of PLSR. The RMSEC and RMSECV can be calculated by the
following equation:

RMSEC(V) =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(2)

where n, ŷi, and yi are the number of samples of calibration and cross-validation, the
reference concentration of the ith sample, and the predicted concentration of the ith sample,
respectively. The RMSE ranges from 0 to 1. As the RMSE is closer to 0, the model’s reliability
is higher.

Figure 4a shows the PLSR model of the original data for carbon. Figure 4b–d present
the PLSR models that employed SG-smoothing-based pre-processing with third-order
polynomials and three, five, and seven smoothing points, respectively. In Figure 4a, the
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R2 values for calibration and for cross-validation are 0.94279 and 0.91218, respectively.
The RMSEC and RMSECV are indicated as 0.5236 and 0.65972, respectively. As shown
in Figure 4b, the R2 values for calibration and cross-validation are 0.94983 and 0.92042,
respectively. The RMSEC and RMSECV are indicated as 0.49035 and 0.62801, respectively.
The PLSR model pre-processed with fourth-order polynomials and with 5 smoothing
points is shown in Figure 4c. The R2 values for calibration and cross-validation are 0.94706
and 0.92122, respectively. The RMSEC and RMSECV are indicated as 0.5037 and 0.62483,
respectively. In Figure 4d, the R2 values for calibration and cross-validation are 0.94678
and 0.92491, respectively. The RMSEC and RMSECV are indicated as 0.50503 and 0.61004,
respectively. Compared to the PLSR model of the original data, the R2 for calibration
and the RMSEC value are improved, as shown in Figure 4b. In Figure 4d, the R2 for
cross-validation and the RMSECV values are improved.
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Figure 5a depicts the PLSR model of the original data for carbon. Figure 5b–d present
the PLSR model pre-processed with the SG derivative adopting the second-order derivative
and the second-order polynomials with one, three, and five smoothing points, respectively.
In Figure 5a, the R2 values for calibration and cross-validation are 0.94279 and 0.91218,
respectively. The RMSEC and RMSECV are indicated as 0.5236 and 0.65972, respectively.
As shown in Figure 5b, the R2 values for calibration and cross-validation are 0.96101 and
0.90156, respectively. The RMSEC and RMSECV are indicated as 0.43227 and 0.69847,
respectively. In Figure 5c, the R2 values for calibration and cross-validation are 0.94195
and 0.90657, respectively. The RMSEC and RMSECV are indicated as 0.52745 and 0.68047,
respectively. In Figure 5d, the R2 values for calibration and cross-validation are 0.94173
and 0.90919, respectively. The RMSEC and RMSECV are indicated as 0.52845 and 0.67086,
respectively. As shown in Figure 5b, the R2 values for calibration and the RMSEC values
are improved compared to those from the PLSR model using the original data. However,
the R2 for cross-validation and the RMSECV are lower. The R2 values for calibration and
RMSEC are the closet to 1 in the PLSR model pre-processed with the SG derivate.
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The carbon concentration can be predicted through the above-mentioned PLSR models.
The measured carbon concentration and the predicted carbon concentration are shown in
Figure 6. The maximum relative errors in the PLSR model employing the original data and
in the PLSR model pre-processed with SG smoothing were 1.88 and 1.95%, respectively.
The maximum relative error of the PLSR model employing the SG derivative was 2.15%.
However, the relative average errors of the PLSR model using the original data, the PLSR
model pre-processed with SG smoothing, and that pre-processed via the SG derivative
are 0.59, 0.55, and 0.50%, respectively. Overall, the relative error of the PLSR model
pre-processed with the SG derivative is smallest among the above-mentioned cases.



Appl. Sci. 2023, 13, 6 10 of 26

Appl. Sci. 2023, 13, 6 10 of 26 
 

The carbon concentration can be predicted through the above-mentioned PLSR mod-
els. The measured carbon concentration and the predicted carbon concentration are 
shown in Figure 6. The maximum relative errors in the PLSR model employing the origi-
nal data and in the PLSR model pre-processed with SG smoothing were 1.88 and 1.95%, 
respectively. The maximum relative error of the PLSR model employing the SG derivative 
was 2.15%. However, the relative average errors of the PLSR model using the original 
data, the PLSR model pre-processed with SG smoothing, and that pre-processed via the 
SG derivative are 0.59, 0.55, and 0.50%, respectively. Overall, the relative error of the PLSR 
model pre-processed with the SG derivative is smallest among the above-mentioned 
cases. 

 
Figure 6. Comparison of relative errors between measured and predicted carbon concentrations for 
the PLSR models using the original data and pre-processed data. 

Figure 7a presents the PLSR model for hydrogen concentration using the original 
data. Figure 7b–d depict the PLSR models pre-processed by SG smoothing using first-
order polynomials with one, three, and five smoothing points, respectively. In Figure 7a, 
the R2 of calibration, the R2 of cross-validation, the RMSEC, and the RMSECV are 0.90566, 
0.77827, 0.04369, and 0.06812, respectively. As shown in Figure 7b, the R2 of calibration, 
the R2 of cross-validation, the RMSEC, and the RMSECV are 0.90977, 0.76406, 0.04273, and 
0.07027, respectively. The PLSR model pre-processed by SG smoothing utilizing the first-
order polynomial with three smoothing points is shown in Figure 7c. The R2 of calibration, 
the R2 of cross-validation, the RMSEC, and the RMSECV are 0.88495, 0.75905, 0.04825, and 
0.07101, respectively. In Figure 7d, the R2 of calibration, the R2 of cross-validation, the 
RMSEC, and the RMSECV are 0.86682, 0.75215, 0.05192, and 0.07202, respectively. This 
shows that the adoption of many smoothing points does not guarantee more accurate or 
closer relations. 

Figure 6. Comparison of relative errors between measured and predicted carbon concentrations for
the PLSR models using the original data and pre-processed data.

Figure 7a presents the PLSR model for hydrogen concentration using the original
data. Figure 7b–d depict the PLSR models pre-processed by SG smoothing using first-order
polynomials with one, three, and five smoothing points, respectively. In Figure 7a, the R2

of calibration, the R2 of cross-validation, the RMSEC, and the RMSECV are 0.90566, 0.77827,
0.04369, and 0.06812, respectively. As shown in Figure 7b, the R2 of calibration, the R2 of
cross-validation, the RMSEC, and the RMSECV are 0.90977, 0.76406, 0.04273, and 0.07027,
respectively. The PLSR model pre-processed by SG smoothing utilizing the first-order
polynomial with three smoothing points is shown in Figure 7c. The R2 of calibration, the R2

of cross-validation, the RMSEC, and the RMSECV are 0.88495, 0.75905, 0.04825, and 0.07101,
respectively. In Figure 7d, the R2 of calibration, the R2 of cross-validation, the RMSEC, and
the RMSECV are 0.86682, 0.75215, 0.05192, and 0.07202, respectively. This shows that the
adoption of many smoothing points does not guarantee more accurate or closer relations.
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Figure 7. PLSR model of hydrogen concentration with (a) original data and PLSR models pre-pro-
cessed by SG smoothing using (b) first-order polynomial with one point, (c) first-order polynomial 
with three points, and (d) first-order polynomial with five points. 

Figure 8a shows the PLSR model for hydrogen using the original data. Figure 8b–d 
present the pre-processed data by the SG second-order derivative using a second-order 
polynomial with one, three, and five smoothing points, respectively. In Figure 8a, the R2 
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and 0.05312, respectively. In Figure 8c, the R2 of calibration, the R2 of cross-validation, the 
RMSEC, and the RMSECV are 0.91928, 0.82983, 0.04042, and 0.05968, respectively. In Fig-
ure 8d, the R2 of calibration, the R2 of cross-validation, the RMSEC, and the RMSECV are 
0.90873, 0.81504, 0.04298, and 0.06222, respectively. When the PLSR models are con-
structed with the original data, the data preprocessed by the SG-smoothing method, and 
the data pre-treated by the SG derivative pre-processing method, the R2 of calibration, the 
R2 of cross-validation, the RMSEC, and the RMSECV values are improved to a greater 
degree by applying the SG derivative pre-processing method. 
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Figure 7. PLSR model of hydrogen concentration with (a) original data and PLSR models pre-
processed by SG smoothing using (b) first-order polynomial with one point, (c) first-order polynomial
with three points, and (d) first-order polynomial with five points.

Figure 8a shows the PLSR model for hydrogen using the original data. Figure 8b–d
present the pre-processed data by the SG second-order derivative using a second-order
polynomial with one, three, and five smoothing points, respectively. In Figure 8a, the R2 of
calibration, the R2 of cross-validation, the RMSEC, and the RMSECV are 0.90566, 0.77827,
0.04369, and 0.06812, respectively. As shown in Figure 8b, the R2 of calibration, the R2 of
cross-validation, the RMSEC, and the RMSECV are 0.95064, 0.786515, 0.03160, and 0.05312,
respectively. In Figure 8c, the R2 of calibration, the R2 of cross-validation, the RMSEC, and
the RMSECV are 0.91928, 0.82983, 0.04042, and 0.05968, respectively. In Figure 8d, the R2 of
calibration, the R2 of cross-validation, the RMSEC, and the RMSECV are 0.90873, 0.81504,
0.04298, and 0.06222, respectively. When the PLSR models are constructed with the original
data, the data preprocessed by the SG-smoothing method, and the data pre-treated by the
SG derivative pre-processing method, the R2 of calibration, the R2 of cross-validation, the
RMSEC, and the RMSECV values are improved to a greater degree by applying the SG
derivative pre-processing method.

Appl. Sci. 2023, 13, 6 12 of 26 
 

 
(d) 

Figure 7. PLSR model of hydrogen concentration with (a) original data and PLSR models pre-pro-
cessed by SG smoothing using (b) first-order polynomial with one point, (c) first-order polynomial 
with three points, and (d) first-order polynomial with five points. 

Figure 8a shows the PLSR model for hydrogen using the original data. Figure 8b–d 
present the pre-processed data by the SG second-order derivative using a second-order 
polynomial with one, three, and five smoothing points, respectively. In Figure 8a, the R2 

of calibration, the R2 of cross-validation, the RMSEC, and the RMSECV are 0.90566, 
0.77827, 0.04369, and 0.06812, respectively. As shown in Figure 8b, the R2 of calibration, 
the R2 of cross-validation, the RMSEC, and the RMSECV are 0.95064, 0.786515, 0.03160, 
and 0.05312, respectively. In Figure 8c, the R2 of calibration, the R2 of cross-validation, the 
RMSEC, and the RMSECV are 0.91928, 0.82983, 0.04042, and 0.05968, respectively. In Fig-
ure 8d, the R2 of calibration, the R2 of cross-validation, the RMSEC, and the RMSECV are 
0.90873, 0.81504, 0.04298, and 0.06222, respectively. When the PLSR models are con-
structed with the original data, the data preprocessed by the SG-smoothing method, and 
the data pre-treated by the SG derivative pre-processing method, the R2 of calibration, the 
R2 of cross-validation, the RMSEC, and the RMSECV values are improved to a greater 
degree by applying the SG derivative pre-processing method. 

 
(a) 

Figure 8. Cont.



Appl. Sci. 2023, 13, 6 13 of 26
Appl. Sci. 2023, 13, 6 13 of 26 
 

 
(b) 

 
(c) 

 
(d) 

Figure 8. PLSR model of hydrogen concentration with (a) original data and PLSR models pre-pro-
cessed by SG derivative using (b) second-order derivative and second-order polynomial with one 
point, (c) second-order derivative and second-order polynomial with three points, and (d) second-
order derivative and second-order polynomial with five points. 

The measured and predicted hydrogen concentrations are presented in Figure 9. The 
maximum relative errors in the PLSR model were 1.74, 1.71, and 1.17% with the original 
data, those preprocessed by SG smoothing, and those preprocessed by the SG derivative 
method, respectively. The relative errors seemed quite low. 

Figure 8. PLSR model of hydrogen concentration with (a) original data and PLSR models pre-
processed by SG derivative using (b) second-order derivative and second-order polynomial with one
point, (c) second-order derivative and second-order polynomial with three points, and (d) second-
order derivative and second-order polynomial with five points.

The measured and predicted hydrogen concentrations are presented in Figure 9. The
maximum relative errors in the PLSR model were 1.74, 1.71, and 1.17% with the original
data, those preprocessed by SG smoothing, and those preprocessed by the SG derivative
method, respectively. The relative errors seemed quite low.
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smoothing method, the R2 values of calibration and cross-validation, the RMSEC, and the 
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Figure 9. Comparison of relative errors between measured and predicted hydrogen concentrations
for the PLSR models with the original data and pre-processed data.

Figure 10a represents the results of the PLSR model for oxygen using the original data.
Figure 10b–d represent the results of the PLSR models pre-processed by SG smoothing-
based pre-processing using a fourth-order polynomial with one, three, and five smoothing
points, respectively. In Figure 10a, the R2 of calibration, the R2 of cross-validation, the
RMSEC, and the RMSECV are 0.84080, 0.72224, 1.00630, and 1.35176, respectively. As
shown in Figure 10b, the R2 values of calibration and cross-validation, the RMSEC, and
the RMSECV are 0.83960, 0.71873, 1.01011, and 1.36027, respectively. In Figure 10c, the
R2 values of calibration and cross-validation, the RMSEC, and the RMSECV are 0.83424,
0.71612, 1.02684, and 1.36656, respectively. In Figure 10d, the R2 values of calibration
and cross-validation, the RMSEC, and the RMSECV are 0.83010, 0.71803, 1.03959, and
1.36196, respectively. Regarding the oxygen concentration estimation pre-processed by the
SG-smoothing method, the R2 values of calibration and cross-validation, the RMSEC, and
the RMSECV values were decreased.
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Figure 10. PLSR model of oxygen concentration using the (a) original data and PLSR models pre-
processed by SG smoothing using (b) fourth-order polynomial with three points, (c) fourth-order 
polynomial with five points, and (d) fourth-order polynomial with seven points. 

Figure 11a shows the results of the PLSR model for oxygen constructed with the orig-
inal data. Figure 11b–d represent the PLSR models pre-processed by the SG derivative 
using the third-order derivative and fifth-order polynomial with three, five, and seven 
smoothing points, respectively. In Figure 11a, the R2 values of calibration and cross-vali-
dation, the RMSEC, and the RMSECV are 0.84080, 0.72224, 1.00630, and 1.35176, respec-
tively. As shown in Figure 11b, the R2 values of calibration and cross-validation, the 
RMSEC, and the RMSECV are 0.87822, 0.70052, 0.88015, and 1.40361, respectively. In Fig-
ure 11c, the R2 values of calibration and cross-validation, the RMSEC, and the RMSECV 
are 0.84977, 0.71277, 0.97757, and 1.37459, respectively. In Figure 11d, the R2 values of cal-
ibration, and cross-validation, the RMSEC, and the RMSECV are 0.81573, 0.66723, 1.08264, 
and 1.47957, respectively. The PLSR model pre-processed by the SG derivative method 
resulted in the most improved R2 of calibration and RMSEC values. 
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Figure 10. PLSR model of oxygen concentration using the (a) original data and PLSR models pre-
processed by SG smoothing using (b) fourth-order polynomial with three points, (c) fourth-order
polynomial with five points, and (d) fourth-order polynomial with seven points.

Figure 11a shows the results of the PLSR model for oxygen constructed with the origi-
nal data. Figure 11b–d represent the PLSR models pre-processed by the SG derivative using
the third-order derivative and fifth-order polynomial with three, five, and seven smoothing
points, respectively. In Figure 11a, the R2 values of calibration and cross-validation, the
RMSEC, and the RMSECV are 0.84080, 0.72224, 1.00630, and 1.35176, respectively. As
shown in Figure 11b, the R2 values of calibration and cross-validation, the RMSEC, and
the RMSECV are 0.87822, 0.70052, 0.88015, and 1.40361, respectively. In Figure 11c, the
R2 values of calibration and cross-validation, the RMSEC, and the RMSECV are 0.84977,
0.71277, 0.97757, and 1.37459, respectively. In Figure 11d, the R2 values of calibration, and
cross-validation, the RMSEC, and the RMSECV are 0.81573, 0.66723, 1.08264, and 1.47957,
respectively. The PLSR model pre-processed by the SG derivative method resulted in the
most improved R2 of calibration and RMSEC values.
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Figure 11. PLSR model of oxygen concentration with the (a) original data and PLSR models pre-
processed by SG derivative using (b) third-order derivative and fifth-order polynomial with three 
points, (c) third-order derivative and fifth-order polynomial with five points, and (d) third-order 
derivative and fifth-order polynomial with seven points. 

The measured oxygen concentration and the predicted oxygen concentration are pre-
sented in Figure 12. The maximum relative errors were 23.52, 23.16, and 17.56% in the 
PLSR models using the original data and the PLSR models pre-processed by SG smooth-
ing and the SG derivative, respectively. The PLSR model pre-processed by the SG deriva-
tive showed a low relative error. 

Figure 11. PLSR model of oxygen concentration with the (a) original data and PLSR models pre-
processed by SG derivative using (b) third-order derivative and fifth-order polynomial with three
points, (c) third-order derivative and fifth-order polynomial with five points, and (d) third-order
derivative and fifth-order polynomial with seven points.

The measured oxygen concentration and the predicted oxygen concentration are
presented in Figure 12. The maximum relative errors were 23.52, 23.16, and 17.56% in the
PLSR models using the original data and the PLSR models pre-processed by SG smoothing
and the SG derivative, respectively. The PLSR model pre-processed by the SG derivative
showed a low relative error.
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0.94079, 0.91460, 0.06699, and 0.08181, respectively. In Figure 13c, the R2 values of calibra-
tion and cross-validation, the RMSEC, and the RMSECV are 0.94820, 0.91692, 0.06265, and 
0.08069, respectively. In Figure 13d, the R2 values of calibration and cross-validation, the 
RMSEC, and the RMSECV are 0.94472, 0.90623, 0.06472, and 0.08573, respectively. As 
shown in Figure 13b, the R2 of calibration and the RMSEC values are improved to a greater 
degree in the PLSR model. The RMSECV value of the R2 of cross-validation is slightly 
improved with the adoption of the PLSR model, as shown in Figure 13d. 

Figure 12. Comparison of relative errors between measured and predicted oxygen concentrations for
the PLSR models employing the original data and pre-processed data.

Figure 13a represents the PLSR model for sulfur using the original data. Figure 13b–d
represent the PLSR models pre-processed by the SG-smoothing-based preprocessing
method using third-order polynomials with three, five, and seven smoothing points, respec-
tively. In Figure 13, the R2 values of calibration and cross-validation, the RMSEC, and the
RMSECV are 0.92651, 0.89814, 0.07462, and 0.08934, respectively. As shown in Figure 13b,
the R2 values of calibration and cross-validation, the RMSEC, and the RMSECV are 0.94079,
0.91460, 0.06699, and 0.08181, respectively. In Figure 13c, the R2 values of calibration and
cross-validation, the RMSEC, and the RMSECV are 0.94820, 0.91692, 0.06265, and 0.08069,
respectively. In Figure 13d, the R2 values of calibration and cross-validation, the RMSEC,
and the RMSECV are 0.94472, 0.90623, 0.06472, and 0.08573, respectively. As shown in
Figure 13b, the R2 of calibration and the RMSEC values are improved to a greater degree
in the PLSR model. The RMSECV value of the R2 of cross-validation is slightly improved
with the adoption of the PLSR model, as shown in Figure 13d.
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Figure 13. PLSR model of sulfur concentration with (a) the original data and PLSR models pre-
processed by SG smoothing using (b) third-order polynomial with three points, (c) third-order pol-
ynomial with five points, and (d) third-order polynomial with seven points. 

Figure 14a depicts the PLSR model for sulfur using the original data. Figure 14b–d 
show the PLSR models pre-processed by the SG derivative using the second-order deriv-
ative and second-order polynomials with one, three, and five smoothing points, respec-
tively. In Figure 14a, the R2 values of calibration and cross-validation, the RMSEC, and the 
RMSECV are 0.92651, 0.89814, 0.07462, and 0.08934, respectively. As shown in Figure 14b, 
the R2 values of calibration, and cross-validation, the RMSEC, and the RMSECV are 
0.96412, 0.2382, 0.05214, and 0.07727, respectively. In Figure 14c, the R2 values of calibra-
tion and cross-validation, the RMSEC, and the RMSECV are 0.93791, 0.90530, 0.06893, and 
0.08615, respectively. In Figure 14d, the R2 values of calibration and cross-validation, the 
RMSEC, and the RMSECV are 0.93119, 0.89697, 0.07221, and 0.08986, respectively. When 
the PLSR models pre-processed by SG smoothing and the SG derivative are compared 
with the PLSR model using the original data, the R2 values of calibration and cross-vali-
dation, the RMSEC, and the RMSECV in the PLSR models pre-processed by the SG deriv-
ative method are significantly improved. 
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Figure 13. PLSR model of sulfur concentration with (a) the original data and PLSR models pre-
processed by SG smoothing using (b) third-order polynomial with three points, (c) third-order
polynomial with five points, and (d) third-order polynomial with seven points.

Figure 14a depicts the PLSR model for sulfur using the original data. Figure 14b–d
show the PLSR models pre-processed by the SG derivative using the second-order deriva-
tive and second-order polynomials with one, three, and five smoothing points, respectively.
In Figure 14a, the R2 values of calibration and cross-validation, the RMSEC, and the RM-
SECV are 0.92651, 0.89814, 0.07462, and 0.08934, respectively. As shown in Figure 14b, the
R2 values of calibration, and cross-validation, the RMSEC, and the RMSECV are 0.96412,
0.2382, 0.05214, and 0.07727, respectively. In Figure 14c, the R2 values of calibration and
cross-validation, the RMSEC, and the RMSECV are 0.93791, 0.90530, 0.06893, and 0.08615,
respectively. In Figure 14d, the R2 values of calibration and cross-validation, the RMSEC,
and the RMSECV are 0.93119, 0.89697, 0.07221, and 0.08986, respectively. When the PLSR
models pre-processed by SG smoothing and the SG derivative are compared with the PLSR
model using the original data, the R2 values of calibration and cross-validation, the RMSEC,
and the RMSECV in the PLSR models pre-processed by the SG derivative method are
significantly improved.
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Figure 14. PLSR model of sulfur concentration employing the (a) original data and PLSR models 
pre-processed by SG derivative using (b) second-order derivative and second-order polynomial 
with one point, (c) second-order derivative and second-order polynomial with three points, and (d) 
second-order derivative and second-order polynomial with five points. 

The measured and predicted sulfur concentrations are presented in Figure 15. The 
maximum relative errors were 32.11, 20.13, and 18.84% for the PLSR model using the orig-
inal data and the PLSR models pre-processed by the SG-smoothing and SG derivative 
methods, respectively. The relative error was the lowest in the PLSR model that adopted 
the SG derivative method. 

Figure 14. PLSR model of sulfur concentration employing the (a) original data and PLSR models
pre-processed by SG derivative using (b) second-order derivative and second-order polynomial
with one point, (c) second-order derivative and second-order polynomial with three points, and
(d) second-order derivative and second-order polynomial with five points.

The measured and predicted sulfur concentrations are presented in Figure 15. The
maximum relative errors were 32.11, 20.13, and 18.84% for the PLSR model using the
original data and the PLSR models pre-processed by the SG-smoothing and SG derivative
methods, respectively. The relative error was the lowest in the PLSR model that adopted
the SG derivative method.
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3.1.2. Root Mean Square Error (RMSE) Average of Major Elements of Mixed Coals

The average RMSE (%) can be obtained from the RMSE values of the PLSR models
for the major elements in mixed coal. The average RMSE (%) can be defined by the
following equation:

RMSEC(V)(avg .)(%) =
RMSEC(V )

Average of Property
× 100, (3)

where the average of property is the mean value of each elemental concentration used as
the reference value. As shown in Table 1, the RMSEC (avg.) and RMSECV (avg.) were
0.7570 and 0.9538 in the original data for carbon. For the carbon data pre-processed by SG
smoothing, the RMSEC (avg.) and RMSECV (avg.) were 0.7089 and 0.9080, respectively.
The RMSEC (avg.) and RMSECV (avg.) (%) were 0.6229 and 1.0064 for the carbon data
pre-processed by the SG derivative, respectively. The RMSECV (avg.) value was the lowest
with SG smoothing. The RMSEC (avg.) and RMSECV (avg.) in the original data for
hydrogen are 0.8652 and 1.3489, respectively. The RMSEC (avg.) and RMSECV (avg.) in
the SG-smoothing data are 0.8461 and 1.3914, respectively. The values of the RMSEC (avg.)
and RMSECV (avg.) were 0.6258 and 1.0519 with the SG derivative method, respectively.
The RMSEC (avg.) and RMSECV (avg.) with SG derivate method could be improved. In
the case of oxygen, the RMSEC (avg.) and RMSECV (avg.) are 6.7308 and 9.0414 in the
original data, respectively. The RMSEC (avg.) and RMSECV (avg.) with the SG-smoothing
method are 6.7563 and 9.0984, respectively. The RMSEC (avg.) (%) and RMSECV (avg.)
were 5.8870 and 9.3883 with the SG derivative method, respectively. The RMSECV (avg.)
was the lowest for the original data. In the case of sulfur, the RMSEC (avg.) and RMSECV
(avg.) were 7.6019 and 9.1453, respectively. The RMSEC (avg.) and RMSECV (avg.) with
the SG-smoothing method were 7.5097 and 9.0301, respectively. The RMSEC (avg.) and
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RMSECV (avg.) were 5.8513 and 8.6710 with the SG derivative method, respectively. The
RMSEC (avg.) and RMSECV (avg.) with the SG derivate method were slightly improved.

Table 1. Comparison of RMSE average (%) of mixed coal elements between original data and
pre-processed data.

Element Data Pre-Processing RMSEC(avg.) (%) RMSECV(avg.) (%)

Carbon
Original data 0.7570 0.9538
SG smoothing 0.7089 0.9080
SG derivative 0.6792 0.9082

Hydrogen
Original data 0.8652 1.3489
SG smoothing 0.8461 1.3914
SG derivative 0.6258 1.0519

Oxygen
Original data 6.7308 9.0414
SG smoothing 6.7563 9.0984
SG derivative 5.8870 9.3883

Sulfur
Original data 7.6019 9.1453
SG smoothing 7.5098 9.0301
SG derivative 5.8513 8.6710

3.1.3. Residual Predictive Deviation (RPD) of Major Elements of Mixed Coals

The residual predictive deviation (RPD) parameter was introduced to examine the
accuracy of the PLSR model and can be defined by the following equation:

RPD =
SD

RMSECV
, (4)

where SD is the standard deviation of each element’s concentration obtained from con-
ventional industrial analysis, and RMSECV is the RMSE of cross-validation for the PLSR.
When the RPD is lower than 2.0, the model is considered as insufficient. When the RPD
lie between 2.0 and 2.5, the model is approximately precise and is recommended for use
in the estimation of composition. When the RPD is in the range from 2.5 to 3.0, the model
is very precise. When the RPD is higher than 3.0, the model is considered as an excellent
model [18–20].

In Table 2, the PLSR model of each element after the application of the SG derivative
method shows that the RPD values of carbon and hydrogen are 3.10 and 2.63. Thus, both of
the PLSR models are considered to be sufficiently precise. The RPD of oxygen is 1.70, which
indicates that the PLSR model for oxygen is insufficient. However, the RPD of sulfur is 3.53,
which proves that the PLSR model for sulfur is excellent, although the sulfur concentration
is extremely low compared to the concentrations of other elements.

Table 2. RPD of mixed coal.

Element Data Pre-Processing SD RMSECV RPD

Carbon SG derivative 2.16 0.69847 3.10
Hydrogen SG derivative 0.14 0.05312 2.63

Oxygen SG derivative 2.38 1.4031 1.70
Sulfur SG derivative 0.27 0.07727 3.53

3.2. Calorific Value Analysis

Since coal is used as the main fuel in coal-fired power generation, the calorific value of
coal is a very important factor. Water vapor, which is a by-product of coal combustion, has
latent heat. Therefore, a higher heating value (HHV) including the latent heat of steam is
appropriate for the estimation of the calorific value of coal. The PLSR model was used to
estimate the concentration of each element. The predicted calorific value can be obtained
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by substituting the predicted concentration of elements such as carbon, hydrogen, oxygen,
and sulfur into Dulong’s equation, which is a higher heating value equation [21]:

HHV (kcal/kg) = 8080C + 34460H − 4308O + 2250S, (5)

where, C, H, O, and S are the concentrations (%) of carbon, hydrogen, oxygen, and sulfur,
respectively. The calorific value obtained from the Daedeok Analytical Research Institute
via industrial analysis was compared with the calorific value estimated from the PLSR
models of each element shown above.

Figure 16 shows the relative errors between the measured and predicted values for the
PLSR model using the original data and the PLSR model pre-processed by the SG derivative
method [22]. The predicted calorific value was obtained by substituting the concentration
of the elements from the PLSR model into Equation (5), i.e., the higher heating value
equation. The relative error of the original data ranged from 0.09 to 6.45% and the average
relative error was 2.22%. The relative errors of the PLSR model pre-processed by the SG
derivative varied from 0.02 to 5.54% and the average relative error was 2.18%. They are
slightly improved when they are compared with the relative errors of the original data in
the range from 0.09 to 6.45%, as shown in Figure 16. The mean relative error of 2.18% was
smaller than that of 2.22% obtained from the result of Figure 16. Therefore, the prediction
of calorific value via the SG derivative method provides more reliable values.
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4. Conclusions

Multivariate analyses for the carbon, hydrogen, oxygen, and sulfur components of
mixed coals measured by LIBS were quantitatively analyzed. The data treated by SG
smoothing and the SG derivative were adopted in the PLSR models. The coefficient of
determination (R2), the root mean square error, the relative error, and the RMSE average
were adopted as parameters. The most reliable PLSR model was selected by introducing
the RPD parameter. The concentration of each element was predicted by the selected
PLSR model, and the calorific value was obtained by using the estimated concentration of
elements and substituting them into Dulong’s equation. The data pre-processed with the
SG derivative showed better results regarding the calorific value of the mixed coals.
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