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Abstract: Reverberation characteristics must be considered in the design of sonar. The research
on reverberation characteristics is based on a large number of actual reverberation data. Due to
the cost of trials, it is not easy to obtain actual lake and sea trial reverberation data, which leads
to a lack of actual reverberation data. Traditionally, reverberation data are obtained by modeling
the generation mechanism of seafloor reverberation. The usability of the models requires a large
amount of actual seafloor reverberation data to verify. In terms of the reverberation modeling theory,
scattering models are mostly empirical, computationally intensive and inefficient. In order to solve
the above obstacles, we propose a shallow seafloor reverberation data simulation method based on
the generative adversarial network (GAN), which uses a small amount of actual reverberation data
as reference samples to train the GAN to generate more reverberation data. The reverberation data
generated by the GAN are compared with that simulated by traditional methods, and it is found
that the reverberation data generated by the GAN meet the reverberation characteristics. Once the
network is trained, the reverberation data are generated with very little computation. In addition,
the method is universal and can be applied to any sea area. Compared with the traditional method,
this method has a simple modeling idea, less computation and strong universality. It can be used as
an alternative method for sea trials to provide data support for the study of seafloor reverberation
characteristics, and it has broad application prospects in antireverberation technology research and
active sonar design.

Keywords: shallow seafloor; reverberation; reverberation simulation; generative adversarial network

1. Introduction

The acoustic signal is emitted from the sound source. In the process of propagation, it
is scattered by the undulating boundary or the inhomogeneous medium. The scattering
echo is superimposed at the receiver position to form the seafloor reverberation. The
seafloor reverberation is a description of the random scattering process of inhomogeneous
bodies on the seafloor. The seafloor reverberation and the target scattering echo have a
strong correlation in the time domain, and their spectra overlap in the frequency domain [1].
The reverberation is usually the most significant background interference for active sonar
detection, especially in shallow seas [2,3]. The reverberation characteristics refer to the
statistical characteristics [4]. To study the characteristics of the seafloor reverberation, it is
not only necessary to model the generation process of the seafloor reverberation and carry
out theoretical analyses, but also to use a large amount of actual data to verify the model.
Large amounts of actual seafloor reverberation data are always needed.

Compared with the acoustic propagation modeling, the theoretical modeling of re-
verberation has stronger complexity and randomness due to the need to consider many
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factors [5,6]. Ray acoustic theory is widely used for modeling short-range reverberations
in the deep sea [7]. However, for shallow-sea long-range reverberations, the model based
on ray theory becomes too complicated due to the need to consider the multipath phe-
nomenon, and the reverberation calculation error based on the ray reverberation model
will be large. In the 1960s, Bucker and Morris proposed a theoretical model for calculating
the reverberation intensity with a normal-mode wave method [8]. The normal-mode wave
theory gives a strict analytical solution to the sound field, with available fast algorithms
and numerical models [9–11]. The normal-mode wave reverberation model makes up for
the deficiency of the ray reverberation model [12]. The long-range seafloor reverberation
model based on the normal-mode wave theory is widely used [13,14]. The normal-mode
reverberation model uses the empirical Lambert scattering function to express the scatter-
ing process. Lambert’s theorem was originally used in optics to describe the reradiation
of light energy from irregular surfaces. The Lambert model is accurate in calculating the
scattering intensity of rough surfaces, but it is only applicable in the case of small grazing
angles [15]. It is necessary to verify the accuracy of the reverberation model based on
Lambert’s theorem with experimental data [16]. The seafloor reverberation is generally
thought to result from the scattering caused by the rough undulating interfaces and the
uneven media on the seafloor [17]. Many researchers have built reverberation models based
on the physical mechanism of seafloor scattering [18–20]. For scattering problems, the
Kirchhoff–Helmholtz integral formula can be used to strictly obtain the integral equation of
a scattered wave [21]. The reverberation model based on the Kirchhoff–Helmholtz integral
equation is used to calculate the scattering field of rigid spheres in horizontal layered
waveguides. The scattering field of the target is expressed as the superposition of the
product of the normal modes and the plane wave scattering function. Subsequently, Makris
and Ratilal directly derived the scattering functions of regular targets scattered on irregular
surfaces and random undulated interfaces in free space based on Green’s theorem and
established a unified model that included target scattering and interface reverberation in
horizontal layered media [22]. Similar to the radiation problem, the scattered field can be
regarded as the reradiation of a rough interface or an inhomogeneous medium. The form
of the scattering field is described by the first-order approximation of the solution of the
integral equation, which is called the Born approximation method. Ivakin and Lysanov
used this method to solve the acoustic scattering problem of inhomogeneous media in
the seafloor [23]. Ivakin then presented a unified model, including the scattering of undu-
lated interfaces and inhomogeneous media [24]. A monostatic backscattering model [25]
proposed by Jackson and Mourad has nine input parameters and assumes no correlation
between seafloor undulating-interface scattering and inhomogeneous-media scattering.
Galinde et al. proposed a bistatic analytical model suitable for inclined seafloors [26]. The
model considers that the seafloor reverberation comes from the omnidirectional three-
dimensional sound-field scattering caused by the nonuniformity of the sound velocity and
the density of the seafloor volume and interface, and then gives the analytical expression of
the scattering field using the Born approximation. The reverberation simulation models
mentioned above are mainly based on empirical scattering models or physical scattering
models, in which the scattering functions of random scatters and irregular seabed surfaces
are complex. The calculation cost of the mentioned models increases sharply as the sim-
ulation time increases and the factors considered increase, resulting in a low simulation
efficiency. Furthermore, the high cost of sonar and oceanographic equipment makes the
reverberation data collection more difficult, resulting in the scarcity of actual lake and sea
trial reverberation data. Less data means that the researchers cannot fully study the rever-
beration characteristics, which causes data obstacles for the research of antireverberation
technology and active sonar design.

The GAN [27] was constructed by Goodfellow’s team, and the constructed model
includes two subneural network models, namely, generative network and discriminative
network models. The two subneural networks are trained to reach Nash equilibrium. The
excellent generative ability of the GAN has attracted wide attention since its appearance,
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which has greatly promoted the development of unsupervised learning. As a hot research
direction in the field of machine learning, the application of the GAN has been extended
from the initial image generation [28] to various fields of computer vision [29,30]. As the
first adversarial neural network model widely used in real tasks, the superiority of the
GAN has been demonstrated in several areas [31,32]. The superiority of the GAN has
inspired many researchers to carry out research on schemes combining with the GAN
in their respective fields. Recently, GANs have shown progress from music generation
to any short audio clip generation [33,34]. The GANs have also been used to generate
room impulse responses, which aims to augment high-quality RIRs using existing real
RIRs [35]. In the field of underwater acoustic engineering, it should be theoretically feasible
to use the GAN for active sonar reverberation data simulation to solve the problem of less
reverberation data.

Therefore, to solve the problem of less reverberation data, a GAN-based reverberation
simulation method is proposed in this paper. The proposed method uses a small amount of
actual reverberation data as reference samples to train the GAN, so as to obtain a larger
amount of reverberation data. As an alternative means to sea experiments, this method can
provide data support for sonar design and antireverberation technology research, which is
of great significance in engineering applications.

2. Methodology
2.1. The Traditional Point-Scattering Method

Traditional seafloor reverberation simulation theory is generally based on two types
of scattering models, namely the point-scattering model and the element-scattering model.
Based on a statistical approach, the point-scattering model assumes that scatterers are
randomly distributed throughout the ocean. The reverberation is calculated by summing
the echoes of each individual scatterer. The point-scattering model is applicable to high-
frequency sonar and subglacial scattering [7]. In this study, the point-scattering model is
used for simulation as a comparison. As an example, the model of the monostatic devices
is shown in Figure 1.
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Figure 1. Schematic diagram of the point-scattering model.

During a period T, the scattering area corresponding to the transmitted signal can be
roughly viewed as a fan ring. This region of the fan ring is called the sampling element.
The azimuth of the sampling element is limited by the beam pattern and the distance is
limited by the period of the transmitted signal. The area of the sector ring can be calculated
based on the speed of sound and the period of the wavelength. After calculating the area
of the fan ring, the number of scatterers in the fan ring can be calculated based on the
scatterer density. Based on the above information, the reverberant signal can be modeled
as follows [36]:
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R(t) = F [
N(t)

∑
i=1

S(ri, ϕi) f 2(d(ri, ϕi))BTR(ri, ϕi)x+(t− τ(ri, ϕi))ejφi ] (1)

where ri is the distance coordinate, ϕi is the azimuth coordinate, (ri,ϕi) is the coordinate
vector of the ith scatterer, S is the scattering term, BTR is the beam pattern of the monostatic
sonar, f is the propagation term, d is the distance between the scatterer and the sonar, τ is
the two-way propagation time delay, x+(t) is the analytic signal of the emitted signal x(t),
and φi is the random phase perturbation in the scattering process, uniformly distributed in
[0, 2π].

Usually, S, f, and BTR exhibit slow fluctuation characteristics relative to x+(t) in Equa-
tion (1). When the signal period T is small, x+(t) also exhibits slow fluctuation characteristics
within the sampling element. In this case, the reverberation model can be expressed as [37]

R(t) ≈ F [
Ns

∑
k=1

I(kT)x+(t− kT)] (2)

where I(kT) denotes the result of the common action of the scatterers about S f 2BTRejφ in
the kth sampling element, which is calculated as follows:

I(kT) =
Na(kT)

∑
i=1

S(ri) f 2(d(ri))ejφi (3)

where Na is the number of the scatterers in the sampling unit. In Equation (3), the scattering
item S can be expressed as [37]

S =

√
10

µ
10 sin(αi)sin(αo) (4)

where µ is vertical scattering coefficient, αi is the incident grazing angle, and αo is the
scattering grazing angle. In the case of monostatic sonar, αi is equal to αo. The propagation
term f can be expressed as follows [38]:

f (d) =
1
d

10−βdv (5)

where β represents the absorption coefficient of seawater.

2.2. Generative Adversarial Network
2.2.1. The Strategy of the GAN

The goal of the GAN is to use the simulated data distribution PG(x) of the generator to
match the actual sample data distribution Pdata(x). In this process, the GAN does not try to
assign a deterministic probability to each x of the data distribution but generates simulated
data x by feeding the noisy variable z ∼ Pnoise(z) into the generator G

(
z, θg

)
. The simulated

data sample x = G
(
z, θg

)
generated by the generator is fed into a discriminator D(x, θd)

to discriminate and output the discriminated results as right or wrong. The discriminator
D and the generator G are both learnable neural networks. There is a mechanism of
confrontation and mutual feedback between the two neural networks. Eventually, both the
generator G and the discriminator D reach equilibrium at their respective high performance.
However, the high performance of the generator G is achieved under the high-performance
condition of the discriminator D. In this case, when the simulation data sample x = G

(
z, θg

)
is passed to the discriminator G, the probability of discriminating as true or false is 1/2 each.

2.2.2. The Loss Function of the GAN

In the GAN, there exist two neural networks, the generator G and the discriminator D.
The loss function should be built by considering both of them. Since the high performance
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of the generator G is achieved under the condition of high performance of the discriminator
D, the loss function of the discriminator network D is considered first. The loss function [39]
of the discriminator network D is as follows:

max
D

{
Ex∼Pdata(x)

[logD(x)] + Ez∼Pnoise(z)
[log(1− D(G(z)))]

}
(6)

For the generator network G, the loss function [39] is

min
G

{
Ez∼Pnoise(z)

[log(1− D(G(z)))]
}

(7)

Considering Equations (6) and (7), the final loss function [40] is

min
G

max
D

{
Ex∼Pdata(x)

[logD(x)] + Ez∼Pnoise(z)
[log(1− D(G(z)))]

}
(8)

2.2.3. The Training of the GAN

The whole GAN training process requires training both generator and discriminator
neural networks. However, the discriminator performance is generally stronger than the
generator at the beginning. Therefore, the whole training process is generally divided
into two stages. The first stage trains the discriminator, and the second stage trains the
generator. After training the discriminator, the discriminator passes true–false information
to the generator. The generator receives the true–false information from the discriminator
and continuously optimizes the network according to the information to generate high-
quality samples.

The training of the GAN requires the calculation of the partial derivatives of the loss
function with respect to θg and θd. Detailed steps are as follows:

i. Input the actual sample data and the generator simulation data into the discriminator
D for training and to update the parameters, and calculate the following equation [41]:

∇θd

{
Ex∼Pdata(x)

[logD(x)] + Ez∼Pnoise(z)
[log(1− D(G(z)))]

}
(9)

The gradient ascent method is used to update θd.
ii. Input the random-noise variable z ∼ Pnoise(z) into the generator for training to

update the parameters, and calculate the following equation [41]:

∇θg

{
Ez∼Pnoise(z)

[log(1− D(G(z)))]
}

(10)

The gradient descent method is used to update θg.
iii. Repeat i, ii.
In this process, care should be taken to balance the capabilities of the generator and

the discriminator so as not to cause one of them to be too powerful. Alternating updates of
the generator and discriminator can be used to reach the global optimal solution. Through
this learning strategy, the discriminator and generator continuously improve their abilities
to discriminate and generate the adversarial.

2.3. The GAN Reverberation Simulation Method

In the adversarial network of this study, the random signal is input to the generator,
and the generator is adjusted according to the information returned from the previous
discriminator, so as to generate a new signal according to the input random signal. The
signal generated by the generator is input into the discriminator together with the actual
reverberation reference signal, and the discriminator judges whether the signal generated
by the generator is true according to the actual reverberation reference signal. If true, the
discriminator outputs 1, and if false, the discriminator outputs 0. The output information
is fed back to the generator to enhance its ability of mixing the spurious with genuine.
On the other hand, the discriminator optimizes and improves its performance based on
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the more realistic signals generated by the generator. In this way, the generator and the
discriminator form an adversarial relationship, which makes the GAN reverberant signal
simulation theoretically possible.

The framework of the GAN used in this paper is shown in Figure 2.
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2.4. The Holistic Research Approach

In this study, we first input the environmental parameters of a sea area in China into
the point-scattering model to generate the reverberation simulation data. Then, the actual
sea trial reverberation data of the same sea area are input into the GAN to generate the
reverberation simulation data. Finally, the statistical characteristics of the reverberation
simulation data generated by the two methods are compared and analyzed to determine
whether the GAN reverberation generation method is feasible. The holistic research flow
chart is shown in Figure 3 below.
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3. Simulation
3.1. The Simulation Based on the Point-Scattering Method

In this section, the point-scattering model was used for the reverberation simulation.
The continuous wave (CW) signal and the linear frequency modulation (LFM) signal were
simulated separately, and the parameters of the point-scattering model are shown in Table 1.

Table 1. The parameters of the point-scattering model.

Parameter CW LFM

Center frequency (HZ) 500 500
Sampling frequency (HZ) 5000 5000

Bandwidth (HZ) - 200
Beam angle (◦) 30 30

Vertical scattering coefficient (dB) −27 −27
Seawater absorption coefficient 0 0

Scatterer density 20 20
Sound speed (m/s) 1500 1500

Start time (s) 0.08 0.08
End time (s) 0.23 0.23

Pulse width (s) 0.05 0.05
Launch duration time (s) 0.5 0.5

Distance between the device and the seabed (m) 50 50

3.1.1. Time–Frequency Characteristics of the Reverberation Signal

It can be seen from Figure 4 that the reverberation data are in the interval of 0.08 s–0.23 s.
In the time domain, the amplitude of the signal scattered back by the scattering element is
random, with large fluctuations. The envelope of the reverberation signal decays with time
according to certain rules, which is a nonstationary random process that shows the nature
of reverberation.

The following is the time domain waveform of the simulated reverberation signal.
Fourier transform was performed on the reverberation signal. Figure 5 shows the CW

and LFM reverberation spectra, respectively. According to the above theory, the frequency
domain of the reverberation signal is similar to that of the transmitted signal. Observing
the amplitudes in Figure 5, it can be seen that the center frequencies of both the CW and
LFM reverberation signals are 500 Hz, and the bandwidth of LFM reverberation signal is
close to 200 Hz, which indicates that the simulation results of the point-scattering model
satisfy the reverberation characteristics.
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Figure 5. The spectrum of reverberation signal.

3.1.2. Statistical Characteristics of the Reverberation Simulation

If the transmit signal is narrowband, it is known from the central limit theorem and
random signal analysis theory that the instantaneous value of the reverberation signal
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obeys the Gaussian distribution, and the envelope of the reverberation signal obeys the
Rayleigh distribution. The reverberation instantaneous value V(t) satisfies the Gaussian
distribution with a probability density function [42] of

W(V) =
1√

2πσV
exp

(
− V2

2σ2
V

)
(11)

In Equation (11), W is the probability density and σ2
V is the instantaneous value

variance of the reverberation signal.
The envelope E(t) of the reverberant signal satisfies the Rayleigh distribution with a

probability density function [43] of

W(E) =
1

σ2
V

exp

(
− E2

2σ2
V

)
(12)

In Equation (12), W is the probability density and σ2
V is the instantaneous value

variance of the reverberation signal.
According to the above parameters, the statistical characteristics of the reverberation

signal are obtained and are shown in Figure 6.

Appl. Sci. 2023, 13, 595 10 of 22 
 

 
(a) Instantaneous amplitude probability distribution of the CW reverberation signal 

 
(b) Envelope amplitude probability distribution of the CW reverberation signal 

Figure 6. Amplitude statistical characteristics of CW reverberation signal. 

Figures 6a and 7a plot the instantaneous value probability distributions. Figures 6b 
and 7b plot the envelope probability distributions. The purple bars show the probability 
distributions of the simulated signal, and the red dots show the theoretical values of the 
associated distributions. From the figures, it can be seen that the instantaneous amplitude 
distribution obtained with the point-scattering model is close to the Gaussian distribution, 
and the envelope amplitude distribution is close to the Rayleigh distribution, which sat-
isfy the theoretical reverberation characteristics. 

Figure 6. Amplitude statistical characteristics of CW reverberation signal.



Appl. Sci. 2023, 13, 595 10 of 20

Figures 6a and 7a plot the instantaneous value probability distributions. Figures 6b and 7b
plot the envelope probability distributions. The purple bars show the probability distribu-
tions of the simulated signal, and the red dots show the theoretical values of the associated
distributions. From the figures, it can be seen that the instantaneous amplitude distribution
obtained with the point-scattering model is close to the Gaussian distribution, and the
envelope amplitude distribution is close to the Rayleigh distribution, which satisfy the
theoretical reverberation characteristics.
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3.1.3. Time Domain Correlation Characteristics of the Reverberation Simulation

Although the statistical characteristics of the reverberation signal depend on time, it
can still be considered as a stationary random process locally or in a short time. Since the
time-varying characteristics of the signal is much slower than itself, some random process
analysis can still be used here.

The time dependence of a reverberation signal is described by the autocorrelation
function, if a reverberation signal is

s(t) = s0(t)cos[ω0(t) + Φ(t)] (13)
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then the autocorrelation function [44] is

R(τ) ≈ 1
δ

{∫ ∞

−∞
s0(t)s0(t + τ)cos[Φ(t + τ)−Φ(t)]dt

}
cosω0τ (14)

After a little analysis of the above equation, it can be seen that the autocorrelation
function of a reverberation signal is similar to that of its transmitted signal, and its auto-
correlation function decays with the time. The duration of a reverberation signal is much
longer than that of the transmitted pulse width. It has relevant characteristics similar
to that of the transmitted signal within the duration. With the increase in duration, the
amplitude gradually decreases. When the time correlation is close to zero, it means that the
reverberation signal is basically over.

Figure 8a shows the autocorrelation function of the CW signal, and Figure 8b shows
the autocorrelation function of the CW reverberation signal. Comparing the two figures,
we can find that the autocorrelation function of reverberation and signal is similar. The
autocorrelation function is the largest in the middle moment, and the middle moment
corresponds to the moment of 0. After that, the amplitude gradually decreases with the
increase in time, and finally tends to 0, which is consistent with the theoretical analysis.
Figure 9 is similar to Figure 8.
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In this study, the time domain correlation characteristics of the reverberation signal
are described by its autocorrelation function. The time domain correlation functions of the
CW signal, the CW reverberation signal, the LFM signal, and the CW reverberation signal
are plotted as follows.

From a theoretical point of view, the calculation amount of the point-scattering model
is influenced by the period of the emitted signal, the density of the ocean scatterer, and
the sampling frequency. The area of the scattering element in the reverberant zone is
first determined according to the emission signal period, then the number of sampling
points in its next period is determined according to the sampling frequency. Finally, the
calculation amount of each sampling point is determined according to the density of the
scatterer. In the calculation process, when any one of the above three factors is amplified,
the overall calculation cost tends to increase by hundreds or thousands of times. In this
case, it is necessary to wait a long time for each reverberation simulation. In addition, the
nonuniversality of some parameters in the scattering model, for example, the scatterer
density which changes with the specific sea area, leads to a reduction in the generalizability
of the reverberation model.
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3.2. The Simulation Based the GAN

In this section, the GAN is used for the reverberation simulation, and the actual rever-
beration data from the sea trials in shallow water in China are used as the actual reference
reverberation signals for training. The emission signals of the sea trial reverberation data
are CW signals with a center frequency of 35 kHz, a sampling frequency of 500 kHz and a
pulse width of 2 ms. Its time domain waveform is shown in Figure 10.

Appl. Sci. 2023, 13, 595 14 of 22 
 

 
Figure 10. Actual sea trial reverberation data. 

The generator uses a seven-layer neural network, including an input layer, five hid-
den layers and an output layer. The input of the whole generative network is a random 
vector with a length of 100, and the output is the reverberation data with a length of 7536 
after the processing of the five-layer network. The number of nodes in the first hidden 
layer is 256, and the activation function is the Leaky ReLU function. The input layer is 
fully connected to the first hidden layer. The number of nodes in the remaining hidden layers 
are 512, 1024, 2048 and 4096, and the activation functions are all Leaky ReLU functions. All 
connections between hidden layers are fully connected. The number of nodes in the output 
layer network is 7536, and the activation function is the sigmoid function. The connection be-
tween the last hidden layer and the output layer is fully connected. The detailed structure is 
shown in Figure 11. 

 
Figure 11. Generator network framework. 

The input of the discriminator network is the reverberation data generated by the 
generator network with a length of 7536, and the output is 1 or 0 after processing in the 
hidden layers. An output of 1 means that the discriminator network judges the data to be 

Figure 10. Actual sea trial reverberation data.

The generator uses a seven-layer neural network, including an input layer, five hidden
layers and an output layer. The input of the whole generative network is a random vector
with a length of 100, and the output is the reverberation data with a length of 7536 after
the processing of the five-layer network. The number of nodes in the first hidden layer
is 256, and the activation function is the Leaky ReLU function. The input layer is fully
connected to the first hidden layer. The number of nodes in the remaining hidden layers
are 512, 1024, 2048 and 4096, and the activation functions are all Leaky ReLU functions.
All connections between hidden layers are fully connected. The number of nodes in the
output layer network is 7536, and the activation function is the sigmoid function. The
connection between the last hidden layer and the output layer is fully connected. The
detailed structure is shown in Figure 11.
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The input of the discriminator network is the reverberation data generated by the
generator network with a length of 7536, and the output is 1 or 0 after processing in the
hidden layers. An output of 1 means that the discriminator network judges the data to
be true, and 0 means that the discriminator network judges the data to be false. The
discriminator uses an eleven-layer neural network, including an input layer, nine hidden
layers and an output layer. The number of nodes in the input layer is 7536, and the number
of nodes in the first hidden layer is 4096. The activation function is the Leaky ReLU function,
and the input layer is fully connected to the hidden first layer. The number of nodes in
the remaining hidden layers are 2048, 1024, 512, 256, 128, 64, 32 and 16 nodes, and the
functions are all Leaky ReLU functions. All connections between hidden layers are fully
connected. The output length of the output layer is 1, and the activation function is the
sigmoid function. The connection between the hidden last layer and the output layer is
fully connected. The detailed structure is shown in Figure 12.
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More than 1800 sets of actual sea trial data were used for this training. An Adam
optimizer was used for optimization. The learning rate was 2 × 10−4. The training loss
values are shown in Figure 13.
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It can be seen from Figure 13 that the loss values of both networks converge, which
means better training. The output reverberation signal using the trained GAN network is
shown in Figure 14.
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Next, the GAN-generated reverberation was analyzed for the reverberation character-
istics to determine if it satisfies the reverberation characteristics. From Figure 14, it can be
seen that the reverberation data are in the interval after 2 ms, and in the time domain, the
envelope of the reverberation signal decays with time according to a certain law, which is a
nonstationary random process that shows the nature of reverberation.

Fourier transform was performed on the GAN-generated reverberation signal. The
frequency spectrum of the GAN-generated reverberation signal was compared with that
of the actual sea trial data. The comparison results are shown in Figure 15. Figure 15a
shows the frequency spectrum of the actual reverberation signal, and Figure 15b shows the
frequency spectrum of the GAN-generated reverberation signal. From the figures, it can
be seen that the frequency spectrum of the GAN-generated reverberation signal is similar
to that of the actual reverberation signal, which is close to the frequency spectrum of the
emitted signal. The highest point of the spectrum is at 35 kHz, which is consistent with the
characteristics of the reverberation spectrum.
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The statistical characteristics of the GAN-generated reverberation signal are shown in
Figure 16.
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As can be seen in Figure 16, the instantaneous amplitude distribution of the GAN-
generated reverberation signal is close to the Gaussian distribution, and the envelope
distribution is close to the Rayleigh distribution, which satisfy the theoretical reverbera-
tion characteristics.

According to the theory above, the autocorrelation function of reverberation is similar
to that of a transmitted signal, and its autocorrelation function decays with time. The
duration of a reverberation signal is much longer than that of the transmitted pulse width.
It has relevant characteristics similar to that of the transmitted signal within the duration.
With the increase in duration, the amplitude gradually decreases. When the time correlation
is close to zero, it means that the reverberation signal is basically over. The GAN-generated
reverberation signal is consistent with this theory, as seen in Figure 17.
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The following is a plot of the time domain correlation function of the GAN-generated
reverberation signal:

4. Conclusions

This paper first introduces the importance of a reverberation characteristic study for
the implementation of the reverberation suppression algorithms and presents one of the
difficulties that needs to be overcome before the reverberation characteristic study: the
acquisition of the reverberation signals. To address this difficulty, a reverberation simulation
method based on the GAN is proposed for efficient reverberation signal study. First, the
reverberation signal is simulated based on the traditional point-scattering model, and the
reverberation characteristics are analyzed and summarized in various aspects. Then, the
reverberation signal is simulated based on the GAN, and the reverberation characteristics of
the simulated signal are also analyzed and summarized. The reverberation characteristics
are also compared with those of the simulation signal obtained by the conventional point-
scattering model.

By comparing Figures 3 and 9, it can be seen that the reverberation simulation data
based on the GAN have the same characteristics in the time domain as the reverbera-
tion simulation data obtained from the traditional point-scattering model, and they are
all consistent with the time domain characteristics of the reverberation. By comparing
Figures 4 and 14, it can be seen that the reverberation simulation data based on the GAN are
similar to the reverberation simulation data obtained from the traditional point-scattering
model in the frequency domain. The center frequencies are all 500 Hz, which satisfies
the reverberation characteristics. By comparing Figures 5, 6 and 15, it can be seen that
the reverberation simulation data based on the GAN and the traditional point-scattering
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model are both close to the Gaussian distribution in the instantaneous amplitude distri-
bution and close to the Rayleigh distribution in the envelope distribution, which satisfy
the reverberation characteristics. By comparing Figures 7, 8 and 16, it can be seen that the
reverberation simulation data based on the GAN and the traditional point-scattering model
are similar in terms of correlation, and they both gradually weaken with time, which satisfy
the reverberation characteristics. Therefore, it is theoretically feasible to use the GAN to
generate reverberant signals.

In terms of calculation cost, the main factors affecting the calculation cost of the point-
scattering model are the emission signal period, ocean scatterer density, sampling frequency,
etc. When any one of the above three factors is amplified, the overall calculation cost is often
increased hundreds or thousands of times, so it is necessary to wait a long time for each
reverberation simulation. Unlike the point-scattering model, the GAN-based reverberation
simulation method requires a high computational effort only when the network is trained.
Once the network is trained, the computational effort for each subsequent reverberation
generation is negligible. Therefore, in comparison, the GAN-based reverberation simulation
method is less computationally intensive.

In terms of universality, the reverberation simulation method based on the point-
scattering model is theoretically fixed and the parameters, such as the emission signal and
the scatterer density, can only be slightly modified according to the different test conditions.
However, the proposed GAN-based reverberation simulation method is different. As
long as there is a small amount of the actual reverberation signal of the sea, the GAN can
use these signals as samples to simulate the reverberation signals with a high degree of
similarity. Therefore, in comparison, the proposed GAN-based reverberation simulation
method has higher universality.

From the above analysis, it is concluded that the reverberation simulation data based
on the GAN are similar to those based on the traditional point-scattering model in terms of
the time and frequency domains, statistical characteristics and correlation characteristics,
and they can be better applied to the subsequent study of reverberation suppression
schemes. However, the proposed GAN-based reverberation simulation method has more
obvious advantages in terms of calculation cost and universality. Of course, there are
shortcomings in the method proposed in this paper. More data from a few sea areas should
be used to verify the generalizability of the proposed method, as well as to explore the
influences of network structure and type on the simulation results, etc.
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