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Abstract: In recent years, fake news detection and its characteristics have attracted a number of
researchers. However, most detection algorithms are driven by data rather than theories, which
causes the existing approaches to only perform well on specific datasets. To the extreme, several
features only perform well on specific datasets. In this study, we first define the feature drift in fake
news detection methods, and then demonstrate the existence of feature drift and use interpretable
models (i.e., Shapley Additive Explanations and Partial Dependency Plots) to verify the feature drift.
Furthermore, by controlling the distribution of tweets’ creation times, a novel sampling method is
proposed to explain the reason for feature drift. Finally, the Anchors method is used in this paper as a
supplementary interpretation to exhibit the potential characteristics of feature drift further. Our work
provides deep insights into the temporal patterns of fake news detection, proving that the model’s
performance is also highly related to the distribution of datasets.

Keywords: feature drift; fake news detection; interpretable analysis

1. Introduction

Social media have significantly increased the amount of information on the Internet
due to their characteristics of fast information spreading and strong user mobility [1–3].
Meanwhile, the low-cost posting and spreading of ambiguous or misleading information
on social media has significantly increased the probability of users to be exposed to fake
news [4]. The rise of fake news affects information credibility in the era of high information
technology [5]. Recent studies show that fake news has become one of the largest threats to
democracy [6] and public opinion [7]. For example, it affected the “Brexit” referendum [8]
and the 2016 US presidential election [9], resulting in the weak credibility of the govern-
ment. Furthermore, it can be found that fake news is retweeted more often than genuine
news [10,11].

Although fake news is not a new phenomenon, the rapidly changing social realities
have prompted us to revisit the scientific theories and continue to develop new approaches
to manage and analyze fake news, e.g., the systematic change in news consumption.
Compared with traditional news media, such as newspapers and television, fake news
is published and propagated online, faster and at a lower cost [12]. However, for the
general public, the ability to identify fake news is very low [13]. Furthermore, the echo
chamber effect on social media also amplifies and reinforces the spread of fake news [14],
causing fake news to experience a high degree of exposure and a validity effect [15]. Thus,
nowadays, detecting fake news has become extremely difficult.

Researchers have suggested various methods to study the propagation of fake news.
Guess et al. [16] found that there is a strong age effect in fake news dissemination on
social networks; users aged over sixty-five shared more fake news than younger users.
Tsfati et al. [17] proposed that mainstream news media in fact play a significant and im-
portant role in the dissemination of fake news, which defies our intuitions. Kucharski [18]
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proposed a spreading dynamics model based on modified epidemic diffusion models to
study the propagation of fake news. Ref. [14] proposed that echo chambers on social net-
works lead to the virality of fake news from the perspective of social contagion. In addition,
researchers also suggest various algorithms to develop fake news detection methods based
on machine learning [19,20] or deep learning [21–24]. However, their feature recognition
work is driven by data rather than theories [25], which causes the existing approaches
to only perform well on specific datasets. Furthermore, most current works focus on
the linguistic features [26–28], which may be deliberately intended for specific purposes,
e.g., deceptive language features can be injected to bypass the text-based rumor detection
model [29]. Thus, the fragility of linguistic features prompts researchers to start looking
for more reliable features, e.g., propagation features (such as propagation range, i.e., the
size of the retweet network). Compared to linguistic features, they are more difficult to
manipulate by malicious users [30]. Therefore, propagation-based methods [31–33] have
more stable temporal and inter-system validity. However, the basic propagation charac-
teristics and underlying mechanisms of user activity on social media platforms remain
poorly understood.

In general, different data sources may introduce system biases and yield a lack of sta-
bility in the measurement. Thus, exploring underlying mechanisms in fake news detection
becomes necessary. Furthermore, the interpretability of deep learning approaches is very
poor, e.g., deep neural networks (DNN) [34]. These models, with low interpretability, are
challenging to put into practical application, despite the high accuracy that they obtain.
Our study demonstrates that the same features perform differently in different datasets.
By defining the phenomenon of feature drift in fake news detection as the fact that the
features are unstable and fortuitous over a decision process, our work proves the existence
of feature drift and discusses the potential reasons. The research questions are as follows:

• RQ1: Does the phenomenon of feature drift exist in fake news detection?
• RQ2: What causes the feature drift phenomenon?

By using SHAP (Shapley Additive Explanations) [35] and PDP (Partial Dependency
Plots) [36], we confirm the existence of the feature drift phenomenon. Furthermore, to iden-
tify the reason for feature drift, our work proposes a sampling method by controlling the
distribution of tweets’ creation times. The contributions of this work are as follows:

• We demonstrate that the feature drift phenomenon does exist in fake news detection,
and explainable results further illustrate the existence of feature drift.

• We propose a sampling method based on skewness to discuss the reasons for the fea-
ture drift phenomenon, which provides a new perspective on the cause of feature drift.

The rest of the paper is organized as follows. Section 2 discusses interpretable models
and interpretable fake news detection. Section 3 introduces the datasets and the corre-
sponding features. Section 4 first defines the phenomenon of feature drift and introduces
the basic experimental setup, and then demonstrates the existence of feature drift, proposes
a sampling method to understand the cause of the feature drift phenomenon, and applies
the Anchors method to supplement the analysis of feature drift. Finally, Section 5 concludes
the investigation with some discussions.

2. Related Works
2.1. Interpretable Models

The traditional evaluation indicators (e.g., accuracy, F1 score, etc.) cannot fully deter-
mine how much we trust a machine learning model [37], especially for the dataset-based
and black-box models [38]. Fortunately, interpretability captures additional knowledge
in the models and helps researchers to obtain more understandable information. In more
detail, the interpretable model distinguishes the authenticity of information and provides
the corresponding judgment basis, which provides faster and more effective detection and
intervention. To deconstruct the black-box model in artificial intelligence and better under-
stand the prediction results of the model, many interpretable methods have been proposed.
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According to the implementation methods, Ref. [38] divided interpretable methods into
intrinsic and post-hoc interpretability. Intrinsic interpretability restricts the complexity
of model structures [39], e.g., decision trees [40] and linear regression [41]. Post-hoc in-
terpretability analyzes the model after training, e.g., LIME (Locally Interpretable Model
Agnostic Explanation) [42] and SHAP [35]. Intrinsic interpretability is easy to understand,
but the inflexibility of the model limits its wider application. On the contrary, post-hoc
interpretability is model-agnostic, thus making it widely used to interpret incomprehen-
sible black-box models. Moreover, according to the output forms, interpretable models
can be further divided into feature summary statistics, feature summary visualization,
and learning weights [38]. Feature summary statistics quantify features by returning a
single number, such as feature importance. Feature summary visualization shows the
overall trend of features by visualizing features as plots, e.g., partial dependence plot [36].
Learning weights provide information about model internals and are usually adopted
by intrinsic interpretable models, such as the weights in linear regression [41] and the
features’ thresholds used for the splits in decision trees [40]. In summary, the various
outputs of interpretable models help humans to understand the role of features in machine
learning models.

2.2. Interpretable Fake News Detection

Despite the substantial efforts devoted to developing fake news detection methods,
the transferability [43,44] of these methods still needs to be improved; in other words,
these models are very dependent on datasets. To address this problem, investigating the
interpretability of fake news detection algorithms has become an important task. However,
the interpretable analysis of fake news detection is still in its infancy. Shu et al. proposed
the dEFEND model [34] to determine why news is fake according to user comments ranked
by attention weights. Lu et al. [45] proposed the Graph-Aware Collaborative Attention
Network (GCAN) model to calculate the co-attention weights between the source tweet
and comments. By exhibiting the distribution of co-attention weights, evidential words
can be revealed to predict and interpret fake news. In summary, most of the current
interpretable fake news detection methods only focus on designing intrinsic interpretable
models, especially by introducing the attention weights of linguistic features. However,
these methods rely too much on the attention mechanism, making it challenging to interpret
fake news that lacks linguistic features.

3. Methodology

In this section, we first introduce the dataset and the corresponding features. Then, to
provide a clear explanation of which features effectively detect fake news, we manually
extract temporal and structural features in the propagation.

3.1. Dataset

Two real-world datasets are adopted for this work, and the statistics of the datasets
are shown in Table 1.
Twitter. The dataset named Twitter was published in Ma’s work [46]. Each news item in
the dataset is labeled as fake, true, non-rumor, or unverified, containing the relative time at
which the user posted the tweet, which can easily indicate the temporal information of the
propagation. In this work, only true and fake labels are considered.
Gossipcop. This dataset comes from the public fake news detection data repository Fak-
eNewsNet, which was released in Shu’s work [47]. Each news item in the dataset is a
hierarchical propagation network and is labeled as true or fake. Nodes in the hierarchical
propagation network are divided into four types: news nodes, tweet nodes, retweet nodes,
and reply nodes. To maintain consistency with the Twitter dataset, we only consider the
retweet relationship in Gossipcop.
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Table 1. Statistics of the datasets.

Twitter Gossipcop

True news 205 6945
Fake news 205 3684

Users 173,487 739,166
Tweets 204,820 1,058,330

3.2. Feature Extraction

We construct a propagation graph for each news item according to retweeting behavior,
and then divide the features of the graphs into temporal features and structural features.
The undirected propagation graph Gq = {Vq, Eq} is constructed based on the retweeting
relationship in the same event q, where Vq = {v1, v2, . . . , vNq} denotes the node set and
the number of nodes is Nq, and vi ∈ Vq denotes the i-th tweet that belongs to the event
q. Eq denotes the edge set; if tweet vi retweets tweet vj, a connected edge (vi, vj) ∈ Eq is
established between nodes vi and vj.
Temporal Features. Temporal features [48] focus on the temporal patterns in the spread of
news. In this work, we define the creation time of tweet vi as ti, which means that tweet vi
is posted at time ti. By utilizing this definition, we extract the temporal features from the
propagation graphs as shown in Table 2. Detailed descriptions are as follows:

• Characteristic time (Ctime): For a propagation graph Gq, we sort all retweet times from
small to large and obtain a time sequence R(1), R(2), . . . , R(l). . . , R(M), where retweet
time R(l) denotes the difference in creation time between two tweets that exist in a
retweet relationship, l indicates the retweet time series index, and M denotes the
number of retweets. Then, Characteristic time is equal to R(bM∗0.8c), where bc indicates
that it is rounded down; to avoid an excessively long life cycle in the spread of news,
we choose 0.8 as the cut-off, which can maintain most of the effective information.

• Max-degree time (Dtime): The creation time of the tweet with the maximum degree (i.e.,
retweets) in the propagation graph.

• Response time (Rtime) [48]: This indicates the timeliness of the responses, which is
calculated by Equation (1):

Rtime =
1

Nq

Nq

∑
i=1

2−(ti−t0) (1)

where t0 denotes the creation time of the source tweet.

Structural Features. Structural features [49–54] focus on the graph topological structure in
the process of news propagation, and they well capture the complexity of news spreading.
We extract the structural features from the diffusion dynamics of the propagation graph.
All structural features are shown in Table 3 and detailed descriptions are as follows:

• Max degree (MaxD) [49]: Maximum degree value in the propagation graph.
• Ratio of layer sizes (ROL) [50]: Layer denotes the number of retweets since the source

Twitter post. The ratio of layer sizes can be defined as

ROL =
n2

n1
(2)

where n2 and n1 denote the number of tweets whose distance is two and one from the
source tweet, respectively.

• Average betweenness centrality (BCentr) [49]: Average betweenness centrality of the
propagation graph.

• Network diameter (Diameter) [51]: The maximum distance between any two tweets in
the propagation graph.

• Average degree (AveD) [51]: The average value of degrees in the propagation graph.
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• Average shortest path (AvePath) [51]: The average value of the distance of all node pairs
in the propagation graph.

• Number of nodes (NoN) [49]: Number of nodes in the propagation graph.
• Number of subgraphs (NoS) [49]: Number of subgraphs in the propagation graph while

deleting the source tweet.
• Tweet number in largest subgraph (MaxS) [49]: The number of tweets in the largest

subgraph.
• Structural heterogeneity (Hgeneity) [52]: This indicates the connectivity of the propaga-

tion graph, which is calculated by Equation (3).

Hgeneity =

√
1

Nq
∑

Nq
i=1 k2

i

1
Nq

∑
Nq
i=1 ki

(3)

where ki reflects the degree value of tweet vi.
• Depth motif degree (Motif) [53]: The depth motif degree gives a micro perspective of the

graph structure by counting the number of specific motifs. The definition is shown
in Equation (4). The depth motif (dmi) means that if there exists a triplet (vi, vj, vk),
which satisfies (vi, vj) ∈ Eq, (vj, vk) ∈ Eq and (vi, vk) /∈ Eq. Thus, the depth motif of
the propagation graph can be calculated as

DM =
∑

Nq
i dmi

Nq
(4)

where dmi indicates the number of depth motifs in the graph.

Table 2. Temporal features.

Temporal Features Description

Ctime

Characteristic time. It captures how fast the
retweet behavior is among the propagation
graph. The specific definition is shown in

Section 3.2.

Dtime

Max-degree time. The creation time of the node
whose degree value is maximum in the graph,
which indicates the time when the propagation

reaches a key node.

Rtime [48]
Response time, which captures the timeliness

of the response. The expression is as in
Equation (1).

Table 3. Structural features.

Structural Features Description

MaxD [49] Maximum degree value in the
propagation graph.

ROL [50]
Ratio of layer sizes. The number of nodes

whose distance is 2 to the publisher divided by
the number whose distance is 1.

BCentr [49] Average value of betweenness centrality of
all nodes.

Diameter [51] Network diameter. The maximum distance
between nodes in the propagation graph.

AveD [51] Average degree. The average value of degrees
of all nodes in the propagation graph.
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Table 3. Cont.

Structural Features Description

AvePath [51]
Average shortest path. The average value of

the distance of all node pairs in the
propagation graph.

NoN [49] Number of nodes in the propagation graph.

NoS [49] Number of subgraphs in the
propagation graph.

MaxS [49] Tweet number in the largest subgraph.
The number of tweets in the largest subgraph.

Hgeneity [52]
Structural heterogeneity, which indicates the

connectivity of the propagation graph.
The expression is as in Equation (3).

Motif [53]
Depth motif degree, which analyzes the graph

structure from the micro perspective.
The expression is as in Equation (4).

4. Feature Drift
4.1. Definition and Experimental Setup

Recent studies [25,33] show that different features play different roles in news propa-
gation, especially for the early stage. These results imply that the detection time deeply
influences fake news detection algorithms. To explain the results more clearly, in this work,
we define feature drift as a phenomenon in which fake news features perform differently in
different datasets over time.

Figure 1 demonstrates the accuracy results of four basic machine learning algorithms
under different cut-off times for the Twitter and Gossipcop datasets. Here, the four basic
machine learning algorithms are Random Forest, SVM, Naïve Bayes, and KNN. The cut-off
time is defined as the observed time window for the event. In this work, we choose five
different cut-off times, i.e., 2.4 h, 4.8 h, 7.2 h, 9.6 h, and 12 h. The input features are the
same as those mentioned in Section 3, including temporal features and structural features.
Furthermore, five-fold cross-validation is applied for all results. As shown in Figure 1a,
one can find that Random Forest, Naïve Bayes, and KNN achieve similar accuracy as the
cut-off time changes, suggesting that there is no significant feature drift phenomenon in
the Twitter dataset, and the role of these features has not changed. Conversely, in the
Gossipcop dataset, one can find an increasing trend of classification accuracy as the cut-off
time increases, especially in the algorithm of Random Forest (Figure 1b). This phenomenon
implies that there does exist a feature drift phenomenon in the Gossipcop dataset, and these
features’ roles change over time. Furthermore, the unclear phenomenon under the KNN
algorithm also suggests that the feature drift phenomenon is not universal in the models,
and the more the model depends on the feature, the more significant the phenomenon.
To sum up, the evaluation indicator of ‘accuracy’ is poor in interpreting feature drift.
Furthermore, it is difficult to identify which features change in importance over time. Thus,
it is necessary to use interpretable models for further analysis.

4.2. Interpretable Analysis

Understanding the reasons that news is classified as fake news can better help fact-
checkers to make decisions. In this section, we further describe interpretative analyses to
investigate feature drift in fake news detection.
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Figure 1. The performance of four baseline algorithms on the Twitter (a) and the Gossipcop
(b) datasets.

To better investigate the contributions of features, we first explore feature drift us-
ing SHAP. SHAP [35] is a method based on game theory that can construct an additive
explanation model and visualize feature contributions. The model generates SHAP val-
ues by calculating the difference between predicted values with and without the specific
feature value. A larger SHAP value means that the sample is easily classified as posi-
tive (here, this represents genuine news) by the corresponding feature. Through violin
plots, SHAP can better demonstrate the correlation between the predicted value and the
corresponding feature.

Since Figure 1 demonstrates that the Random Forest algorithm performs best on both
datasets and exhibits a significant feature drift phenomenon, we choose the Random Forest
algorithm as the classification model and calculate the SHAP value. Figure 2 shows the
SHAP summary plot of Twitter and Gossipcop under different cut-off times, where each
dot represents a specific sample, and the color indicates the feature value. For example,
if sample A is red in the feature of Characteristic time (Ctime) and the SHAP value is 0.1,
this means that if the feature Characteristic time (Ctime) adds to the model (Random Forest),
the output result (accuracy) is 0.1 higher than that without this feature, and the Characteristic
time (Ctime) value of sample A is large.
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Figure 2. SHAP summary plots for the Twitter and Gossipcop datasets. (a,b) refer to the Twitter
dataset, (c,d) refer to the Gossipcop dataset. The cut-off times are (a,c) 2.4 h and (b,d) 12 h.

As shown in Figure 2, one can find that in different datasets, features have different in-
fluences on the output. For example, in Figure 2b, the higher values of Response time (Rtime)
and Number of nodes (NoN) correspond to the higher probability of true news. However,
in Figure 2d, with the same features, higher feature values lead to a higher probability of
fake news. Thus, the same features play different roles in the two datasets, which implies
that even if the classifier uses the same feature in different datasets, the results will be
very different, especially when the datasets are quite different. Furthermore, it suggests
that simply transferring a feature engineering algorithm from one dataset to another is
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not feasible in most cases, and fake news detection algorithms are highly dependent on
the dataset.

In addition, feature drift can exist even within the same dataset if the observation time
is different. For example, in the Gossipcop dataset, features Network diameter (Diameter) and
Tweet number in largest subgraph (MaxS) perform poorly in the early stages of propagation
(cut-off time equals 2.4 h) as the SHAP values converge at around 0. However, they perform
well when the cut-off time is 12 h, as the SHAP values are regularly distributed on the
horizontal axes, as shown in Figure 2c,d. In summary, features play different roles in
different datasets and with different observation times, which means that the transfer effect
of the fake news detection algorithms is usually unsatisfactory.

The SHAP summary plot gives each feature’s contribution to the final prediction, such
as whether a high feature value corresponds to a high possibility of true or fake news,
and which features are more effective in detecting fake news. However, abnormal samples
in SHAP values may affect the classification results, and SHAP values are unable to identify
the specific relationship between the feature values and the prediction results. For example,
in Figure 2c, it is difficult to quantify how large the value of Average shortest path (AvePath)
must be in order to lead to the classification of true news. In order to clearly exhibit the
impact of a single feature on the performance of detection methods and understand the
relationship between classification results and feature values, we use PDP [36] to show the
marginal effect of a feature on the classification results.

Figure 3 shows the PDP of the feature of Average shortest path (AvePath) in Gossipcop
with the cut-off times of 2.4 h and 12 h. The figure demonstrates a representative partial
dependence of the predicted value as the Average shortest path (AvePath) feature value
increases. As shown in Figure 3, the feature’s tendency is significantly different under
the two cut-off times. In the case of a cut-off time equal to 2.4 h, with the increase in the
Average shortest path (AvePath), this feature significantly impacts the classification results
(Figure 3a). Contrastingly, in the case of a cut-off time equal to 12 h, the feature of Average
shortest path (AvePath) has no impact on the results (Figure 3b). In more detail, Figure 3a
implies that the larger the value of Average shortest path (AvePath) is, the more likely the
sample is to be true news. Furthermore, the critical point is around 1.9, which can provide
the decision boundary of the detection algorithm. The difference in PDP between the
two cut-off times indicates that the feature drift phenomenon in the Gossipcop dataset
is significant, and this result is consistent with the conclusion illustrated in Figure 2c,d,
i.e., the feature’s trend in PDP corresponds to the SHAP value. In summary, the feature
drift phenomenon could be observed by using interpretable models such as SHAP and PDP
(RQ1). However, the different results on Gossipcop and Twitter prompt us to investigate
the reason for feature drift (RQ2).

To understand how feature drift differs, we compare the tweets’ creation times in the two
datasets; as shown in Figure 4, the distributions of the creation time under the two datasets
are different. Specifically, creation time in the Twitter dataset is more concentrated in the
early stage (0–2 h), with few new tweets participating in the later propagation. Conversely,
the creation time in the Gossipcop dataset is more evenly distributed, with more tweets
participating in the later stages of propagation (6–12 h). The difference in the distribution of
the two datasets regarding the creation time may lead to feature drift. To better understand
the role of tweets’ creation times in feature drift, we propose a matching method to control
the distribution of tweets’ creation times when studying the feature drift. In more detail,
to measure the asymmetry of events’ creation time distribution, we calculate the skewness
of each event’s distribution. Skewness is defined as the third standardized moment of a
random variable X, which can be calculated as follows:

SK(X) = E
[(

X− µ

σ

)3
]

(5)
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where µ is the mean value of X, σ is the standard deviation, and E is the expectation
operator. In order to control the distribution of the two datasets, we consider each event
in the Twitter dataset and sample a skewness-matching event in the Gossipcop dataset.
The tolerance error is ∆ = ±0.2× SK(XTwitter). If no event of the same skewness value
exists in the Gossipcop dataset, the event in the Twitter dataset is not included in the
subsampled dataset. After matching, we obtain two subsampled datasets from the Twitter
dataset and the Gossipcop dataset with the same skewness value distribution.

(b)

(a)

Figure 3. Partial dependency plot for the Gossipcop dataset. (a) Cut-off time is 2.4 h. (b) Cut-off time is
12 h. The shaded area represents the confidence interval.

Figure 4. The distribution of creation time in two datasets.
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To intuitively show the change in features in the sampled datasets and the original
datasets, we calculate the mean (|SHAP value|) based on Random Forest on the sampled
and the original datasets, where | ∗ | denotes the absolute value, and the larger the mean
(|SHAP value|) is, the more critical the corresponding features are. Figures 5 and 6 demon-
strate the mean (|SHAP value|) changes with the subsampling of skewness. Comparing
the Characteristic time and Network diameter (Diameter), the mean (|SHAP value|) on the
subsampled Gossipcop dataset (Figure 5a,b) is larger than that on the original Gossipcop
dataset (Figure 5c,d). This result shows that the importance of features does change af-
ter the matching method. Meanwhile, comparing most of the features (i.e., Characteristic
time (Ctime), Average shortest path (AvePath), and Tweet number in largest subgraph (MaxS)),
the mean (|SHAP value|) does not change in the subsampled Gossipcop dataset (Figure 5a,b)
while these features are different for the original Gossipcop dataset (Figure 5c,d), which
indicates that the feature drift disappears in the subsampled Gossipcop dataset. Further-
more, as shown in Figure 6, the importance of the features does not change significantly
between the subsampled and original datasets for the Twitter dataset, which implies that
the difference in distribution may be the reason for the feature drift phenomenon.

(a) (b)

(c) (d)

Figure 5. Mean (|SHAP value|) on the subsampled and original Gossipcop datasets at different cut-off
times. (a,b) On the subsampled Gossipcop dataset, the cut-off time is 2.4 h and 12 h, respectively.
(c,d) On the original Gossipcop dataset, the cut-off time is 2.4 h and 12 h, respectively.

Overall, by controlling the distribution of tweets’ creation times, we find that the phe-
nomenon of feature drift disappears on Gossipcop, and the feature importance becomes
closer between the two subsampled datasets, which implies that the difference in the distri-
bution of the tweets’ creation time plays an important role in the feature drift phenomenon.
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(a) (b)

(c) (d)

Figure 6. Mean (|SHAP value|) of the subsampled and original Twitter datasets for different cut-off
times. (a,b) On the subsampled Twitter dataset, the cut-off time is 2.4 h and 12 h, respectively. (c,d) On
the original Twitter dataset, the cut-off time is 2.4 h and 12 h, respectively.

Although SHAP and PDP could be used to interpret fake news detection methods
and prove the existence of the feature drift phenomenon, they are global interpretable
models that are costly when the data size is large. Fortunately, Anchors [55] provides a
local interpretable perspective. Anchors is a local model-agnostic interpretability algorithm
based on ‘if-then’ rules, which has high precision and clear coverage of the black-box model.
The method of Anchors can be easily understood as follows: given an instance x to be
explained, a rule (or an anchor) A that applies to x is to be found, while the prediction of x’s
neighbors is the same as x’s under a high probability (which means ‘precision’ in Anchors).
The definition of ‘coverage’ in Anchors represents the correct probability of x’s neighbors.

Table 4 shows the application of Anchors for the Gossipcop and Twitter datasets before
and after sampling. Taking the original data of Gossipcop in 2.4 h as an example, it can be in-
tuitively interpreted that if the feature values satisfy ‘Average shortest path (AvePath) > 1.94
AND Number of nodes ≤ 56.00’, the precision of true news is 0.92, and the results cover 3%
of the nearby instances. This anchor shows that in 2.4 h, Average shortest path is effective in
detecting fake news and the decision boundary is 1.94, which is similar to the results in
Figure 3. In the case of the cut-off time equal to 12 h, the most effective feature of the original
Gossipcop dataset is Network diameter (Diameter). Thus, the different decision features also
verify the feature drift on the original Gossipcop dataset. In contrast to the Twitter dataset
before sampling, the decision feature given by Anchors is Characteristic time (Ctime) for both
cut-off times, and the decision boundary does not change notably over time, which indicates
that feature drift is not visible on the Twitter dataset.
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Table 4. Anchors interpretations.

Dataset Anchors Precision Coverage

Gossipcop (2.4 h) Average shortest path > 1.94 AND
Number of nodes ≤ 56.00 0.92 0.03

Gossipcop (12 h) Diameter ≤ 3.00 0.88 0.42

Gossipcop (2.4 h subsampled) Characteristic time ≤ 147.77 AND
Average shortest path ≤ 2.00 0.95 0.30

Gossipcop (12 h subsampled) Characteristic time ≤ 148.52 AND
Average shortest path ≤ 2.03 0.97 0.40

Twitter (2.4 h) Characteristic time ≤ 91.63 AND Ratio
of layer > 0.76 1.00 0.11

Twitter (12 h) Characteristic time ≤ 98.09 AND
Diameter ≤ 9.00 0.97 0.09

Twitter (2.4 h subsampled) Characteristic time ≤ 50.9 AND
Response time > 0.01 0.86 0.08

Twitter (12 h subsampled) Characteristic time ≤ 84.40 AND
Response time > 0.05 0.94 0.40

The anchor of the Gossipcop dataset changed significantly after sampling, i.e., in the
case of the cut-off times of 2.4 h and 12 h, Characteristic time (Ctime) and Average shortest path
(AvePath) become the most effective features, and the decision boundaries are closer for
both features under the two cut-off times. This result corresponds to the phenomenon that
the mean (|SHAP value|) of the two features is the largest among all features in Figure 5a,b,
and the result also indicates that the feature drift phenomenon disappears in the sampling
Gossipcop dataset.

In summary, the Anchors method offers a local perspective to interpret the importance
of the features easily and exhibit the decision boundaries in models. By utilizing the
Anchors method to supplement the interpretation of feature drift, we intuitively observe
that the feature drift phenomenon disappears in the sampling datasets, which is consistent
with the results when using mean (|SHAP value|) on the two sampling datasets.

5. Conclusions

Fake news on social networks threatens the credibility of information and triggers
social panic, leading to serious negative consequences. Therefore, fake news detection
technology plays an important role in today’s society. However, the traditional fake news
detection models pay more attention to the accuracy of the models on specific datasets
and ignore the interpretability of the models. The low interpretability of the model may
hinder fact-checkers’ judgments and it cannot be applied to other fake news datasets.
In this work, we first make an assumption that the phenomenon of feature drift may
widely appear in fake news detection algorithms, which leads to a poor transfer effect.
Then, we adopt interpretability methods (i.e., SHAP and PDP) to verify the feature drift
phenomenon. Finally, our work proposes an innovative skewness-matching sampling
method and creates two sampled datasets with the same skewness distribution. The results
show that the feature drift phenomenon disappears in the sampled datasets, which verifies
the notion that the distribution of the tweets’ creation time may be one reason for feature
drift. Generally speaking, our study provides an interpretable analysis for feature drift
in fake news detection and reveals the potential relationship between feature drift and
datasets, which could help researchers when transferring fake news detection algorithms.
In addition, although, in this work, we designed a data-independent interpretable method
to interpret feature drift, we did not design an effective fake news detection algorithm to
avoid feature drift, and this will be the direction of our future work.
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