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Abstract: Modelling and predicting of the kinetics of microbial growth and metabolite production
during the fermentation process for functional probiotics foods development play a key role in
advancing and making such biotechnological processes suitable for large-scale production. Several
mathematical models have been proposed to predict the bacterial growth rate, but they can replicate
only the exponential phase and require an appropriate empirical data set to accurately estimate the
kinetic parameters. On the other hand, computational methods as genetic algorithms can provide
a valuable solution for modelling dynamic systems as the biological ones. In this context, the aim
of this study is to propose a genetic algorithm able to model and predict the bacterial growth of the
Lactobacillus paracasei CBA L74 strain fermented on rice flour substrate. The experimental results
highlighted that the pH control does not influence the bacterial growth as much as it does with lactic
acid, which is enhanced from 1987 ± 90 mg/L without pH control to 5400 ± 163 mg/L under pH
control after 24 h fermentation. The Verhulst model was adopted to predict the biomass growth
rate, confirming the ability of exclusively replicating the log phase. Finally, the genetic algorithm
allowed the definition of an optimal empirical model able to extend the predictive capability also to
the stationary and to the lag phases.

Keywords: genetic algorithm; empirical modelling; bacterial growth; fermentation process;
Lactobacillus paracasei

1. Introduction

During the last years, consumers have become much more aware of the importance of
nutrition and health, showing interest in purchasing healthier foods. Therefore, the dietary
approach aimed at promoting and maintaining health and well-being, in a natural and
low-cost way, has triggered the increase in functional food products consumption. It is
estimated that up to 2030 the global probiotics market will have a turnover of approximately
73.9 billion dollars, leading the food sector to the highest economic value [1,2]. Several
efforts have been dedicated to the development of functional foods, i.e., foods characterised
by additional functionalities, such as health promotion and disease prevention. In particular,
all the functions related to the probiotics have gained a growing interest [3,4].

The production process of functional probiotics foods, typically, involves the fermen-
tation, which is carried out by using a starting proteolytic matrix (substrate) and a bacterial
strain. Commonly, probiotics are provided to consumers with fermented products, includ-
ing fermented vegetables, or meat, yogurt. The majority of the commercially available
products employ both the Bifidobacteria (present in the large intestine), and the Lactobacilli
(present in the small intestine), due to their well-known safe use [5].
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In the strains selection for their use in commercial products, a pivotal aspect is rep-
resented by the strain’s ability to survive during the processing, product development,
and transit through the human gut. These features depend on the species and strains; for
instance, Lactobacilli are commonly preferred to Bifidobacteria for industrial applications,
due to their higher resistance to low pH [1,6,7]. For this reason, the Lactobacilli strains have
been industrially employed for the systems production and fermentation.

Most of the studies in the literature are performed on dairy products, e.g., ice cream,
cheese, fermented milk, and yogurt [1,8,9], but a growing interest is attracting non-dairy
products, e.g., cereals, fermented vegetables, soy, and fruit juices [3,5,10,11], to respond
to the increasing demand of vegetarians, vegans, lactose intolerant and milk protein
allergic consumers.

In this context, the proposal of new fermentation processes requires the definition of a
standard protocol to be adopted for the probiotic and therefore optimized by maximizing
the production capability in order to meet the industry needs. Thus, a comprehensive
knowledge of both the raw material and every single step of the production process is
fundamental for the development of new types of fermented products, with the final aim
to comprehend the possible process impacts on the fermentation [12]. According to the
literature, in addition to the bacterial strain, the main factors affecting the microbial growth
during a fermentation process and the subsequent lactic acid production can be many
different, e.g., the substrate [5,10], the operational parameters such as temperature [8],
pH [13], glucose addition [3], etc.

Establishing the optimal conditions for the fermentation process are therefore crucial
not only to improve the functional effect on consumers’ health, but also from an economic
point of view due to the increased production capability. In this light, the development of
empirical models to predict the bacterial growth kinetics plays a key role for the definition
of the best strategy to control and optimize the fermentation process, with the aim of
extending the process itself from the laboratory scale to the industrial one [14].

Generally, there are two main types of mathematical models for the description of the
microbial growth, i.e., structural and non-structural [15]. The former considers the microbial
structure, the function, and the composition. The resulting models are accurate but very
complex. While the non-structural models consider only the bacterial concentration without
the need to evaluate other physiological characteristics of the cells [16]. The simplest and
most known non-structural model is the one proposed by Monod [17], in which the bacterial
growth rate is calculated as a function of the limiting substrate concentration during the
fermentation process. However, due to its simplicity, such a model is not able to predict
possible inhibition effects induced by high substrate content, metabolites, and biomass
density increase. To overcome these limitations, different models have been introduced so
far, e.g., Contois, Haldane, Moser, Tessier, Verhulst, etc. [18]. However, even if such models
can be more accurate, they may require greater amounts of resources, both in terms of time
and money, due to the extensive experimental activities to be carried out and the subsequent
characteristics analysis. For this reason, computational methods for optimization problems
appears as a valuable solution to support the decision-making for fermentation process
control in a robust and efficient way [19,20]. Bacterial growth can be considered as a basis
for a simple discrete dynamical system [19]. However, moving at different scales, the use
of experimental data to develop a comprehensive model to understand the behaviour of
the biological processes involved during the fermentation is not a straightforward task,
especially if the kinetic parameters are evaluated through the bacterial curve fitting. In this
light, genetic algorithms appear to be a suitable solution for modelling of microbial growth
data [21]. The genetic algorithm is a solving approach for optimization problems based
on biological evolution through natural selection. Practically, a population of individual
solutions is iteratively modified, obtaining at each step an increasingly evolved generation,
up to the optimal one.

Therefore, this study deals with the proposal of a genetic algorithm-based approach to
model and predict the bacterial growth rate of the microbial strain Lactobacillus paracasei
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CBA L74 fermented on rice flour substrate, according to the previous results reported in the
literature [22]. Moreover, the work wants to demonstrate the suitability and the potential
in using genetic algorithms to define optimal mathematical models able to reproduce and
predict the microbial growth regardless of the experimental conditions, which in this case
are with and without pH control. To this end, the activity concerned three main phases:
(i) a first experimental campaign was aimed at evaluating the effect of the pH control on the
bacterial growth and production of lactic acid supported by a statistical analysis through
ANOVA and ANOM; (ii) during the second step, the Verhulst model was chosen to predict
the bacterial growth rate; (iii) the last part of the research activity proposes the use of a
genetic algorithm-based method to define an empirical model to describe the bacterial
growth during the fermentation process. The potential and novelty of this algorithm lies in
the ability to adapt to new inputs and outputs with a reduced computational cost and in
the possibility of modelling the other phases of microbial growth beyond the exponential
one, a limiting factor for most mathematical models currently adopted.

2. Materials and Methods

The activity was carried out through three main phases, as illustrated in Figure 1 and
detailed as follows:

1. The first step concerned the experimental and statistical investigation of the bacterial
growth and subsequent lactic acid production of the Lactobacillus paracasei CBA L74
during rice flour fermentation by assessing the effect of the pH control through
statistical tools as ANalysis Of VAriance (ANOVA) and ANalysis Of Means (ANOM).
This phase is also aimed at creating the experimental data set to be used for the
development of the optimal models during the following steps;

2. The second step dealt with the definition of the kinetics of the bacterial growth by us-
ing the Verhulst non-structured mathematical model, which relates the specific growth
rate as a function of the biomass concentration (only) during the exponential phase;

3. Finally, a genetic algorithm-based approach is proposed with the aim of defining
the optimal empirical model able to reproduce the kinetics of the bacterial growth
based on the experimental data and to overcome the limitations of the conventional
non-structured mathematical models that are generally able to accurately reproduce
only the exponential phase.
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2.1. Experimental and Statistical Analysis

The bacterial strain adopted for the experimental investigation is the Lactobacillus
paracasei CBA L74 (named LpCBAL74 in the following for brevity), supplied by Heinz Italia
SpA with International Depository Accession Number LMG P-24778. It is a Gram-positive,
facultative heterofermentative, oxygen-tolerant anaerobic bacterium, previously stored in
freeze-dried form at −20 ◦C and subsequently revitalized (for 24 h at 37 ◦C) in a culture
medium consisting of animal-free broth [23].

The chosen substrate for the fermentation process was a rice flour-based suspension
made of rice flour (15% as weight/volume ratio, supplied by Heinz Italia SpA), water
(83 wt/vol%), and glucose (2 wt/vol%).

The rice flour was thermally treated for 90 min at 121 ◦C and water was autoclaved
(121 ◦C for 20 min) to decrease possible microbial loads and the suspension obtained steril-
ized through tyndallisation process to eliminate vegetative forms of bacteria by carrying
out two thermal cycles constituted by a heating step at 70 ◦C for 30 min and a cooling step
at 37 ◦C for 30 min (Gallo et al., 2020). The starting inoculum volume (characterized by a
concentration of 108 CFU/mL) for each test was 9 mL to guarantee the starting biomass
concentration of 105–106 CFU/mL (CFU is the standard Colony Forming Unit).

The fermentation process was carried out in a Pyrex® lab-scale bioreactor with a
maximum volume capacity of 1.5 L and working volume of 1 L. As shown in Figure 2, the
bioreactor has a cylindrical shape, i.e., 20 cm in height and 10 cm in diameter, and is coated
with an external jacket, 18 cm in height and 14 cm in diameter.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 18 
 

 
Figure 2. Experimental set-up of the fermentation system. 

Moreover, the bioreactor is equipped with: (i) a mixing system constituted by two 
stainless steel stirrers, of which one has inclined blades and the other vertical blades (i.e., 
of Rushton type), both connected to a three-phase asynchronous electric motor (0.25 Hp, 
0.18 kW, 1310 rpm); the proposed system allows the regulation of the stirring speed by 
means of a speed reducer limiting it at 180 rpm, which was preliminarily evaluated as the 
optimal value to obtain a uniform mixing of the suspension [22]; (ii) a thermal condition-
ing system consisting of a Haake thermo-controlled bath that permit both to guarantee a 
tyndallisation process and to maintain the temperature at 37 °C during the bacterial 
growth; (iii) a Mettler Toledo pH control system composed of probe and peristaltic pump. 

The experimental investigation concerned the evaluation of the biomass concentra-
tion and the lactic acid production without or with pH control at a value of 5.8, ensured 
by pumping in a solution of NaOH 0.2 M. Such a value is recognized to be, within the 
range 5 to 6, the optimal one to produce lactic acid by using Lactobacilli strains [24,25]. 
The fermentation process lasted 24 h at 37 °C. Before using, each component of the system 
underwent a sterilization cycle in autoclave for 20 min at 121 °C. 

To evaluate the bacterial growth, the fermenting suspension was sampled every 2 h 
[5,10]. Each sample (10 mL of volume) was aseptically drawn and used for the microbio-
logical and chemical analysis. To this end, the samples, after collection and dilution, were 
seeded on a Petri dish with MRS agar supplied by Oxoid and incubated for 48 h at 37 °C 
under anaerobic conditions. The bacterial count was made through the spread plate 
method. 

The lactic acid quantity produced during the fermentation process was evaluated by 
using the High-Performance Liquid Chromatography apparatus (Agilent Technologies, 
Santa Clara, CA, USA), equipped with an Agilent Zorbax C18 column with UV light de-
tector. For the measurements, a solution of NH4H2PO4 0.1 M with a flow rate of 0.8 mL/min 
was used as eluent. 

The experimental findings were analysed by using the One-Way ANOVA [26] and 
the ANOM [27] statistical tools to assess the significance of the pH control effect on the 
resulting biomass concentration and lactic acid production during the fermentation pro-
cess. Specifically, the One-Way ANOVA test provides as results the Degrees of Freedom 
(DoF), the Adjusted Sum of Squares (Adj.SS), the Adjusted Mean Squares (Adj.MS), the 
Fisher value (F-value), the p-value (α = 0.05), and contribution percentage (Π). The DoF 
consists of the information quantity within the data (in our case the levels number minus 
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Moreover, the bioreactor is equipped with: (i) a mixing system constituted by two
stainless steel stirrers, of which one has inclined blades and the other vertical blades (i.e.,
of Rushton type), both connected to a three-phase asynchronous electric motor (0.25 Hp,
0.18 kW, 1310 rpm); the proposed system allows the regulation of the stirring speed by
means of a speed reducer limiting it at 180 rpm, which was preliminarily evaluated as the
optimal value to obtain a uniform mixing of the suspension [22]; (ii) a thermal conditioning
system consisting of a Haake thermo-controlled bath that permit both to guarantee a
tyndallisation process and to maintain the temperature at 37 ◦C during the bacterial growth;
(iii) a Mettler Toledo pH control system composed of probe and peristaltic pump.

The experimental investigation concerned the evaluation of the biomass concentration
and the lactic acid production without or with pH control at a value of 5.8, ensured by
pumping in a solution of NaOH 0.2 M. Such a value is recognized to be, within the range
5 to 6, the optimal one to produce lactic acid by using Lactobacilli strains [24,25]. The
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fermentation process lasted 24 h at 37 ◦C. Before using, each component of the system
underwent a sterilization cycle in autoclave for 20 min at 121 ◦C.

To evaluate the bacterial growth, the fermenting suspension was sampled every 2 h [5,10].
Each sample (10 mL of volume) was aseptically drawn and used for the microbiological and
chemical analysis. To this end, the samples, after collection and dilution, were seeded on a
Petri dish with MRS agar supplied by Oxoid and incubated for 48 h at 37 ◦C under anaerobic
conditions. The bacterial count was made through the spread plate method.

The lactic acid quantity produced during the fermentation process was evaluated by
using the High-Performance Liquid Chromatography apparatus (Agilent Technologies,
Santa Clara, CA, USA), equipped with an Agilent Zorbax C18 column with UV light
detector. For the measurements, a solution of NH4H2PO4 0.1 M with a flow rate of
0.8 mL/min was used as eluent.

The experimental findings were analysed by using the One-Way ANOVA [26] and
the ANOM [27] statistical tools to assess the significance of the pH control effect on the
resulting biomass concentration and lactic acid production during the fermentation process.
Specifically, the One-Way ANOVA test provides as results the Degrees of Freedom (DoF),
the Adjusted Sum of Squares (Adj.SS), the Adjusted Mean Squares (Adj.MS), the Fisher
value (F-value), the p-value (α = 0.05), and contribution percentage (Π). The DoF consists of
the information quantity within the data (in our case the levels number minus 1), the Adj.SS
in the variation of each parameter with respect to the response variables, the Adj.MS in the
Adj.SS/DoF ratio, the F-value in Adj.MS value of the control factor/Adj.MS of the Error
(the variance around the fitted values) ratio, Π in the Adj.SS of the term/total Adj.SS ratio.

Particularly, the higher the F-value, the higher the effect on the response variable (i.e.,
higher than 6.61 [28]). The p-value was employed to evaluate the statistical significance of
the differences between the means (p-value < α). While the ANOM is a graphical method
for the comparison of several groups with an overall average, thus providing immediate
information on how, on average, the response variable of interest can be influenced by the
control factor.

2.2. Mathematical Modelling

The bacterial growth in batch reactor can be explained by the Malthus law described
by Equation (1) [16]. The integration of the latter by using suitable initial conditions
(X = X0 at t = t0 where X0 is the biomass concentration at the time t0 and X is the
biomass concentration at the generic time t) and the separation of variables technique,
allows obtaining Equation (2) that defines the specific cell growth rate (µ). It is worth
noting that the chosen model considers an exponential growth of the population without
any inhibition effect, whether it is due to the depletion of nutrients, to the accumulation of
waste, or death. Therefore, it is of effective simplicity in terms of both implementation and
control of the growth process, turning out to be extensively adopted in microbiology [29].

dX
dt

= µX (1)

µ =
ln
(

X
X0

)
t − t0

(2)

Among the non-structured models, the Verhulst one, also called Logistic model, is used
to express the specific growth rate as a function of the biomass concentration, according to
Equation (3):

µ(X) = µmax

(
1 − X

Xmax

)
(3)

In Equation (3), µmax is the maximum specific growth rate and Xmax the maximum
biomass concentration, which represent the kinetic constants.
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2.3. Genetic Algorithm Optimization

The proposed genetic algorithm is aimed at defining the optimal empirical model able
to reproduce the kinetics of the bacterial growth based on the experimental data and to
overcome the limitations of the conventional non-structured mathematical models that are
generally able to reproduce accurately only the exponential phase [15,18].

Figure 3a shows the typical procedure of a genetic algorithm [30]. This consists of
four main steps: (i) initialization; (ii) selection; (iii) crossover; (iv) mutation. Moreover, two
more fundamental concepts are the genetic encoding of the parameters and the definition
of the fitness function. For this study, the proposed procedure considers the mutation to
operate in parallel with the crossover (Figure 3b), to emphasize the gains on the algorithm
performance, and avoiding fast and local convergence [31,32].
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The implementation of the genetic algorithm starts with the definition and the en-
coding of a set of chromosomes (N), which represent individual solutions within the
population. Among the available methods, in this study, the real value encoding is adopted
since it allows representing chromosomes in terms of values, i.e., a given number of bits,
avoiding any intermediate encoding and decoding steps.

NT (number of terms of the regression model) consists of the number of independent
parameters, and represents the phenotype, which must be encoded into the chromosome,
called genotype. Each of the independent parameters is encoded with independent genes
(NG). pj,i define the powers of each term variables, where i = 1, . . . , NT and j = 1, . . . , NG.
Furthermore, the regression model coefficients (ck, k = 0, . . . , NT) are evaluated through a
standard linear regression. Thus, the set of the chromosome (Cm, m = 1, . . . , N) and the
resulting model can be represented as reported below (Equations (4) and (5), respectively):

Cm =
{

pj,i
}

(4)

yGA
(

p1, . . . , pj, . . . , pNG

)
= c0 + c1Np1,1

1,1 . . . N
pj,1
j,1 . . . N

pNG ,1
NG ,1 + . . . + cNT N

p1,NT
1,NT

. . . N
pj,NT
j,NT

. . . N
pNG ,NT
NG ,NT

(5)

In Equation (5), yGA
(

p1, . . . , pj, . . . , pNG

)
represents the response variable, which is in

this case the bacterial growth rate. This is an unknown function of the process parameters,
and its specific form can be obtained through the genetic algorithm optimization. Practically,
it consists of the sum of NT terms with the form Np1,1

1,1 . . . N
pj,i
j,i . . . N

pNG ,NT
NG ,NT

, plus a constant
term. The vector of dimensions NG NT × 1 given by the possible combinations of the powers{

p1,1, . . . pj,1, . . . , pNG ,1, . . . , p1,i, . . . , pj,i, . . . , pNG ,i, . . . , p1,NT , . . . , pj,NT , . . . , pNG ,NT

}
is the so-

lution (the genotype). The best combination can be evaluated through the algorithm, while
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a standard linear regression is used for the determination of the empirical coefficients
c1, . . . ci, . . . cNT and the constant term c0.

An arbitrary value within a specific range is randomly chosen to generate the first
set of models (i.e., initial population) and is assigned to each set of powers, i.e., gene.
This initial population evolves into the next generation through the other operators, i.e.,
selection, crossover and mutation.

The fitness function is defined according to the target of the study, which in this case
is the minimisation of the error between the experimental data and the estimated results,
as described by the following equation:

f = rms(yGA − y) (6)

In Equation (6), rms represents the root mean square error between the estimated
value of the response variable yGA and the experimental result y, for each combination of
the input parameters.

The single-point crossover operator is used to generate a more powerful generation
by increasing the variability of populations. It chooses two random chromosomes, i.e.,
parents, and performs a genes exchange between them. Practically it cuts the chromosomes
on a random site and put together the complementary genes. The crossover operates in
parallel to the mutation, which, altering one or more genes of the parents, allows keeping a
sufficient diversity among chromosomes, and therefore avoiding premature convergence of
the algorithm [33]. Additionally, the mutation is performed randomly on the chromosomes
on a single point, which in this case is represented by a specific power of a term of the
regression model.

Then, the best chromosomes are selected through the ranking method and allowed to
be transferred to the next generation. They are ranked according to their fitness values, and
the first halves are selected to mate, whereas the others are replaced by new individuals
obtained applying the crossover and the mutation operators to the best half.

Thus, the algorithm is iterated until reaching the stop condition for the fitness value,
which in this case is represented by the stationarity of the value after a given number
of generations.

It is worth to note that the model has been developed and implemented in MAT-
LAB software.

3. Results and Discussion

Experimental investigation, statistical analysis, and bacterial growth modelling were
performed according to the flowchart reported in Figure 1; the main results are reported
and discussed in the following sections.

3.1. Experimental Analysis

Figure 4 shows the results obtained in terms of bacterial growth and lactic acid fer-
mentation without and under pH control. In particular, the curves are represented on a
semilogarithmic scale for a more appropriate interpretation of the results.

The rice flour fermentation of LpCBAL74 was characterized by a starting bacterial load
at “zero” time of about 2.64·106 ± 1.50·106 CFU/mL in non-controlled pH conditions, and
of about 2.51·106 ± 6.96·105 CFU/mL with pH control. From Figure 4a,b it can be observed
that during the first 4 h of fermentation the bacterial load is almost constant, regardless of
the pH conditions. In fact, during this first part of the fermentation process, the pH remains
almost constant, with a very small fluctuation, even in the control absence. The same can be
seen for the final part of the fermentation process, after 18 h, for which the bacterial growth
in both scenarios has reached the stationary condition at an average microbial concentration
of 2.66·108 ± 5.23·107 CFU/mL and 2.49·108 ± 1.72·107 CFU/mL for the controlled and
uncontrolled process, respectively, up to the final 24 h concentration of 2.26·108 ± 9.35·107

CFU/mL and 3.43·108 ± 3.26·107 CFU/mL, respectively. From Figure 4a,b the different
phases of microbial growth for both conditions (under and without pH control) can be
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clearly identified: the lag, the exponential and the stationary phases lasted, respectively,
from 0 h to 4 h, from 4 h to 14 h and from 14 h to 24 h without the pH control; while, in the
other scenario, these phases lasted, respectively, from 0 h to 6/8 h, from 6/8 h to 18 h and
from 18 h to 24 h. It is worth noting that due to the variability of the results, highlighted by
the error bars, the exponential phase cannot be properly identified between 6 and 8 h. For
both cases, however, it is not possible to define the beginning of the death phase, which
is associated with a marked reduction in the number of bacterial cells. Therefore, the
exponential growth is more pronounced under pH-controlled conditions. This result can
be attributed to the fact that cell proliferation, in general, is promoted at pH values close to
neutral one.
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To further monitor the fermentation process, also the production of lactic acid was
evaluated (Figure 4c,d). Lactic acid was produced during fermentation in both tested condi-
tions between 8 h and 14 h and up to 24 h at the end of the fermentation process. Specifically,
a more accentuated production is highlighted in the case of pH-controlled condition with
a lactic acid concentration of 1.277 ± 0.160 mg/L against 0.626 ± 0.038 mg/L without the
control, up to a maximum concentration of 5.400 ± 163 mg/L and 1.987 ± 90 mg/L after
24 h of fermentation. In fact, it is recognized that, as the pH decreases, there is a reduction
in lactic acid, the production of which, for strains of the lactobacilli type, is optimized for
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pH values between 5 and 6 and for the most part at pH equal to 5.8 [25], value set to the
controller in this study.

It is therefore evident how the pH control, even if it delays the exponential phase
beginning, and consequently the achievement of the maximum bacterial growth and the
establishment of the stationary phase, guarantees a bacterial growth which is comparable
to the one occurring without pH control. Moreover, it allows obtaining a lactic acid
concentration around 2.72 times higher after 24 h of fermentation and already almost
double after only 14 h.

3.2. Statistical Analysis

The one-way ANOVA test was performed for the statistical analysis of the results,
with the aim of evaluating the effect of pH control on bacterial growth and lactic acid
production, as this factor is the only input varying parameter, while the others, such as
substrate, temperature, and percentage of glucose have been fixed, as detailed in Section 2.1.
To this end, the influence of the pH control was evaluated for each sampling time, i.e., at 0,
2, 4, 6, 8, 14, 16, 18, 20, 22, 24 h, for a total of 11 analyses, the results of which are shown in
Table 1. It is worth noting that for the lactic acid production only the values starting from
14 h of fermentation are reported since there is no production before (Figure 4). Moreover,
only the contributions considered statistically significant are shown, i.e., with the F-value
greater than the corresponding tabulated one, called the critical F-value (in this case equal
to 6.61), with the p-value less than 0.05, and a Π% greater than 40%. The complete set of
results can be found as Supplementary Materials (Tables S1 and S2).

Table 1. One-way ANOVA results.

Output Time, h Source F-Value p-Value Π%

Bacterial growth rate

2
pH control 14.434 0.019 78.29

Error 21.71

8
pH control 131.630 0.000 97.20

Error 2.80

14
pH control 33.741 0.004 89.60

Error 10.40

18
pH control 18.758 0.012 82.54

Error 17.46

22
pH control 42.854 0.003 91.40

Error 8.60

Lactic acid
concentration

14
pH control 31.199 0.005 88.56

Error 11.44

16
pH control 94.330 0.001 95.93

Error 4.07

18
pH control 33.142 0.005 89.23

Error 10.77

20
pH control 178.937 0.000 97.81

Error 2.19

22
pH control 144.268 0.000 97.31

Error 2.69
24 pH control 671.710 0.000 99.41

Error 0.59

The analysis of the results shows how the pH control significantly affects the bacterial
growth and production of lactic acid. For the bacterial growth, the main effect occurs at
the beginning of the exponential phase, between 8 and 14 h. In fact, once the exponential
growth is established, it indistinctly continues until the stationary phase is reached, beyond
16 h, at which the fermentation process is again influenced by the presence or absence of the
pH control. About the lactic acid production, the process is significantly influenced during
each step, underlining how the use of pH control favourably promotes the production of
lactic acid, as shown in Figure 4d.
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Finally, Figure 5 reports the ANOM results, which show how, on average, both
bacterial growth and lactic acid production are positively influenced by the adoption
of pH control.
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3.3. Mathematical Modelling

Based on the equations described in Section 2.2, the kinetic constants µMAX and XMAX
of the logistic model were determined both for the fermentation process conducted without
the pH control and under controlled conditions. Table 2 shows the values obtained in
comparison with the experimental ones, while Figure 6 shows the trends of the bacterial
growth rates experimentally evaluated. Finally, Figure 7 shows the comparison between
the experimental trends and those estimated using the logistic model.

Table 2. Kinetic constants of the Verhulst (or logistic) model.

Kinetic
Constants

Without pH Control Under pH Control

Experimental Estimated Experimental Estimated

µMAX , h−1 0.4738 0.4905 0.3787 0.3025
XMAX , CFU/mL 3.43 × 108 5.20 × 108 2.26 × 108 2.06 × 109
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As can be seen from Figures 6 and 7, the logistic model is able to accurately describe
the bacterial growth curve during the exponential phase only, with an R2 of about 0.97 for
both conditions studied. On the other hand, the data reported in Table 2 suggest that the
mathematical model overestimates the maximum concentration of biomass regardless of
the pH control, while there is a different trend for the maximum growth rate, which is
overestimated without pH control and underestimated under pH control.

Despite the good predictive capabilities shown in the exponential phase, the model
loses effectiveness outside this range. This may be due to the small experimental data set.
It is therefore necessary to resort to more accurate methods that consider the substrate
concentration and/or the inhibition effect due to fermentation saturation, or, as described
in the following section, to expert methods capable of managing this lack of information
and propose innovative solutions which allow the combination of parameters that are not
commonly used in traditional kinetic models.

3.4. Genetic Algorithm Optimization

During this last step of the research activity, a genetic algorithm was developed for the
definition of optimal empirical models that relate bacterial growth with process parameters
and products, such as fermentation time, pH, pH control, as well as lactic acid production.
In particular, the proposed empirical models are of the polynomial type as described by
Equation (5). For the implementation of the algorithm, a first attempt was made considering
a polynomial consisting of only two terms, to simulate the logistic model. Equation (7)
reports the chosen model:

X(t, pH) = c0 + c1tp1 pHp2 (7)

where X(t, pH) represents the biomass concentration as a function of fermentation time and
pH, c0 the known term, c1 the empirical coefficient that multiplies the two terms t and pH
respectively to the powers p1 and p2. In particular, the space of possible powers is discrete,
that is [−1, 0, 1], and contains 32 = 9 models, where the 3 is given by the number of powers
and the power 2 by the number of variables in each term. In general, setting the total of
individuals at 1000, it took less than 10 generations to reach convergence. Furthermore, the
achievement of the global minimum was verified by calculating a further 50 generations.

Equation (8) reports the obtained empirical model, which represents the decoding of
the solution of the algorithm {1, −1}, while Figure 8a shows the resulting trend compared
with the experimental one for the case in which there is no pH control:

X(t, pH) = −0.063367 + 0.47026
t

pH
(8)
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As shown in Figure 8a, the suggested equation does not allow to reproduce the growth
curve during the initial lag phase, while it reproduces in a sufficiently accurate way the
exponential phase and the stationary phase, as shown in Figure 8b, where the value of
normalized RMSE error was calculated according to Equation (9):

NRMSE =

√
(yGA − y)2

y
(9)

In the latter equation, yGA represents the output of the model optimized by the genetic
algorithm and y is the corresponding experimental value. The numerator represents the
RMSE error which is then normalized with the experimental reference value (y) to compare
the various stages of the fermentation process.

To improve the interpolation capacity of the algorithm, it was decided to introduce a
new term, the production of lactic acid (XAL), defining a new regression model, as described
by Equation (10):

X(t, pH, XAL) = c0 + c1tp1,1 pHp2,1 Xp3,1
AL + c2tp1,2 pHp2,2 Xp3,2

AL (10)

With this improved model, 33×2 = 729 possible solutions were considered. Again,
setting the total of individuals at 1000, it took less than 10 generations to reach convergence.
Furthermore, the achievement of the global minimum was verified by calculating a further
50 generations. Equation (11) describes the obtained model:

X(t, pH, XAL) = −0.52801 + 0.28568
tXAL
pH

+ 0.52223
1

pH
(11)

Figure 9 shows the resulting trend compared with the experimental one, from which it
is possible to notice how the addition of the lactic acid production term allows reproducing,
even if not very accurately, also the initial lag phase, and slightly improving the ability
to replicate the exponential and stationary phases. In fact, the NRMSE value for the lag
phase decreases from 10.10 and 5.31 down to 0.64 and 0.77 at 0 h and 2 h, respectively, from
an average 0.81 of the exponentials phase down to 0.28, and from an average 0.14 of the
stationary phase down to 0.10.
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About the development of the regression model for the fermentation process under
pH control, the same procedure was followed, and the optimal model was found to be:

X(t, pH) = −0.073394 + 0.55134
t

pH
(12)

As can be seen from Equation (12), the optimal solution of the algorithm is the same of
the previous case, that is {1, −1}, demonstrating the dependence of the biomass concen-
tration on the fermentation time and on the inverse of the pH value. It is worth noting,
however, that in this second case, i.e., under pH control, the pH value is kept constant
throughout the entire process, so the model could be further simplified by incorporating
the term pH within the constant c1 (i.e., 0.55134) in Equation (13):

X(t) = −0.073394 + 0.095059t (13)

By graphically representing the trend obtained by the genetic algorithm optimization,
shown in Figure 10a, it can be seen that the 1-term model is not able to reproduce the
growth curve during the lag phase, and that, in this case, in general, it is characterized
by a strong discrepancy with the experimental results, as also underlined by the values
of the normalized RMSE error reported in Figure 10b, i.e., greater than six for the first 8 h
of fermentation.
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To improve the interpolation capacity of the algorithm, as in the previous case, the
lactic acid concentration term (XAL) was introduced defining a new regression model,
described by Equation (14):

X(t, pH, XAL) = 0.0028469 − 1.695
tXAL
pH

+ 2.0962
t

pH
(14)

Unlike the optimal model obtained by implementing the data relating to the case
without pH control, described by Equation (10), the second term is given by the combination
of time and pH. However, given that the pH remains constant due to the control, this can
be incorporated into the empirical constants and the resulting model is described by
Equation (15):

X(t, XAL) = 0.0028469 − 0.2922tXAL + 0.3614t (15)

In fact, as shown in Figure 11a, the difference between the estimated trend and the
experimental one is greater, as highlighted by the values of the normalized RMSE error
shown in Figure 11b. Using a sampling time shorter than 2 h is expected to reduce the
RMSE. However, to verify this statement, a new experimental campaign is needed. This
can be considered as a further step to carry out the investigation in the near future.
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Despite the small discrepancy between the estimated and the experimental results,
especially when the fermentation is carried out under pH control, the genetic algorithm is
proved to be a valuable solution for microbial growth modelling. In fact, it allows to model
the growth trend during all the typical phases, i.e., lag, exponential, and stationary in this
case. Moreover, it gives high freedom of customization allowing the definition of new and
more powerful models depending on the data availability, without the need to perform
characterization analyses that may require exhaustive resources.

4. Conclusions

This research study deals with the proposal of a genetic algorithm-based method to
control and optimize the rice flour fermentation process of the Lactobacillus Paracasei CBA
L74 strain. To this end, a preliminary experimental campaign on a laboratory-scale fermen-
tation system was aimed at creating the experimental data set to be used for developing
the optimal models. Moreover, the experiments also allowed to evaluate the effect of the
pH control and fermentation time on the bacterial proliferation and lactic acid production,
supported by the use of statistical tools as ANOVA and ANOM tests. The experimental
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and statistical results showed that the pH control has a direct influence on the fermentation
process promoting both the microbial growth and the lactic acid concentration.

Then, the collected data were modelled using both mathematical and numerical ap-
proaches. In the first case, the chosen model was the Verhulst (or logistic) kinetic model,
since the data relating to the substrate concentration were not currently available. In
particular, it was observed that the proposed model is not able to correctly replicate the
bacterial growth rates in the lag and stationary phases for both conditions here investigated,
i.e., without and under pH control. While the computational approach, based on genetic
algorithms, allowed defining an optimal empirical regression model able to reproduce
the trend of biomass concentration during all the phases of the bacterial growth, i.e., lag,
exponential and stationary, as a function of fermentation time, pH, and lactic acid concen-
tration. However, the proposed approach loses effectiveness during the lag phase. For
this reason, new experimental conditions and characterization analyses are currently being
tested, so it will be possible to consider additional parameters to improve the predictive
capacity of the empirical model suggested by the genetic algorithm also for the scale up of
the fermentation process.
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