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Abstract: This paper presents a comparison of mathematical and cinematic motion analysis regarding
the accuracy of the detection of alterations in the patterns of positional sequence during biceps-curl
lifting exercise. Two different methods, one with and one without metric data from the environment,
were used to identify the changes. Ten volunteers performed a standing biceps-curl exercise with ad-
ditional loads. A smartphone recorded their movements in the sagittal plane, providing information
on joints and barbell sequential position changes during each lift attempt. An analysis of variance
revealed significant differences in joint position (p < 0.05) among executions with three different loads.
Hidden Markov models were trained with data from the bi-dimensional coordinates of the joint
positional sequence to identify meaningful alteration with load increment. Tests of agreement tests
between the results provided by the models with the environmental measurements, as well as those
from image coordinates, were performed. The results demonstrated that it is possible to efficiently
detect changes in the patterns of positional sequence with and without the necessity of measurement
and/or environmental control, reaching an agreement of 86% between each other, and 100% and 86%
for each respective method to the results of ANOVA. The method developed in this study illustrates
the viability of smartphone camera use for identifying positional adjustments due to the inability to
control limbs in an adequate range of motion with increasing load during a lifting task.

Keywords: pattern recognition; motor activity; theoretical models; resistance training

1. Introduction

Correct supervision during the performance of resistance exercises is imperative for
exercise quality execution, which can generate improvements in performance and avoid
injuries resulting from inadequate posture or incorrect loads [1,2]. Resources for resistance
training exercises have increased in recent years, and this increases the number of injuries
caused by this type of training, mainly due to a lack of proper supervision associated with
execution [3].

An assessment of load, posture and movement during a resistance exercise is often
conducted by an experienced coach, who, through visual examination, analyses exercise
movements without using any equipment that provides qualitative data on the observed
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parameters [4]. Coaches perform this form of supervision as a qualitative analysis, based
on a systematic observation method, using introspective judgment of the quality of human
movement that is based solely on the experience of the evaluator [5].

An increase in load during the performance of a resistance exercise can cause a change
in movement patterns. A study that analyzed a squat exercise [6] verified a change in
movement patterns with increased load. The results revealed that when load was added to
the exercise, hip and knee angles increased to accommodate the increased load.

Spatial trajectories, which are described by joint movements during the performance
of an exercise, can also be used as references for movement pattern analysis. A trajectory
can be defined as the set of all positions occupied by a moving body relative to a given
reference [7]. This reference is considered to be the point of view of the evaluator who
is supervising an exercise [5]; as such, physical exercises can be characterized by their
movement patterns and specific space-time structures. Physical exercises are therefore
susceptible to being modeled as temporal trajectories in a given space, using measurements
that are intimately correlated with visual observations [8].

Studies that use trajectory analysis to evaluate human movement have been present in
the literature for some time and can be considered a new resource for gesture recognition [9].
The trajectories described by the heel and toes during gait were previously analyzed [10];
according to the author of that study, these trajectories can be used to represent specific
motor control tasks that are connected with posture and gait changes. Another study, an
algorithm for extracting and classifying bidimensional movements in a frame sequence
based on movement trajectories, was developed. The motion patterns were learned using
trajectories extracted from neural networks [11] with a recognition rate of 94.42%. Suzuki
et al. [12] proposed a method for learning movement patterns and detecting anomalies in
these patterns by analyzing human trajectories through long-term observation. The spatial
and temporal features of those trajectories were analyzed using hidden Markov models
(HMMs). Another study examined human movement patterns in a space-time context
by clustering geographic data extracted from smartphone global positioning systems [13]
(confidence: 80%), and Calin et al. [14] explored movement analysis, dividing movement
into three main components: body posture (posture), the range of motion (reach), and
movement pattern (positional sequence), which obtained classification accuracy, with up to
56% for HMMs. With constant technological improvements, the motion capture of body
movements has become more accessible and more widely utilized in sports activities. Cur-
rently, with the help of a smartphone camera, it is possible to evaluate movement patterns
and measure physical performance [15]. Visual resources such as video assistant referee
(VAR), which can perform reliable measurements of the studied object in a noninvasive
manner and without interfering with the natural flow of the sport, are used, for example,
in soccer.

In a similar manner, the use of noninvasive methods that are capable of tracking
and automatically supervising resistance training exercises could provide great benefits to
athletes [16]. For that to occur, it is necessary to use a statistical/mathematical model that
can provide measurements or distinguish motion patterns that accurately detect significant
changes in human movements. HMMs are suitable for pattern recognition and can be used
to solve this problem [17]. Originating from Markov chains, they possess a finite number
of states and use a double stochastic process that measures transitions between states and
generates an exit symbol for each state, both linked to a probability of occurrence [18].

To apply the HMM, three different problems must be solved [18]: (1) the probability of
the unknown sequence must be determined; (2) the hidden states of the best sequence must
be estimated; and (3) the model parameters must be trained. In the model learning phase,
the training data are divided into groups (clusters). Training is performed at maximum
likelihood using the Baum–Welch algorithm [17]. After completion of the training phase, a
recognition process based on choosing the model that provides the maximal probability of
the analyzed observation sequences P(O|λ) is conducted [19]. In this study, we aimed to
identify changes in load displacement that occur due to alterations in subjects’ movement
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trajectories during a biceps-curl exercise. Load displacement and joint positional sequence
were quantified by means of bi-dimensional video capture while the subjects performed
elbow flexion during the biceps-curl exercise, and the data so obtained were further used to
train the HMMs. This work tested the hypothesis that HMMs provide accurate automatic
detection of alterations in shoulder, elbow and load positional sequences that are considered
significant according to cinematic assessment.

2. Methods
2.1. Participants

The participants in this study were ten male volunteers (age: 26.3 ± 4.9 years, height:
177.6 ± 8.0 cm, body weight: 86.2 ± 16.7 kg) who were recruited from a local health club.
The inclusion criteria were as follows: (1) age ≥ 22 and ≤ 32 years; (2) engaged in regular
exercise for at least three times a week in the nine months prior to data collection; and (3) at
least six months of experience performing a biceps curl with a barbell. Participants with
any disease or medical condition that might have affected their task performance were
excluded. This study was conducted in accordance with the Declaration of Helsinki and
approved by the UNESP ethics committee under number 17486119.0.0000.5398.

2.2. Procedures

Experimental data were collected at the Laboratory of Human Performance Optimiza-
tion in Sport (LABOREH). For data collection, three green hemispherical markers (25 mm
in diameter) were used. The markers were placed on the barbell and at the great tubercle
and the lateral epicondyle of the humerus (Figure 1).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 14 
 

must be estimated; and (3) the model parameters must be trained. In the model learning 
phase, the training data are divided into groups (clusters). Training is performed at 
maximum likelihood using the Baum‒Welch algorithm [17]. After completion of the 
training phase, a recognition process based on choosing the model that provides the 
maximal probability of the analyzed observation sequences P(O|λ) is conducted [19]. In 
this study, we aimed to identify changes in load displacement that occur due to alterations 
in subjects’ movement trajectories during a biceps-curl exercise. Load displacement and 
joint positional sequence were quantified by means of bi-dimensional video capture while 
the subjects performed elbow flexion during the biceps-curl exercise, and the data so 
obtained were further used to train the HMMs. This work tested the hypothesis that 
HMMs provide accurate automatic detection of alterations in shoulder, elbow and load 
positional sequences that are considered significant according to cinematic assessment. 

2. Methods 
2.1. Participants 

The participants in this study were ten male volunteers (age: 26.3 ± 4.9 years, height: 
177.6 ± 8.0 cm, body weight: 86.2 ± 16.7 kg) who were recruited from a local health club. 
The inclusion criteria were as follows: (1) age ≥ 22 and ≤ 32 years; (2) engaged in regular 
exercise for at least three times a week in the nine months prior to data collection; and (3) 
at least six months of experience performing a biceps curl with a barbell. Participants with 
any disease or medical condition that might have affected their task performance were 
excluded. This study was conducted in accordance with the Declaration of Helsinki and 
approved by the UNESP ethics committee under number 17486119.0.0000.5398. 

2.2. Procedures 
Experimental data were collected at the Laboratory of Human Performance 

Optimization in Sport (LABOREH). For data collection, three green hemispherical 
markers (25 mm in diameter) were used. The markers were placed on the barbell and at 
the great tubercle and the lateral epicondyle of the humerus (Figure 1). 

 
Figure 1. Hemispherical marker locations for data collection. 

The subjects were instructed to do the following before testing: (i) maintain their 
usual dietary and sleep habits; (ii) avoid intake of any energy- or performance-enhancing 
supplements or drinks for a period of at least 24 h before testing; and (iii) avoid intake of 
beverages containing alcohol or caffeine for a period of at least 24 h before testing. They 
were also instructed to wear comfortable clothes during testing. 

All subjects performed three sets of three repetitions with 10 min of rest between sets, 
following the technique fundamentals for barbell biceps-curl [20]. In the first set, the 

Figure 1. Hemispherical marker locations for data collection.

The subjects were instructed to do the following before testing: (i) maintain their
usual dietary and sleep habits; (ii) avoid intake of any energy- or performance-enhancing
supplements or drinks for a period of at least 24 h before testing; and (iii) avoid intake of
beverages containing alcohol or caffeine for a period of at least 24 h before testing. They
were also instructed to wear comfortable clothes during testing.

All subjects performed three sets of three repetitions with 10 min of rest between
sets, following the technique fundamentals for barbell biceps-curl [20]. In the first set, the
repetitions were performed using only the barbell; the second set was performed using an
additional barbell that added a load equivalent to 25% of the subject’s body weight [21].
Finally, the third and last load was performed with 50% of the subject’s body weight as an
additional overload.
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Positional and temporal data were collected through the use of a smartphone digital
camera (Galaxy S9 with 2 megapixels and UHD 4K resolution) that was placed so as to
have a perpendicular view of the subject’s sagittal plane [22], as shown in Figure 2.
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To calibrate the measurements, fixed markers were placed in the background in a plane
coincident with the subject’s sagittal plane. Measurements of body segments (arm, forearm)
and height were also taken to verify and certify the calibration measurements. Therefore,
it was possible to measure the subjects’ movements from the subjects’ bidimensional
coordinates in the sagittal plane.

Video capture in the MPEG-4 format was performed for all sets and repetitions at a
frequency of 30 frames per second [23–30]. The duration of each video matched the duration
of the repetitions. All videos were digitally edited using Wondershare Filmora version
9 (Wondershare Filmora, Hong Kong, China) [31] for Chroma key filter application [32]
on the markers and Alfa channel application [33] for enhanced marker contrast. Kinovea
0.8.27 software (Kinovea, Bordeaux, France) [34] was used to track the markers, and the
marker coordinates were exported to XLM (Extensive Markup Language) files. The origin
of the coordinates in Cartesian plan (i.e., an ordered pair (x,y) representing position on the
horizontal x-axis—from left to right, and on the vertical y-axis—from bottom to top) [35]
was assigned to the marker placed in the shoulder, elbow, and barbell and recalibrated for
each of the repetitions.

2.3. Displacement and Vertical Distance Measurements

Displacement measurements were obtained from the markers placed at the great
tubercle (shoulder) and the lateral epicondyle (elbow) of the humerus, and at the bar (see
Figure 1) according to the following formula for Euclidean distance calculation:

∆d =
√
(xf − xi)

2 + (yf − yi)
2 (1)

where ∆d is the displacement value,
(

x f , y f

)
are the coordinates of the markers at final

position, and (xi, yi) are the coordinates of the markers at initial positions.
For the barbell, the vertical distances were also estimated by its variation only along

the y-axis:
∆y = yf − yi (2)

where ∆y is the vertical distance, y f is the y-axis value coordinate at the final position, and
yi is the y-axis coordinate at the starting position. The barbell ∆y might be an additional
information indicating the undesirable adjustments in limb position (i.e., shoulder flexion,
elbow rising and lumbar extension) with load increment [36,37].
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2.4. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics 26.0 (SPSS, Chicago, IL,
USA). One-way ANOVA was used to verify the existence of significant differences in ∆d
and ∆y measures for shoulder, elbow, and barbell during the upward/concentric phase
of the biceps-curl exercise, in accordance with the different loads that were tested. A post
hoc Tukey test was used. The sample power was determined with G*Power 3 from data
including the effect size (partial eta squared, η2

p) for ANOVA test between the ∆d and ∆y
values for 0 vs. 25 and 50% lift attempts, actual N sample, and specifying α = 0.05 [38]. The
eta square (η2) was calculated, and the correspondence to Cohen’s d was verified to classify
the level of the effect according to small (d = 0.2), medium (d = 0.5), and large (d = 0.8) [39].
The significance level was set at 5%.

2.5. HMM Modeling

In HMMs, the state’s hidden sequence can be estimated based on the visible observa-
tion sequence [40] and characterized by five elements in a symbolic manner [18,41], where
N represents the number of states in the model. For the variable qt, there is a corresponding
state value, represented by S = {S1, S2, . . . , SN}. The number of observation symbols
for HMM exits is represented by M. The symbols are designated O = {O1, O2, . . . , OM}.
A transition probability matrix A =

[
aij
]

represents the transition probabilities between
states, where aij = Prob

(
qt+1 = Sj

∣∣qt = Si
)
, 1 ≤ i, j ≤ N represents the probability value

in the qt state for transitioning to state Sj at time t + 1, since at time t, the state is Si. The
exit probability matrix B =

[
bj(k)

]
represents the observation probabilities in each state,

where bj(k) = Prob
(
Ok(t)

∣∣qt = Sj
)
, 1 ≤ j ≤ N, 1 ≤ k ≤ M is the probability of the

k-infinite observation symbol. Finally, an initial state distribution π1 = {πi1} represents
the probability of a new input sequence starting from a given state at the initial time t = 1,
where πi1 = Prob(q1 = Si), 1 ≤ i ≤ N.

The ANOVA results, which will analyze the significant differences in bi-dimensional
displacement, will provided the criteria for the marker position data modeling in HMM. The
Markovian model algorithms [42–45] were employed in GNU Octave 4.2.1 (GNU Octave,
Madison, WI, USA) [46]. For analysis, the HMMs were provided with bi-dimensional data
on the trajectories of each marker during the ascending phase of the exercise. Research
on human movement [47–50] in which a linear type of topology was used [51] provided a
reference for the general topology for the HMM.

The model’s learning phase occurs with clusters [47] using the k-means algorithm [52–56].
The term cluster are referring to the set of positional coordinates (x,y) defining a common
segment of path during the biceps-curl for the changes in position of the shoulder, elbow and
barbell. A simplified example of the relation between barbell positioning during the exercise’s
upward movement and Markovian modeling is shown in Figure 3. Each of the three positions
of the barbell, defined as states S1, S2 and S3, derived from the clustering process presents
a transition probability (go to the next state or remain in the same state) and an observation
probability for each state bj(k) [57].

For HMM subject modeling, the three repetitions performed solely with the barbell
were used as the standard model of the positional sequence pattern for shoulder, elbow and
barbell. These repetitions were used as the basis for training the model. Using the acquired
data, the relation between the 25% and 50% loads was also tested, using the 25% body
weight as training. In this state, the model parameters λ = (A, B, π) were calculated using
the observed symbols O such that the observation probability P(O|λ) was augmented.
For this computation, the Baum–Welch algorithm was employed, and this expanded the
observation sequence probabilities [47].

The movement pattern recognition for the trajectories provided by the markers was
based on the maximum likelihood criterion. For comparison between a trained model
and a new observation sequence, the forward algorithm was used [18,58]. The algorithm
estimated the probability that the observation data could have been generated by the model.
With the application of HMM, the minimum number of states necessary to recognize the
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significant differences detected by ANOVA while the subject performed the exercise with
different loads, in terms of changes in the patterns of execution of the movement while the
exercise was performed, was obtained.
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The results (i.e., the minimum number of states to recognize the difference detect
to the ANOVA) obtained using data from measurements of the environment and those
obtained using only the image coordinates were subjected to agreement analysis using the
Bland and Altman plot [59] in MedCalc 19.0.3 (MedCalc Software, Ostend, Belgium); in
this analysis, the agreement limits were defined as ±1.96 × SD (the standard deviation of
the difference between the N for each method, i.e., the confidence interval of 95%) [60].

3. Results

The mean values, in centimeters, of the maximal ∆y obtained for each marker during
the upward phase of the exercise are presented in Table 1.

Table 1. Mean maximal values achieved for each marker at the end of the trajectory (shoulder, elbow
(∆d), and barbell (∆y)) for the three different loads (cm).

Load Shoulder Elbow Barbell

0% 1.7 ± 0.4 4.4 ± 1.7 56.8 ± 7.7
25% 3.0 ± 1.3 6.4 ± 2.9 59.6 ± 8.5
50% 7.9 ± 3.8 10.4 ± 4.0 64.0 ± 9.0

Using the values presented in Table 1, one-way ANOVA was conducted to verify the
existence of significant differences in the maximal ∆d and ∆y values for each marker and
each subject. Eight participants showed significant differences in the shoulder and elbow
values in the 0%–50% load comparison. In the 25%–50% comparison, differences in the
shoulder and elbow (∆d) values were identified in eight and five participants, respectively.
For the barbell (∆y), a difference was observed only in the 0%–50% comparison, and that
difference was observed in seven participants. The effect size (η2) for shoulder, elbow and
barbell were: 0.590, 0.432 and 0.121, respectively. These effects size corresponded to Cohen
d = 2.4, 1.7, and 0.7, which were associated to a sample power of >99%, 97% and 35%,
respectively, for shoulder, elbow and barbell. Therefore, the number of participants fails
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to reach a satisfactory power only for the barbell results, despite of the medium to large
probability of higher mean as load increase for all marks.

Through HMM modeling, was found the minimum number of states (N) required to
recognize pattern differences in positional sequence for each mark. For this, the individual
significance values for each joint in each subject in the comparison of the loads were
considered. The data extracted from this modeling, together with metric data from the
environment, are presented in Table 2. Table 2 also shows the states obtained with video
analysis only (no metric or environmental coordinates); these were also subjected to HMM
modeling in which the minimum number of states (N) for recognition of the differences in
sequential pattern of positions was computed.

Based on the data presented in Table 2, it is possible to establish that few changes
occur in the number of states necessary for HMM recognition when the two methods are
compared. To compare the methods, a Bland–Altman analysis was performed. The results
of this comparison are shown in Figure 4. They provide confirmation that, due to the
few changes in the number of minimum states necessary, as seen in Table 2, there are no
differences between the methods.
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Table 2. Minimum number of states necessary for HMM recognition of differences in the execution of biceps-curl with different loads, and with and without metric
of environment.

Markers Loads

Subjects
01 02 03 04 05 06 07 08 09 10

Metric Non-
metric Metric Non-

metric Metric Non-
metric Metric Non-

metric Metric Non-
metric Metric Non-

metric Metric Non-
metric Metric Non-

metric Metric Non-
metric Metric Non-

metric

Elbow
0%–50% 20 20 . . . . . . 35 35 30 30 45 45 20 * 23 * . . . . . . 40 40 25 25 35 35
25%–50% . . . . . . . . . . . . 35 35 15 * 16 * . . . . . . 20 20 . . . . . . 35 35 . . . . . . 40 40

Shoulder
0%–50% . . . . . . 15 15 15 * 20 * 45 45 . . . . . . 35 35 25 25 45 45 20 20 30 30
25%–50% . . . . . . 25 25 20 20 25 25 . . . . . . 15 15 45 45 25 25 35 35 20 * 21 *

Barbell 0%–50% 30 30 45 45 . . . . . . 60 60 . . . . . . 35 35 45 45 . . . . . . 55 55 40 * 42 *

*—different number of states necessary when comparing the HMM models. . . . —no significant differences found by ANOVA.
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4. Discussion

This study examined whether an HMM trained using different types of coordinates
derived from the same movement is able to detect significant variations in shoulder, elbow
and load positional sequence, and therefore changes in movement pattern of the biceps-
curl exercise. As demonstrated in Table 2, linear topology HMM, trained with Cartesian
coordinates [47,61] and corrected using environmental measurements, was able to detect
significant adjustments in movement patterns in the sagittal plane, and this was confirmed
by ANOVA. Therefore, the findings evidenced the confidence in HMM for detecting
undesired joint positional adjustments when comparing the standard reference of simple
human lift movement (e.g., single-joint action with no load) to the lift attempts with heavy
loads.

For the ANOVA test, maximal displacement values with the three different loads were
provided, and the HMMs were trained with three executions for each load (0% or 25%)
for comparison. With HMMs, the use of a small number of training models provides a
more rigorous analysis and yields results that are in better agreement with the reference
model [62]. In this study, we searched for the limits, aiming at no recognition of the pattern
of the reference model. In other words, we searched for instances in which the movement
pattern was altered. In this way, a minimum number of states were found to draw attention
to the changes in movement pattern executed by each subject, and these states indicated
movements that were inadequate for lifting the specific load.

To dispense with the need for measurements of the environment and/or subject,
HMM modeling was completed using only image coordinates. The positional sequence of
coordinates provided by the markers while the subjects performed an upward movement
with the barbell were obtained through HMM training and testing. Table 2 presents the
results of these methods (nonmetric); they differ little from the results obtained using
the environmental data. Of 36 cases shown to have significant variation in movements
indicated by the environmental measurements, 31 were also identified by the method that
uses only image coordinates, an agreement of approximately 86% between the methods.

It is noteworthy that the analysis of the movement described in this work evaluates
the adequacy of the movement by comparing the results with a reference that already
presents great similarity to the analyzed movement. Wearable sensors that are used
to identify movements that are made during different actions, such as movements in a
badminton game for example, can provide accuracies of up to 97% in recognizing the type
of movement [63]. The authors of the cited study also sought to discriminate the skill levels
of professional and amateur badminton athletes, obtaining satisfactory accuracy values
ranging from 83.3% to 90%, which is leveled with the percentage of recognition obtained
by applying HMM in our research. Current studies in which wearable sensors are used to
recognize daily activities such as walking, going up or down stairs, sitting, standing and
lying down, achieve an accuracy of 93.77% in the recognition of these activities [64] in the
absence of information about the skills or evolution of the practitioner. Hence, the accuracy
in recognizing movement patterns from methods using image with no information on the
metric of the environment has attaining ~90%, which is an average close to that observed
for HMM.

As in the work of Ghorbani Faal et al. [65], to conduct an adequate comparison between
methods, Bland–Altman agreement tests were used to compare the data load acquired with
the image coordinates (CI) and the environmental data (CA). Figure 4 shows Bland–Altman
plot comparisons of different methods of HMM modeling for all the loads tested. The
plots show that the mean difference between methods is close to zero and that most of the
obtained values are within the agreement limits. For the elbow, all values found are within
the confidence interval. This similarity between the two methods (CI and CA) emphasizes
that movement pattern analysis, in the absence of data from the environment, is sufficient
to detect changes in movement patterns during exercise.

The use of image coordinates alone for movement pattern analysis by means of the
performed trajectory of the objects, joints and limbs during the exercise could assist in
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exercise supervision, since it is an ecologic method. No information from the environ-
ment or any other type of information is necessary. Additionally, the analysis does not
hinder exercise execution. Furthermore, this analysis could provide a more solid basis
for qualitative exercise analysis, as described by Knudson and Morrison [5], as well as
single out inadequate loads [6] or postures during the performance of resistance exercises.
For example, the HMM method has been explored as an additional tool to help amateur
athletes learn correct movements for a specific action in a sport, aiming to improve their
skill level [63], as well as an analysis to support personalized sport training prescriptions
according to the uncommon abilities of practitioners [66].

Unlike previously described methods [63], the method described in this work does
not require the use of environmental measurements, expensive computational resources, or
wearable sensors, all of which can increase the cost of performing a supervised activity [62].
Based on videos, it is possible to analyze the movements performed in exercises even if the
videos were not recorded for this purpose. Thus, it is possible to analyze videos recorded
in the past using the method described here.

A limitation of our method is that it analyzes movement displacement in a two-
dimensional (2D) way. In turn, the three-dimensional (3D) analyses could provide detailed
information on motion in other planes of movement, and therefore provide information
of the movements in the transverse plane, which were possible changes in joint position
that might occur to maintain postural adequacy with increased load. In addition, the
3D sagittal model would provide more accurate data and is not subject to the parallax
and perspective errors that occur in 2D analyses. However, the biceps-curl movement is
basically in the sagittal plane rather than in the transverse and frontal planes [67], and
although the 3D approach has an advantage over the 2D approach, the 2D analyses such as
the one described in this study allow the analysis of motion using data collected in any type
of video. Regardless, the analysis by HMM using 3D data could identify further alterations
caused by the increase in load, and thus provide more information about changes in the
trajectories of movements through simultaneous modeling in different planes [68].

Future work should include the analyses of subjects’ movements in a plane other than
the sagittal plane (i.e., the use of 3D coordinates). This would make it possible to verify
whether the positional sequence of joints and objects can be further refined and whether
HMM training can be extended beyond the results obtained with bi-dimensional analysis.
Therefore, this makes HMM a potential tool to support the human-based diagnosis of
motor patterns, with application varying from disorders in neural pathologies to the motor
optimization of athlete’s performance.

5. Conclusions

The findings of the current study evidenced that the trajectory of the movement
is adjusted modifying the positional sequence of the barbell and joints as the amount
of load was increased during biceps-curl exercise. In addition, the ability of HMM to
accurately detect alterations in the upward trajectories of object and body parts were also
demonstrated, supporting the speculation that HMM might be a suitable automatized
method for analyzing the ability to perform single-joint resistance exercises.

Hence, one possible application of the current findings is movement analysis using
simple video recordings, which might be a practical and effective alternative for exercise
supervision. For example, it could be useful to provide clues in maintaining the correct load
for the proper execution of resistance exercises without causing postural damage or modi-
fying muscle recruitment. In addition, the HMM method can be easily implemented into
mobile devices through which video could be recorded, which highlights the practicality of
automated supervision for movement monitoring using smartphone cameras.
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