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Abstract: The performance of speaker recognition systems is very well on the datasets without noise
and mismatch. However, the performance gets degraded with the environmental noises, channel vari-
ation, physical and behavioral changes in speaker. The types of Speaker related feature play crucial
role in improving the performance of speaker recognition systems. Gammatone Frequency Cepstral
Coefficient (GFCC) features has been widely used to develop robust speaker recognition systems
with the conventional machine learning, it achieved better performance compared to Mel Frequency
Cepstral Coefficient (MFCC) features in the noisy condition. Recently, deep learning models showed
better performance in the speaker recognition compared to conventional machine learning. Most of
the previous deep learning-based speaker recognition models has used Mel Spectrogram and similar
inputs rather than a handcrafted features like MFCC and GFCC features. However, the performance
of the Mel Spectrogram features gets degraded in the high noise ratio and mismatch in the utterances.
Similar to Mel Spectrogram, Cochleogram is another important feature for deep learning speaker
recognition models. Like GFCC features, Cochleogram represents utterances in Equal Rectangular
Band (ERB) scale which is important in noisy condition. However, none of the studies have con-
ducted analysis for noise robustness of Cochleogram and Mel Spectrogram in speaker recognition. In
addition, only limited studies have used Cochleogram to develop speech-based models in noisy and
mismatch condition using deep learning. In this study, analysis of noise robustness of Cochleogram
and Mel Spectrogram features in speaker recognition using deep learning model is conducted at the
Signal to Noise Ratio (SNR) level from −5 dB to 20 dB. Experiments are conducted on the VoxCeleb1
and Noise added VoxCeleb1 dataset by using basic 2DCNN, ResNet-50, VGG-16, ECAPA-TDNN
and TitaNet Models architectures. The Speaker identification and verification performance of both
Cochleogram and Mel Spectrogram is evaluated. The results show that Cochleogram have better
performance than Mel Spectrogram in both speaker identification and verification at the noisy and
mismatch condition.

Keywords: speaker identification; speaker verification; Mel Spectrogram; Cochleogram; 2DCNN;
ResNet-50; VGG-16

1. Introduction

Speaker recognition is classification/identification of an individual person from others
based on characteristics of voice. It is a biometrics technology which identification, verifica-
tion, and classification of individual speakers based on the voice characteristics [1]. It has
the capability of tracking, detecting, and segmenting specific speaker from the group of
speakers. It is very important in the various application areas including forensics, financial
transaction, business management, access control, surveillance and law enforcement [2,3].
Speaker recognition can be classified into two categories: Speaker identification and Speaker
verification [2].

Appl. Sci. 2023, 13, 569. https://doi.org/10.3390/app13010569 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010569
https://doi.org/10.3390/app13010569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0793-7763
https://orcid.org/0000-0001-6658-5142
https://doi.org/10.3390/app13010569
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010569?type=check_update&version=1


Appl. Sci. 2023, 13, 569 2 of 16

Speaker identification is the process of determining who is speaking from the set of
known speakers by the model [4]. It performs 1: N classification, where a test sample
compared with all the speaker classes in the trained model. Speaker identification also
known as closed set identification because it is assumed the test speaker voice come from
a known set of speakers. Speaker verification is the process of determining whether the
speaker identity is who the person claims to be. In speaker verification the speaker is
either accepted or rejected. It is also referred as open set classification. Speaker verification
performs one to one classification, in which the test voice compared with claimed speaker
class in the model.

Speaker recognition systems has two basic operations: feature extraction and speaker
modeling/training [2]. Feature extraction converts raw waveform of the speech signal into
low dimensional feature vectors which is important to train the model. Feature extraction
plays important role in the performance of the speaker recognition. Handcrafted features
such as Mel Frequency Cepstral Coefficient (MFCC), Gammatone Frequency Cepstral
Coefficient (GFCC) and Linear Predictive Cepstral Coefficient (LPCC) has been used in
conventional machine learning models [5]. Deep learning models automatically extracts
feature from the input data during training [6]. The performance of speaker recognition
systems is very good for the training and test speech without mismatch/noise [7]. In
reality, mismatch or noise may occur between training and test speech which degrades
performance of speaker recognition systems. Practical application of speaker recognition
systems needs robustness of the system for each of the real-world conditions.

Convolutional Neural Network (CNN) [8], which is well known deep learning model
achieved very good performance in variety of problems including image classification,
speech recognition, natural language processing and other computer vision research. Be-
cause of superior performance of deep learning models related with conventional machine
learning, recent Speaker recognition research are conducted using deep learning models,
especially to CNN architecture. Most of the CNN architectures-based speaker recognition
models are developed using Mel Spectrogram of the speech signal. However, the speaker
recognition performance of the Mel Spectrogram gets degraded with the noise and other
mismatch. In this study, we have analyzed noise robustness of Cochleogram and Mel Spec-
trogram in Speaker recognition using the CNN architectures: basic 2DCNN, ResNet-50,
VGG-16, ECAPA-TDNN [9] and TitaNet [10] architectures. The deep learning-based speaker
recognition models with Cochleogram feature is recommended for the noisy environment.
The rest of the paper is organized as follows. Related works conducted in the area of our
study is discussed in Section 2. Section 3 explains about Cochleogram and Mel Spectrogram
generation from speech data. Section 4 explains the detail of CNN architectures used in
our study. In Section 5 we explained in detail how the experiment is conducted, and we
represented the results in different types of ways. We concluded this study in Section 6.

2. Related Works

There is large number of references in the speaker recognition area. In this study, we
reviewed the literatures more related to our study. A number of research is conducted to
improve the noise robustness of speaker recognition models by using different types of fea-
ture extraction techniques and machine learning models. In the study [7] noise robustness
of MFCC and GFCC features are analyzed, then GFCC feature is recommended. Therefore,
either GFCC feature or its fusion with other features has been used in conventional machine
learning models to develop robust speaker recognition. In the study [11], a speaker iden-
tification system is developed using GFCC feature and GMM classifier with the additive
noises (i.e., babble, factory and destroyer noises); then it achieved better performs than
MFCC features. The research work on [12] used a combination of GFCC and MFCC features
to develop speaker identification using Deep Neural Network (DNN) classifiers in noisy
conditions, the result shows that fusion of both features perform superior to individual
features. Robustness of GFCC feature for additive noise and white Gaussian noise is also
evaluated in speaker recognition using i-vector in the study [13] and the result shows that



Appl. Sci. 2023, 13, 569 3 of 16

GFCC shows superior performance. Fusion of classifiers like fusion of GMM and SVM is
applied together with the GFCC feature to develop a speaker recognition. In GFCC, speech
is represented in equivalent rectangular bandwidth (ERB) scale which has finer resolution
than Mel Scale in low frequency. Both ERB scale and nonlinear rectification are the main
sources for the robustness of GFCC in noisy conditions.

Recently, deep learning models have attracted the attention of researchers of speaker
recognition and other research areas. In the study [14] Convolutional Neural Network
(CNN) and Long Short Memory Networks, respectively, showed superior performance than
GMM and i-vector approaches in speaker recognition. In the paper [15], CNN model shows
superior performance than Support Vector Machine (SVM) in based speaker recognition.
Unlike classical machine learning models which use handcrafted features, CNN model
extracts feature from input images automatically during training and classification. For
CNN based speaker recognition input images are generated from speech at different steps
of speech processing. In the study [16], raw waveform shows better speaker identification
performance than MFCC features in noisy and reverberant environments. In the research
work [17,18], performance of spectrogram in speaker recognition surpasses both raw
waveform and MFCC features both in noisy and reverberant environments. Deep learning-
based speaker recognition research works in [19–21] use Mel Spectrogram as an input. Like
MFCC, Mel Spectrogram represents speech in Mel Scale whose performance degrades with
noises, environmental changes, physical and behavioral changes of speaker during training
and test. Like GFCC, in Cochleogram [22] speech represented in Equal Rectangular Band
(ERB) scale and uses nonlinear rectification. ERB scale is more robust to noise because of
its finer resolution in lower frequency. In the study [23] Sabbir Ahmed et al. proposed
the speaker identification model using Cochleogram and a simple CNN architecture, the
model achieved better accuracy in the noise condition. Even though Cochleogram can be
used as an input for deep learning models, only limited speech-based research is conducted
using Cochleogram and deep learning models. None of the research works also analyzed
noise robustness of Cochleogram features in speaker recognition on the datasets with
different types of noises at different Signal to Noise ratio (SNR) level. In addition, only
limited deep learning based speaker recognition models are developed using Cochleogram.
In this study, we have conducted analysis of noise robustness of Cochleogram and Mel
Spectrogram features with three different types of noises (Babble noise, street noise and
restaurant noise) at SNR level from −5 dB to 20 dB. The deep learning model architectures
such as: basic two-dimensional CNN (2DCNN), ResNet-50, VGG-16, ECAPA-TDNN and
TitaNet architectures are used to conduct analysis of noise robustness of Cochleogram and
Mel Spectrogram features in speaker identification and verification.

3. Cochleogram and Mel Spectrogram Generation

Both Cochleogram and Mel Spectrogram represents speech in two-dimensional time-
frequency using the Equal Rectangular Band (ERB) scale and Mel Scale, respectively. At
the beginning steps of Cochleogram and Mel Spectrogram generation, the steps such as:
Pre-emphasis, framing, windowing, Fast Fourier Transform (FFT) and power spectrum
generation are applied in common.

Mel Filter banks, which simulates non-linear human auditory perception is computed
from FFT, then it is stacked together to form the Mel Spectrogram of the speech. The sample
Mel Spectrogram is shown in the Figure 1.
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Figure 1. Mel Spectrogram.

Gammatone filter bank (GFTB) provides a closer approximation to the bandwidths
of filters in the human auditory system. It is specified on the Equivalent Rectangular
Bandwidth (ERB) scale, which is a psychoacoustic measure of the width of the auditory
filters. Representing low frequency speech in higher resolution [24], non-linear rectifica-
tion [7] and measuring of psychoacoustics feature from the speech make Gammatone filter
banks more preferable speaker characterization in noisy condition. GFTB is computed
from the FFT, then stacked together to form Cochleogram. Sample Cochleogram is shown
in Figure 2 below.
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4. CNN Architectures

This section discusses about the CNN architectures used in this study to analyze
noise robustness of Cochleogram and Mel Spectrogram in speaker identification and
verification. The most commonly used and recent deep learning model architectures such
as: basic 2DCNN, ResNet-50, VGG-16, ECAPA-TDNN and TitaNet models are used in
this study to analyze noise robustness of Cochleogram and Mel Spectrogram features in
speaker identification and verification. The detail of basic 2DCNN, VGG-16 and ResNet-50
architectures is discussed in the Tables 1–3, respectively. An ECAPA-TDNN architecture
which is proposed in the study [9] is also adopted in our study, its block architecture is
presented in the Figure 3. The SE-Res2Block component of the ECAPA-TDNN is shown in
the Figure 4. TitaNet architecture, which is proposed in the study [10] is also adopted in
this study to evaluate the performance of the Cochleogram and Mel Spectrogram features
in speaker recognition. Figure 5 presents the block diagram of TitaNet architecture.

Table 1. Basic 2DCNN Architecture.

Layer No. Layer Description Output Size

1 input (224 × 224 × 3) Cochleogram or Mel Spectrogram

2 Conv2D f = 64, k = 3 × 3, p = same, a = ReLu (None, 112, 112, 64)

3 BatchNormalization - (None, 112, 112, 64)

4 Max pooling Pool size = 2 × 2, s = 2 × 2 (None, 56, 56, 64)

5 Conv2D f = 128, k = 3 × 3, p = same, a = ReLu (None, 56, 56, 128)
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Table 1. Cont.

Layer No. Layer Description Output Size

6 BatchNormalization - (None, 56, 56, 128)

7 Max pooling Pool size = 2 × 2, s = 2 × 2 (None, 28, 28, 128)

8 Conv2D f = 256, k = 3 × 3, p = same, a = ReLu (None, 28, 28, 256)

9 BatchNormalization - (None, 28, 28, 256)

10 Max pooling Pool size = 2 × 2, s = 2 × 2 (None, 14, 14, 256)

11 Conv2D f = 512, k = 3 × 3, p = same, a = ReLu (None, 14, 14, 512)

12 BatchNormalization - (None, 14, 14, 512)

13 Max pooling Pool size = 2 × 2, s = 2 × 2 (None, 7, 7, 512)

14 Flatten - (None, 25088)

15 FC f = 512, k = 3 × 3, p = same, a = ReLu (None, 512)

16 BatchNormalization - (None, 512)

17 Dropout Probability = 0.5 (None, 512)

FC

Softmax

F = filters, k = kernel size, s = stride, p = padding, a = activation.

Table 2. VGG-16 Architecture.

Layer No. Layer Description Output Size

1 input (224 × 224 × 3) Cochleogram or Mel Spectrogram

2 Conv2D f = 64, k = 3 × 3, p = same, a = ReLu (None, 224, 224, 64)

3 Conv2D f = 64, k = 3 × 3, p = same, a = ReLu (None, 224, 224, 64)

4 Maxpool pool = 2 × 2, s = 2 × 2 (None, 112, 112, 64)

5 Conv2D f = 128, k = 3 × 3, p = same, a = ReLu (None, 112, 112, 128)

6 Conv2D f = 128, k = 3 × 3, p = same, a = ReLu (None, 112, 112, 128)

7 Maxpool pool = 2 × 2, s = 2 × 2 (None, 56, 56, 128)

8 Conv2D f = 256, k = 3 × 3, p = same, a = ReLu (None, 56, 56, 256)

9 Conv2D f = 256, k = 3 × 3, p = same, a = ReLu (None, 56, 56, 256)

10 Conv2D f = 256, k = 3 × 3, p = same, a = ReLu (None, 56, 56, 256)

11 Maxpool pool = 2 × 2, s = 2 × 2 (None, 28, 28, 256)

12 Conv2D f = 512, k = 3 × 3, p = same, a = ReLu (None, 28, 28, 512)

13 Conv2D f = 512, k = 3 × 3, p = same, a = ReLu (None, 28, 28, 512)

14 Conv2D f = 512, k = 3 × 3, p = same, a = ReLu (None, 28, 28, 512)

15 Maxpool pool = 2 × 2, s = 2 × 2 (None, 14, 14, 512)

16 Conv2D f = 512, k = 3 × 3, p = same, a = ReLu (None, 14, 14, 512)

17 Conv2D f = 512, k = 3 × 3, p = same, a = ReLu (None, 14, 14, 512)

18 Conv2D f = 512, k = 3 × 3, p = same, a = ReLu (None, 14, 14, 512)
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Table 2. Cont.

Layer No. Layer Description Output Size

19 Maxpool pool = 2 × 2, s = 2 × 2 (None, 7, 7, 512)

Flatten

Fully Connected

Fully Connected

Fully Connected

Softmax

Table 3. ResNet-50 Architecture.

Layer Description Output Iteration

input (224 × 224 × 3) Cochleogram or Mel Spectrogram -

ZeroPadding2D Size = 3 × 3 (None, 70, 70, 3)

1×
Conv2D f = 64, k = 7 × 7, strides = 2 × 2, a = ReLu (None, 32, 32, 128)

BatchNormalization - (None, 32, 32, 128)

MaxPooling2D Pool size = 3 × 3, strides = 2 × 2 (None, 15, 15, 128)

Conv2D f = 64, k = 1 × 1, s = 1 × 1, p = valid, a = ReLu (None, 15, 15, 64)

3×

BatchNormalization - (None, 15, 15, 64)

Conv2D f = 64, k = 3 × 3, s = 1 × 1, p = same, a = ReLu (None, 15, 15, 64)

BatchNormalization - (None, 15, 15, 64)

Conv2D f = 256, k = 1 × 1, s = 1 × 1, p = valid, a = ReLu (None, 15, 15, 256)

BatchNormalization - (None, 15, 15, 256)

Conv2D f = 128, k = 1 × 1, s = 2 × 2, p = valid, a = ReLu (None, 8, 8, 128)

4×

BatchNormalization - (None, 8, 8, 128)

Conv2D f = 128, k = 3 × 3, s = 1 × 1, p = same, a = ReLu (None, 8, 8, 128)

BatchNormalization - (None, 8, 8, 128)

Conv2D f = 512, k = 1 × 1, s = 1 × 1, p = valid, a = ReLu (None, 8, 8, 512)

BatchNormalization - (None, 8, 8, 512)

Conv2D f = 256, k = 1 × 1, s = 2 × 2, p = valid, a = ReLu (None, 4, 4, 256)

6×

BatchNormalization - (None, 4, 4, 256)

Conv2D f = 256, k = 3 × 3, s = 1 × 1, p = same, a = ReLu (None, 4, 4, 256)

BatchNormalization - (None, 4, 4, 256)

Conv2D f = 1024, k = 1 × 1, s = 1 × 1, p = valid, a = ReLu (None, 4, 4, 1024)

BatchNormalization - (None, 4, 4, 1024)

Conv2D f = 512, k = 1 × 1, s = 2 × 2, p = valid, a = ReLu (None, 2, 2, 512)

3×

BatchNormalization - (None, 2, 2, 512)

Conv2D f = 512, k = 3 × 3, s = 1 × 1, p = same, a = ReLu (None, 2, 2, 512)

BatchNormalization - (None, 2, 2, 512)

Conv2D f = 2048, k = 1 × 1, s = 1 × 1, p = valid, a = ReLu (None, 2, 2, 2048)

BatchNormalization - (None, 2, 2, 2048)
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Table 3. Cont.

Layer Description Output Iteration

AveragePooling

Flatten

Fully Connected

Softmax

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 
Figure 4. ECAPA-TDNN Architecture [9]. 

 
Figure 5. TitaNet Architecture [10]. 

Figure 3. ECAPA-TDNN Architecture [9].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 15 
 

Conv2D f = 128, k = 1 × 1, s = 2 × 2, p = valid, a = ReLu (None, 8, 8, 128) 

4× 

BatchNormalization - (None, 8, 8, 128) 
Conv2D f = 128, k = 3 × 3, s = 1 × 1, p = same, a = ReLu (None, 8, 8, 128) 
BatchNormalization - (None, 8, 8, 128) 
Conv2D f = 512, k = 1 × 1, s = 1 × 1, p = valid, a = ReLu (None, 8, 8, 512) 
BatchNormalization - (None, 8, 8, 512) 
Conv2D f = 256, k = 1 × 1, s = 2 × 2, p = valid, a = ReLu (None, 4, 4, 256) 

6× 

BatchNormalization - (None, 4, 4, 256) 
Conv2D f = 256, k = 3 × 3, s = 1 × 1, p = same, a = ReLu (None, 4, 4, 256) 
BatchNormalization - (None, 4, 4, 256) 
Conv2D f = 1024, k = 1 × 1, s = 1 × 1, p = valid, a = ReLu(None, 4, 4, 1024) 
BatchNormalization - (None, 4, 4, 1024) 
Conv2D f = 512, k = 1 × 1, s = 2 × 2, p = valid, a = ReLu (None, 2, 2, 512) 

3× 

BatchNormalization - (None, 2, 2, 512) 
Conv2D f = 512, k = 3 × 3, s = 1 × 1, p = same, a = ReLu (None, 2, 2, 512) 
BatchNormalization - (None, 2, 2, 512) 
Conv2D f = 2048, k = 1 × 1, s = 1 × 1, p = valid, a = ReLu(None, 2, 2, 2048) 
BatchNormalization - (None, 2, 2, 2048) 

AveragePooling 
Flatten 

Fully Connected 
Softmax 

 
Figure 3. SE-Res2Block Architecture [9]. Figure 4. SE-Res2Block Architecture [9].



Appl. Sci. 2023, 13, 569 8 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 
Figure 4. ECAPA-TDNN Architecture [9]. 

 
Figure 5. TitaNet Architecture [10]. Figure 5. TitaNet Architecture [10].

5. Experiment and Result
5.1. Dataset

The speech dataset used in this work were obtained from the public VoxCeleb1 audio
files dataset. VoxCeleb1 [25] dataset contains 153,516 utterances which is collected from
1251 speakers. The utterances are extracted from different kinds of celebrities uploaded
to YouTube. The ratio of male speaker in the dataset is balanced which is 55%. The
speakers span a wide range of different ethnicities, accents, professions and ages. The
VoxCeleb1 dataset has identification and verification split as shown in the Table 4 for
speaker identification and verification, respectively.

Table 4. Development and Test Split of VoxCeleb1 dataset for identification and verification.

Dataset Split Number of Speakers Number of Utterances

Identification
Dev 1251 145,265

Test 1251 8251

Verification
Dev 1211 148,642

Test 40 4874
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Although VoxCeleb1 dataset is not strictly clean from noises, we assumed it as clean
dataset and generated noisy VoxCeleb1 datasets by adding a real-world noises (such as:
Babble, Street, and restaurant noises) to the clean dataset. The noises used in this study is
obtained from the source at [26].

For speaker identification, firstly an original development and test split of the Vox-
Celeb1 dataset is mixed into one. Then the dataset is divided into training, validation and
test split with the ratio of 80%, 10% and 10%, respectively. During speaker identification,
randomly selected noise is added to each utterance of the training and validation split at
the SNR level from −5 dB to 20 dB. The speaker identification performance is evaluated by
adding randomly selected noise to each of the test split utterances at the SNR level −5 dB,
0 dB, 5 dB, 10 dB, 15 dB and 20 dB.

For speaker verification, the original development and test split of the VoxCeleb1
dataset is used without change during our experiment. The training split consists of
148,642 utterances from 1211 speakers and the test split consists of 4874 utterances from
40 speakers which produces a total of 37,720 trials. During training for speaker verification,
for each clean utterances, the noisy utterances are generated by adding randomly selected
noises at the random SNR level from −5 dB to 20 dB. The speaker verification performance
is evaluated by using noise added verification test split. The randomly selected noise is
added to each of the test utterances at the SNR level −5 dB, 0 dB, 5 dB, 10 dB, 15 dB and
20 dB during evaluating for speaker verification.

5.2. Implementation Details and Training

In this study, Cochleogram and Mel Spectrogram which is generated from the utter-
ances is used as an input for the CNN architecture used to our experiment. For Cochleogram
and Mel Spectrogram generation, a 30 ms hamming windows with the overlapping size of
15 ms are used for the 128 filters and 2048-point FFT. Finally, Cochleogram and Mel Spectro-
gram of size 1088 × 288 (frequency × time) is generated for each of the utterances and used
as an input to each of the models. Since the aim of this study is to analyze the robustness of
the Cochleogram and Mel Spectrogram features, none of the audio preprocessing such as
voice activity detection or silence removal is applied. None of the normalization and data
augmentation is applied to Cochleogram and Mel Spectrogram during training the model.

The implementation of this study is conducted by using TensorFlow deep learning
frameworks written in Python, which can be executed on the graphics processing unit
(GPU). Our experiment is conducted on the NVIDIA TITAN Xp GPU. The experiment is
conducted by using the CNN architectures such as: basic 2DCNN, VGG-16, ResNet-50,
ECAPA-TDNN and TitaNet architectures which are discussed on the Tables 1–3 and in
the Figures 3 and 5, respectively. For evaluating the performance of the Cochleogram and
Mel Spectrogram, separate models are trained for speaker identification and verification
on each of the CNN architectures. Separate models are trained for Cochleogram and Mel
Spectrogram features during identification and verification. For evaluating the performance
of Cochleogram and Mel Spectrogram features at different levels of SNR (−5 dB to 20 dB)
and at different types of noises (i.e., Babble, Street and Restaurant noises), a single model is
trained for each Cochleogram and Mel Spectrogram features. For evaluating the speaker
identification and verification performance of Cochleogram and Mel Spectrogram features
without additive noises, a separate model is trained for Cochleogram and Mel Spectrogram
features. During conducting our experiment, publicly available python codes are used by
customizing into appropriate forms.
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During both speaker identification and verification, the models are trained for 20 epochs
with a minibatch size of 32. For each of the epochs, the training pairs are re-shuffled.
Each of the models used RMSprop optimizer with the minimum learning rate 0.0001 and
categorical cross-entropy used as the loss function. The training is performed using the
Softmax function. The weights in the models were initialized randomly at the start of
the training process, and progressively updated throughout the process. The validation
set of the dataset is used for hyper-parameter tuning and early stopping. The speaker
identification performance is measured by using accuracy metrics for training, validation
and test split of the dataset. Verification performance is measured by using Equal Error
Rate (EER) for test split of the dataset.

5.3. Results

This section presents, the result of noise robustness analysis of Cochleogram and
Mel Spectrogram features in speaker identification and verification. The performance of
Cochleogram and Mel Spectrogram features in speaker identification and verification is pre-
sented in the Tables 5 and 6, respectively. Sample speaker identification performance of both
features using VGG-16 architecture is presented graphically as shown in the Figures 6–8
for the dataset without additive noise, medium noise and high noise ratio, respectively.
For the clarity of the readers, the ratio of noise added to the VoxCeleb1 dataset is classified
into three categories such as: low noise ratio (without additive noise), medium noise ratio
(10 dB, 15 dB and 20 dB) and high noise ratio (−5 dB, 0 dB and 5 dB). At each level of SNR,
the performance of both Cochleogram and Mel Spectrogram features in speaker identifica-
tion and verification is analyzed and presented in the Tables 5 and 6, respectively. From the
Figure 6, we can see that the speaker identification performance of both Cochleogram and
Mel Spectrogram is approximately equal with the dataset without additive noise. Figure 7
presents that Cochleogram features achieved better performance than Mel Spectrogram
features on the datasets with medium noise ratio. Figure 8 shows that Cochleogram shows
superior performance than Mel Spectrogram features on the datasets with high noise ratio.
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Table 5 presents more detail about the identification performance of Cochleogram
and Mel Spectrogram at different ratio of noise and using different types of deep learning
architectures such as: (Basic 2DCNN, VGG-16, ResNet-50, TDNN and TitaNet). In the
Table 5, the results show that the Cochleogram features achieved superior performance
than Mel Spectrogram features on the dataset with high noise ratio. For example, the
accuracy of Cochleogram features using VGG-16 at SNR of −5 dB 0 dB and 5 dB is 75.77%,
89.38% and 93.94% which is much better than the accuracy of Mel Spectrogram features at
SNR of −5 dB, 0 dB and 5 dB which is 51.96%, 70.82% and 85.3%. The results in the Table 5,
also shows that Cochleogram features achieved better performance than Mel Spectrogram



Appl. Sci. 2023, 13, 569 12 of 16

features on the dataset with medium noise ratio. For example, the accuracy of Cochleogram
using VGG-16 at SNR of 10 dB, 15 dB and 20 dB is 95.96%, 96.79% and 97.32%, respectively,
which is better than the accuracy of Mel Spectrogram at SNR of 10 dB, 15 dB and 20 dB
which is 91.64%, 92.81 and 95.77%, respectively. On the dataset without additive noise,
Cochleogram features achieved comparative accuracy with Mel Spectrogram features. The
accuracy of Cochleogram and Mel Spectrogram using VGG-16 network is 98% and 97%,
which is comparatively approximate. Generally, Cochleogram features achieved better
performance than Mel Spectrogram features in speaker identification on the noisy datasets.

Table 6, presents the Speaker verification performance of both Cochleogram and Mel
Spectrogram features at SNR level from −5 dB to 20 dB using deep learning architectures
which is discussed at Tables 1–3, at Figures 3 and 5. The results in the Table 6, show that
Cochleogram features have superior performance than Mel Spectrogram features in speaker
verification at the high noise ratio (−5 dB, 0 dB and 5 dB) in the dataset. For instance, using
VGG-16 architecture Cochleogram features achieved an EER of 15.42%, 12.86% and 9.10%
at the SNR level −5 dB, 0 dB and 5 dB, respectively, which is minimum error rate compared
to the EER of Mel Spectrogram at similar SNR level which is 18.83%, 15.71% and 11.92%.
Cochleogram features also shows better performance than Mel Spectrogram feature in
speaker verification at the medium noise ratio and without additive noise in the dataset.
For example, VGG-16 architecture in the Table 6 show that Cochleogram achieved an EER
of 7.95%, 6.61% and 4.55% at SNR level of 10 dB, 15 dB and 20 dB which is minimum error
rate compared to the EER of Mel Spectrogram at similar SNR level which is 9.74%, 8.37%
and 5.86% at 10 dB, 15 dB and 20 dB.

Generally, the results in the Tables 3 and 4 show that Cochleogram features achieved
superior performance in both speaker identification and verification on the noisy data
compared to the Mel Spectrogram features. In addition, in the improved deep learning
architectures the Cochleogram features performance also shows better performance.

Table 5. Speaker Identification Performance of the Cochleogram vs. Mel Spectrogram with and
without additive noises on VoxCeleb1.

Model Type Feature Type
Accuracy (%) with Additive Noises Without

Additive NoiseSNR = −5 SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20

Basic 2DCNN

Mel
Spectrogram 46.78 67.78 81.07 87.74 89.44 92.16 93.61

Cochleogram 73.56 87.16 91.98 93.66 94.65 95.47 95.62

ResNet-50

Mel
Spectrogram 48.89 69.91 83.22 89.91 91.63 94.37 96.97

Cochleogram 74.14 87.88 92.87 94.63 95.63 96.22 97.85

VGG-16

Mel
Spectrogram 51.96 70.82 85.3 91.64 92.81 95.77 96.93

Cochleogram 75.77 89.38 93.94 95.96 96.79 97.32 98.04

ECAPA-
TDNN

Mel
Spectrogram 53.98 72.25 86.94 92.54 93.67 96.59 96.72

Cochleogram 76.42 89.75 94.25 96.39 97.15 97.61 97.89

TitaNet

Mel
Spectrogram 55.25 73.03 87.61 93.15 94.19 97.17 97.55

Cochleogram 78.37 89.97 94.51 96.55 97.34 97.81 98.02
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Table 6. Speaker Identification Performance of the Cochleogram vs. Mel Spectrogram with and
without additive noises on VoxCeleb1.

Model Type Feature Type
EER (%) Without

Additive NoiseSNR = −5 SNR = 0 SNR = 5 SNR = 10 SNR = 15 SNR = 20

Basic 2DCNN

Mel
Spectrogram 22.97 18.18 13.37 10.45 9.12 8.46 8.11

Cochleogram 17.83 14.59 10.82 8.72 7.19 6.54 6.47

ResNet-50

Mel
Spectrogram 19.12 16.05 12.23 10.04 8.70 6.15 5.64

Cochleogram 16.06 13.23 9.41 8.21 7.92 5.41 4.28

VGG-16

Mel
Spectrogram 18.83 15.71 11.92 9.74 8.37 5.86 5.28

Cochleogram 15.42 12.86 9.10 7.95 6.61 4.55 4.16

ECAPA-
TDNN

Mel
Spectrogram 13.83 10.72 6.93 3.75 2.06 1.16 0.91

Cochleogram 11.15 9.68 5.84 2.61 1.30 0.64 0.61

TitaNet

Mel
Spectrogram 11.36 8.72 4.92 2.70 1.34 0.83 0.75

Cochleogram 10.82 7.64 3.83 2.53 1.24 0.62 0.54

The comparison of the speaker identification and verification performance of the
Cochleogram features with the existing works is presented in the Table 7. The baselines
such as: CNN-256-Pair Selection [27], CNN [24], Adaptive VGG-M [28], CNN-LDE [29],
ECAPA-TDNN [9], and TitaNet [10] are selected for the comparison with the experiment
results of our work. The results in the Table 7, show that Cochleogram features have
better performance in speaker identification and verification in the noisy condition. For
instance, the identification accuracy of Cochleogram features using architectures ResNet-50,
VGG-16, ECAPA-TDNN and TitaNet is 97.85%, 98.04%, 97.89% and 98.02%, respectively,
which is better than the performance of the baselines CNN [24], Adaptive VGG-M [28]
and CNN-LDE [29] with the accuracies 92.10%, 95.31% and 95.70%, respectively. Similarly,
Cochleogram features also achieved better performance in speaker verification compared
to Mel Spectrogram features. For example, ECAPA-TDNN and TitaNet architectures using
Cochleogram features achieved an EER of 0.61% and 0.54% which is error rate of the Mel
Spectrogram features which is 0.87% and 0.68%.

Table 7. Comparison of Speaker Identification and Verification Performance of Cochleogram with
existing works.

Model Types Feature Type Dataset Identification
Accuracy (%)

Verification
EER (%)

CNN-256 + Pair [27] Mel Spectrogram VoxCeleb1 - 10.5

CNN [24] Mel Spectrogram VoxCeleb1 92.10 7.80

Adaptive VGG-M [28] Mel Spectrogram VoxCeleb1 95.31 5.68

CNN-LDE [29] Mel Spectrogram VoxCeleb1 95.70 4.56
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Table 7. Cont.

Model Types Feature Type Dataset Identification
Accuracy (%)

Verification
EER (%)

ECAPA-TDNN [9] Mel Spectrogram VoxCeleb1 - 0.87

TitaNet [10] Mel Spectrogram VoxCeleb1 - 0.68

2DCNN (Ours) Cochleogram VoxCeleb1 95.62 5.33

ResNet-50 (Ours) Cochleogram VoxCeleb1 97.85 4.06

VGG-16 (Ours) Cochleogram VoxCeleb1 98.04 3.81

ECAPA-TDNN(Ours) Cochleogram VoxCeleb1 97.89 0.61

TitaNet(Ours) Cochleogram VoxCeleb1 98.02 0.54

Generally, the experiment results of this study and the comparison of results of this
study with the existing works show that Cochleogram features have superior performance
than Mel Spectrogram feature in deep learning-based speaker identification and verification
on the high noise ratio in the dataset. It also has better and comparative performance
with the Mel Spectrogram features on the medium noise ratio and low noise ratio in the
dataset, respectively.

6. Conclusions

In this study, we have analyzed noise robustness of Cochleogram and Mel Spectro-
gram features in speaker identification and verification. The deep learning model networks
such as: basic 2DCNN, ResNet-50, VGG-16, ECAPA-TDNN and TitaNet architectures are
used for conducting our experiment. The input for deep learning architectures is generated
from the VoxCeleb1 audio dataset and noise added VoxCeleb1 datasets. The noise added
VoxCeleb1 dataset is obtained by adding three different types of noises (i.e., Babble noise,
Street noise and Restaurant noise) at the SNR level from −5 dB to 20 dB. The Cochleogram
and Mel Spectrogram features which is used for training and testing the models are gener-
ated from the VoxCeleb1 and noise added VoxCeleb1 datasets. For each of the deep learning
architectures, separate models are trained for speaker identification and verification eval-
uation. The performance is evaluated using accuracy metrics during identification and
using EER during verification. The analysis results of both Cochleogram and Mel Spectro-
gram features in speaker identification and verification shows that Cochleogram features
performs superior to Mel Spectrogram features at high noise ratio (i.e., at SNR = −5 dB,
0 dB and 5 dB). The performance of Cochleogram features is also better than Mel Spectro-
gram at medium noise ratio (i.e., at SNR = 10 dB, 15 dB and 20 dB) during both speaker
identification and verification. At clean dataset or dataset without additive noise both Mel
Spectrogram and Cochleogram features achieved comparative performance in speaker
identification and verification. The comparison of performance of Cochleogram features in
speaker identification and verification with existing works also shows that Cochleogram
has better performance than Mel Spectrogram features at noisy condition using similar
deep learning model architectures. In conclusion, Cochleogram features has better per-
formance than Mel Spectrogram features in deep learning-based speaker recognition at
high and medium noise ratio in the dataset. In the future, this study can be extended by
fusion of Cochleogram features with different types of features in order to improve the
speaker recognition performance at real world conditions by incorporating the advantages
of different types of features.
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