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Abstract: The prevalence of malware attacks that target IoT systems has raised an alarm and high-
lighted the need for efficient mechanisms to detect and defeat them. However, detecting malware is
challenging, especially malware with new or unknown behaviors. The main problem is that malware
can hide, so it cannot be detected easily. Furthermore, information about malware families is limited
which restricts the amount of “big data” that is available for analysis. The motivation of this paper
is two-fold. First, to introduce a new Profile Hidden Markov Model (PHMM) that can be used for
both app analysis and classification in Android systems. Second, to dynamically identify suspicious
calls while reducing infection risks of executed codes. We focused on Android systems, as they are
more vulnerable than other IoT systems due to their ubiquitousness and sideloading features. The
experimental results showed that the proposed Dynamic IoT malware Detection in Android Systems
using PHMM (DIP) achieved superior performance when benchmarked against eight rival malware
detection frameworks, showing up to 96.3% accuracy at 5% False Positive Rate (FP rate), 3% False
Negative Rate (FN rate) and 94.9% F-measure.

Keywords: cybersecurity; Internet of Things; Markov Model; Android; malware detection

1. Introduction

With the escalating popularity of Internet of Things (IoT) networks in remote sensing
applications, strong security concerns are rising as IoT networks are vulnerable to security
breaches due to the variability in data formats and technical standards of their devices.
Therefore, many researchers are increasingly investigating robust cybersecurity methods
to ensure secure remote sensing through a trusted IoT infrastructure [1,2]. The IoT is a
network of physical objects that can communicate with one another and exchange data
over the Internet, or a network [3,4]. The IoT environment includes smart gadgets, such as
mobile phones, thermostats and baby monitors, which are characterized by their limited
computational resources and lack of the necessary built-in security controls. As a result,
IoT environments are facing many cyber-security threats which have been reported by
several studies [5]. Android-based IoT is particularly targeted by malware attacks due
to its popularity and flexibility in allowing sideloading of apps [6]. It should come as no
surprise that every 10 s, malicious software appears on an Android device [6] and Android
handsets are the target of over 98% of mobile banking assaults.

Several traditional methods to detect security threats, particularly anti-malware threats
on Android-based IoT devices, have been proposed [7,8]. However, such threats have
become increasingly more complicated, making it vital to find an effective solution for
Android malware detection [9]. Therefore, in this paper, we focus on developing a malware
detection approach for Android systems to provide an accurate solution that reduces False
Positive (FP) and False Negative (FN) rates.

Malware can be analyzed using static or dynamic approaches. The static analysis
examines the malware without executing the code. It allows the users to extract control flow
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graphs, opcodes, system calls, and Application Program Interface (API) calls as features.
The benefit of static analysis is that it can detect malware at lower FP and higher speed
than dynamic analysis. However, it depends on one feature although malware execution
involves a set of behavior chains and it falls behind in the case of obfuscation. Additionally,
static analysis requires a regular update of malware databases to detect recent forms. For
instance, ProDroid, which is a recent rival static malware detection framework for Android
devices [10] based on a Profile Hidden Markov Model (PHMM), shows promising results, in
terms of accuracy, precision and recall. Nevertheless, it has difficulty detecting undisclosed
malware [11] in contrast to dynamic analysis which examines the malware while executing
the code to allow detection of unknown malware and recording user activities [12]. On the
other hand, dynamic analysis exposes the system to a high security risk where the system
can be infected by malware while being executed.

Therefore, in this paper, we propose DIP: a Dynamic IoT malware detection model
using PHMM for safe dynamic malware detection. DIP analyzes the malware at run
time while reducing the infection risks. This is possible because PHMM is known for its
high prediction accuracy at low risks due to its delete or non-emitting states [11]. After
implementing the proposed DIP approach, we compared its performance with several
state-of-the-art Android malware detection frameworks and demonstrated its effectiveness
in detecting hidden malware codes by analyzing their behaviors even if obfuscation or any
other hiding techniques are used.

The main contributions of this paper can be summarized as follows: First, it proposed
and implemented a dynamic malware detection method (DIP) based on PHMM to insure
safe analysis during runtime. Second, it extensively tested the proposed method consider-
ing seven performance measures: detection rate, FP rate, FN rate, precision, recall, accuracy
and F-measure. Third, it benchmarked the performance of the proposed DIP approach
against eight rival malware detection frameworks and demonstrated its superiority in terms
of accuracy, precision and recall. Despite our proposal strengths, it has some limitations. In
the first place, it focused solely on Android IoT systems. Furthermore, it used the Derbin
dataset that was not updated recently. In addition, results can sometimes be affected by the
FP problem, so the system may classify a specific behavior as malicious while it is benign.

The rest of the paper is structured as follows: Section 2 provides some background
information related to this research. Section 3 reviews some related work. Section 4 details
the methodology followed to develop the proposed model, while Section 5 illustrates the
experimental results and benchmarks them against eight-malware detection approaches.
Section 6 concludes the paper and indicates possible future directions to address the above
limitations of this research.

2. Background

This section provides an overview of the most relevant technical background infor-
mation related to the model proposed in this paper which include Markov chain, Hidden
Markov Model (HMM), PHMM, Multiple Sequence Alignment (MSA) algorithm, Fasta file
and Astrotite compressed Archive Format (afa).

2.1. Markov Chain, HMM, and PHMM

The Markov chain is a type of stochastic process that is a probabilistic mathematical
model that evolves. This process depends on the previous state to get the outcome of the
current state [12]. The Markov chain is generally considered to be a discrete-time stochastic
process that describes a set of random variables which change over time and defines how
these variables change [10]. According to the Markov chain model, the sequence of API
calls can be represented as a graph, in which each node represents the API and the edges
connecting one node to another represent the methods invoked by that node. Moreover,
each edge is labeled with the probability of that transition [13].

In contrast to the Markov chain, the HMM has indirectly observable states. HMM can
be viewed as a machine learning model; specifically, as a discrete hill-climbing method
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which is a statistical strategy for modeling systems that are supposed to contain Markov
processes with hidden states. We can train an HMM on a given observation sequence.
We can also score an observation sequence against a specifically trained HMM model
to determine the probability of observing such a sequence under the constraints of the
specified model. HHM is utilized to determine the probability P(O|λ), where λ = (A, B, π)
is a model and O is an observation sequence. That is, an observation sequence can be scored
to see how well it fits a given model. The higher the score, the greater the match between the
observation sequence and the observation data used to train the model. Another benefit of
HHM is decoding, which is defined as given an HMM model and an observation sequence
O, we can determine the optimal sequence of state transitions X associated with O. That is,
we can uncover the “best” hidden state sequence, that is, we can maximize the expected
number of correct states Xi. This is in contrast to a dynamic program, which yields the
states Xi corresponding to the highest scoring path [14,15].

PHMM is a more advanced type of HMM that can be used to model sequence sim-
ilarities. To develop a profile of the model, PHMM uses positional information and null
transitions from observation sequences. To represent the system, PHMM provides three
states: Match, Insertion, and Deletion. The hidden states in the model are identified using
the positional information from the observed collection of sequences. The probability dis-
tribution for state transitions and output sequences is calculated and applied to construct a
model profile, The match and insert are referred to as “emission states” because they emit
symbols called observation sequences. The delete state allows the model to shift between
match and insert states without emitting any emissions. Each transition has a probability
associated with it, which influences the transition from one state to the next called the Start
and End states [16]. A primary step in the PHMM is MSA to obtain a similarity score. The
unknown file of the input, which is a sequence of symbols, is presented for a generated
model from MSAs produced by each malware family to determine whether it belongs to
that malware family [11].

2.2. MSA Algorithm, Fasta Files and Afa Format

The MSA algorithm was developed mainly to locate the common segments between
three or more biological sequences that consist of general proteins, DNAs, or RNAs [17]. In
the proposed approach, we used the algorithm to find the common API call information
of malware variants in a family and extract a representative API pattern of the family. To
produce an MSA file for each malware family we used the MUSCLE tool. MUSCLE tool is
a free computer program for creating multiple alignments of protein sequences proposed
by [18]. The tool depends on MSA Algorithm that estimates the distance and uses a new
profile function for progressive alignment. For refinement in MSA, the tree-dependent
restricted partitioning method can be applied [18] to provide better average accuracy and
better speed than other superior MSA tools. The tool takes the API call sequences file in a
Fasta format to produce a file in afa format.

The Fasta format is developed by [19]. It is a text-based format for representing
multiple nucleotides or protein sequences. Fasta files start with a “>” character and a
single-line description of each sequence, followed by lines of sequence data. .afa extension
is a data compression and encryption file that is implemented by Fantiusen Software for
their Application Astrotite 200X. The Astrotite software is designed mainly to store multiple
files securely into a single archive, keeping the same hash with the same compressed files.

3. Related Work

Various studies have proposed models for malware detection in general [8,20,21],
and IoT malware detection in particular [22–28] based on different approaches. However,
recently, increased attention is paid to malware detection using Markov chain models. In
this section, we review some studies that used Markov chains for static [11,16,29,30] and
dynamic malware analysis [13,31–38].
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Onwuzurike et al., 2019 [29] proposed an Android malware detection tool that takes
the sequence of API calls performed by an Android application to detect malware behavior
based on the Markov chain. For benign datasets, they used PlayDrone and Google Play
store, and for malware datasets they used VirusShare. The results showed that the proposed
system achieved 99% in F-measure for malware detection.

Alipour & Ansari, 2020 [11] presented a method that identifies malware families by
combining signature-based detection with machine learning-based methods. They applied
PHMM based on opcode sequences with five training datasets (Cygwin, MPCGEN, VCL32,
G2, and NGVCK) to extract the family’s paramount features and the canonical sequences
created in the process of MSA production. The results showed that the proposed method
outperformed other HMM-based techniques. However, this model has two main draw-
backs which are: requiring excessive human intervention, and the inability to deliberate
other static features.

Sasidharan and Thomas, 2021 [16] proposed an approach for malware detection and
classification based on a PHMM model that was trained using the Baum Welch algorithm.
to solve the code complication problem of static API analysis, and the results show the
proposed approach had a detection accuracy of 94.5% with a 7% FP.

Anandhi et al., 2021 [30] proposed an approach for detecting and classifying malicious
executables by visualizing malware as Markov images. They extracted textures from
Markov images using the Gabor filter, and then they developed a model using CNN-VGG-
3 and fine-tuned DenseNet to detect malware in real time. They used two datasets, i.e.,
Malimg and BIG2015, for training and evaluation. The results showed that DenseNet with
Gabor Markov has a 99.94% F1 measure on the Malimg dataset and 98.98% on the BIG2015
dataset. They had 99.37% F1-measure of classification malware on Malimg and 98.88% on
BIG2015. In addition, they found that the proposed approach performed better in detection,
classification, and execution time than the other methods that they considered.

Generally, the above reviewed literature was proposed for static malware analysis.
The chief advantage of static analysis over dynamic analysis is that it is free from the
overheads associated with program execution. However, the static analysis methods fail to
capture the runtime environment and cannot detect unknown malware [39]. Hence, various
researchers have introduced dynamic methods to support unknown malware detections.
Ahsan-Ul-Haque et al., 2018 [31] developed a dynamic model to detect android malware by
monitoring the behavior of malware using the Markov model to extract features of system
calls. They applied the Gaussian Bayes classifier to Genome Project and ArgusLab malware
datasets and Google Play Store datasets. The results showed that the developed model
improves the detection accuracy and outperformed the other tested models.

With the help of a Markov chain model, Salehi and Amini proposed a method for
tracking application requests for system services in 2017 [38]. Their system detects malicious
applications directly on mobile devices and classifies them either malicious or benign.
On the Derbin dataset, this system performed 96 percent accuracy in detecting Android
malware using the Random Forest classifier. However, this system can only do binary
classification; it does not detect the malware family.

Ficco, 2019 [13] applied Markov chains on sequences of API calls to extract features to
detect malware dynamically. The researchers used Principal Component Analysis (PCA) to
perform feature selection and reduction of the feature space by using the mobSF tool. They
used four datasets, i.e., VirusShare, Malgenome and Contagio Minidump for malware,
and Google Play store for good ware and applied four machine learning algorithms to
perform the quantitative analysis i.e., Naive Bayes, Decision Tree, Random Forest, and
Support Vector Machine. The results showed that the best classifier for the accuracy of
malware detection is Naive Bayes and the proposed model can detect malware with up to
89% F-measure.

Alahmadi et al., 2020 [32] proposed a bot detection system that models the bot network
flow behavior as a Markov chain to extract high-level flow features. The extracted features
are used to detect flows produced by bots and classify the bot family. The researchers
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used the Random Forest classifier for bot binary classification and a multi-class classifier to
classify bot families. They evaluated their system on an ISCX Botnet dataset and MCFP
datasets which contain 7M malicious flows from 12 botnet families. The results showed that
the system can detect bot network traffic with 99.78% F-measure and 99.09% F-measure for
classifying bot family. Also, the system can detect traffic belonging to hidden bot families
with a 93.03% F-measure. However, the system requires a high memory capacity to perform
the classification.

Hwang et al., 2020 [33] presented a combined model for ransomware detection. First,
they used a Markov chain behavior-based model on Windows API call sequences with
sequential characteristics to detect ransomware. Second, they applied the Random Forest
machine learning model to enhance the FP and FN. The results showed that the proposed
model detected ransomware with 97.3% accuracy at 4.8% FP and 1.5% FN. However, the
model was trained with a limited dataset.

Amer et al., 2020 [34] proposed an approach for malware detection and prediction that
requires a contextual understanding of the API call sequence based on word-embedding to
distinguish between malware and benign apps. They used the Markov chain to classify
apps by generating a transition matrix to predict API benign or malware apps. Applying
the model on four datasets, i.e., Ki et al. (2015), Kim (2018), CSDMC, and Catak and Yazı
(2019) showed that it has 0.990 detection accuracy, 0.010 FP, 0.997 prediction accuracy at
0.000 FP, and 0.007 FN.

Surendran et al., 2020 [35] proposed a model to characterize Android malware ap-
plications. They extracted system call features based on stationary first-order ergodic
and proved the existence of malicious behavior. They selected malware families based
on repacking and obfuscation techniques. The researchers used four datasets, i.e., AMD,
Drebin, and Contagio for malware and AndroZo for benign apps. The model obtained
0.95 accuracy in all datasets, 0.90 precision for balanced data sets, and 0.72 for slightly
unbalanced datasets.

D’Angelo et al., 2021 [36] presented an association rule-based approach for malware
classification based on a recurring subsequence alignment-based algorithm. The approach
exploits the probabilities of transitioning between two APIs based on the Markov chain
and the timeline of extracted API by MSA. They evaluated the approach using 7.3 K
malware and 1.2 K benign apps from publicly available sources. The results showed that
the association rule-based approach can detect unknown malware with 99% accuracy and
96.10% F-measure outperforming other existing approaches.

Li et al., 2022 [37] proposed a new method for Windows malware detection based on a
convolution neural network. They extracted malware API call sequences from VirusTotal
and VirusShare (6686 malware) and a benign API from system programs (6938 benign).
They used malware API to produce a directed cyclic graph and extract a characteristic map
of the graph using the Markov chain and principal component analysis. They designed
the classifier based on a convolutional network graph. The results show that the proposed
method had 98.32% better accuracy than existing methods and a 0.0037 better FP rate.
Nevertheless, there is a lack of information about environmental implementation features.

Based on the above, none of the previous works considered using PHMM for dynamic
malware detection, although it has the potential to provide safe analysis during runtime
due to its delete or non-emitting states [11].

4. Methodology

For safe malware detection in IoT Android system we have implemented a python-
based framework and demonstrated its effectiveness in detecting hidden malware codes by
dynamically analyzing their behaviors using a PHMM that can safely and acuretly detect
malicious codes even if obfuscation or any other hiding techniques are used. The PHMM
training hyperparameters included: the number of hidden states, initial state probability
vector (ISPV), transition probability matrix (TPM), the number of distinct observation
symbols per state and the probability distribution of observation symbols for each state,
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which can be automatically set by a solver, e.g., Black-Box optimization solver. This section
details the methodology we followed to build, train and test our proposed solution.

4.1. Tools Used

The main tools we used include VirtualBox, Kali Linux 2021.3, MobSF tool 3.5, MUS-
CLE 3.8.31, HMMER 3.3.2 and Python tools, as shown in Table 1.

Table 1. List of used tools.

Software Description

VirtualBox (Oracle VM
VirtualBox Manager 6.1.34)

A virtual environment and cross-platform virtualization software that allows users to run multiple
operating systems on their computers simultaneously [31].

Kali Linux 2021.3 A Linux-based operating system that is designed for use in information security tasks, such as
penetration testing, security research, computer forensics, and reverse engineering [25].

MobSF tool 3.5
An open-source security framework that can perform dynamic analysis to test mobile applications
end to end. This tool supports Android Application Package (APK) and iOS package App Store (IPA)
binaries, as well as zipped source code [26].

MUSCLE 3.8.31 A computer software program for aligning protein and nucleotide sequences [35] to produce .afa files.

HMMER 3.3.2 A tool used to search for sequence homologs databases and to make sequence alignments. This
software implements probabilistic models called hidden Markov Models (HMMs) [9].

Python A programming language used for the implementation.

4.2. Data Sets

We used the Drebin dataset that contains 5560 applications from 179 different malware
families. Drebin dataset also, contains the malicious applications from the Malgenome
dataset which was collected from 2012–2015 and contains 1260 malware applications from
49 families. The Drebin dataset has been selected for this research for several reasons.
First, it contains large amount of malware families, including those from the Malgenome
dataset. Second, the benchmarks, which include [16,35,38,40–44], used the Drebin dataset,
which shows its usefulness and popularity in the field and mandates using it to have valid
comparisons with the benchmarks.

To overcome the imbalance issue related to the Drebin dataset where most files have
invalid APKs, we analyzed families that contain at least 20 samples and removed apps
with invalid APKs. In total, we analyzed 4785 files out of 5560 for our research because
some APK files did not work at run time (invalid APK). Table 2 lists the malware families
that we worked on from the Drebin dataset, 24 families in total. For the benign dataset, we
used 500 applications from the google play store [31].

Table 2. Considered malware families from the Drebin dataset.

# Family Samples # Family Samples

1 Adrd 91 13 Glodream 69
2 BaseBridge 330 14 Hambo 28
3 Boxer 27 15 Iconosys 152
4 DroidDream 81 16 Imlog 43
5 DroidKungFu 667 17 Jifake 29
6 ExploitLinuxLotoor 70 18 Kwin 147
7 FakeDoc 132 19 MobileTx 69
8 Fakelnstaller 925 20 Opfake 613
9 FakeRun 61 21 Plankton 625
10 Gappusin 58 22 SendPav 59
11 Geinimi 92 23 SMSreg 41
12 Ginmaster 339 24 YZHC 37
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4.3. System Components

As shown in Figure 1, DIP consists of three main parts, namely, dynamic analysis,
training, and testing. First, the malware datasets were dynamically analysed to extract
call sequence features that are used by the applications to complete specified tasks. The
suspicious calls were then selected and converted to Fasta format to be used during training
and testing. Second, the MSA process was carried out during training to produce the .afa
format for each malware family and then train PHMM. Finally, this trained PHMM model
was used to classify malware as either malicious or benign and assign it to a family.
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4.3.1. Dynamic Malware Analysis

We used theDrebin dataset to perform the dynamic analysis [45]. We ran each APK
file individually for a period using the MobSF tool to monitor the call sequence, as shown
in Figure 2. We extracted the API call sequence for 1000 malware and 500 benign apps
that were invoked at run time, as shown in Figure 3. We followed the methodology used
in Ref. [16] which calculates the frequency of API calls that were invoked at run time in
malware and benign codes and defines the suspicious API calls based on frequency. If an
API call is invoked many times in malware but not in benign, it is considered as being
suspicious. For example, the StringBuffer class was invoked many times in malware. After
obtaining a list of suspicious APIs, we mapped every group of API classes with a unique
alphabet from [A–T] to facilitate the conversion to Fasta files in training and testing. For
example, we placed the Crypto and HashMap classes in the same group and mapped them
to the K alphabet. Following this, we converted them into Fasta format using the developed
tool for biological sequences [46].
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4.3.2. Model Training

To train our model we have to train PHMM to do two tasks. The first task is producing
MSA and the second is generating family profiles. For training PHMM to produce MSA, we
divided the dataset into two sections (70% for training and 30% for testing) which means
3350 apps for training and 1435 for testing. As shown in Figure 4, first, we ran the APK
files for 3350 apps and performed dynamic analysis to extract the API that was invoked at
run time. For each malware family t, we extracted the API call sequence and matched it
with a suspicious API call sequence list. After matching the API, we converted the file that
contained a series of API calls sequence for malware to a Fasta file.
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To produce a MSA for each malware family we used the MUSCLE tool which is an
extension of the HMM that allows null transition to identify sequences that change due to
random mutations, such as point insertions and deletions. HMM is a statistical tool that
uses a probabilistic finite state machine with certain hidden states to capture the features
of one or more sequences of observable symbols. When the state machine is trained, the
graph and transition probabilities are calculated to generate the best training sequences
possible. When a new sequence is tested, the HMM assigns a score based on how well it
matches the known state machine. The observed symbols in our scenario are the API calls
for each malware. This model learns from datasets that contain sequences of features we
extracted by maximizing the probability of a sequence [46].

PHMM can detect malware faster than HMM because sequence alignment in PHMM
is used differently. In PHMM, multiple gene sequences that are significantly related are
aligned in DNA sequencing. The alignment can be used to determine whether the gene
sequences diverged from a common ancestor. This multiple sequence alignment of a
profile can now be used to assess whether or not an unknown sequence is related to it.
A pairwise alignment of two sequences produces a pair of equal-length sequences that
insert ‘-’ or gaps to represent the difference between the two original sequences. The global
alignment maximizes the number of matches while minimizing the number of insertions
and deletions [11].

Figure 5 shows a sample of the ADRD family API call sequence in Fasta representation
before the MSA and after the MSA of the same API call sequences.
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For the second training task which is training PHMM to generate family profiles, we
ran the MSA for every malware family and passed files to the HMMER tool to train the
PHMM and generate the profilefor each family. The number of malware samples that can
be used to create the HMM profile depends on the dataset. If the malware family contains
20 files, then there are 20 multiple sequences. Individual profile files were integrated to
create a PHMM database with a training profile of malware apps representing all malware
families. This training database is the one used for classification. After matching sequences
in PHMM, a score is given for each family. If the sequences in the Fasta file match any
of the PHMM database profiles, a hit will be generated with a positive score against
the family that has a likeness with the tested sequence and a negative score with other
families. Unknown sequences are mapped into homologous PHMMs. The malware family
is checked against the highest generated score and mapped into the unknown app. The
application is categorized as benign if the results are negative for all families.

4.3.3. Model Testing

In the testing phase, we used the trained PHMM to classify applications as benign or
maliciousFasta based on the generated score. Following this, we calculated the performance
measures, listed in Section 5, to assess the system performance.

5. Evaluation and Results

All the experiments were conducted using the following hardware specifications:
(iMac) PC desktop, macOS operating system, 3.3 GHz processor speed, 1TB capacity and
8 GB RAM. Herein, we present the details of how we evaluated our system and we discuss
the experimental results based on each performance measure. The proposed solution, DIP,
was evaluated using 24 families in the Drebin dataset which represents 30% of the dataset
with 1435 malware and 500 benign apps. Table 3 shows the number of samples from each
malware family that we used for testing.

Table 3. Number of malware samples for testing.

# Malware Family Samples # Malware Family Samples

1 Adrd 30 13 Glodream 19
2 BaseBridge 112 14 Hambo 8
3 Boxer 9 15 Iconosys 56
4 DroidDream 21 16 Imlog 14
5 DroidKungFu 205 17 Jifake 3
6 ExploitLinuxLotoor 23 18 Kwin 33
7 FakeDoc 48 19 MobileTx 18
8 Fakelnstaller 276 20 Opfake 181
9 FakeRun 16 21 Plankton 192
10 Gappusin 18 22 SendPav 10
11 Geinimi 7 23 SMSreg 19
12 Ginmaster 112 24 YZHC 19

We chose malware applications randomly from the dataset and performed dynamic
analysis to extract the API call sequence that was invoked at run time and then converted
the API call sequence to Fasta files that contain the sequence of malware, as we did during
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the implementation. Following this, we passed the file into PHMM to classify it. The tested
malware gave a positive score for the family that has a likeness with the tested sequence
and a negative score for other families. To classify malware families, we set the threshold
to zero and we classified 1390 out of 1435 malware apps according to their families. For
benign apps, we examined the 500 apps, and the system classified 475 apps as benign.

The metrics that we used to evaluate the effectiveness of PHMM malware detection are:

• Detection rate for each malware family according to Equation (1):

Detection Rate =
Malware Samples Belonging to a Family X and Correctly Classified in That Family

Total Malware samples Belonging to Family X
∗ 100 (1)

• FP rate which represents the ratio between the error number of unrelated retrieved
cases and the total number of the ground truth of unrelated cases. FP rate is calculated
according to Equation (2):

FP Rate =
FP

FP + TN
(2)

where TN is the number of unretrieved unrelated cases.
• FN rate which represents the ratio between the unretrieved correct values and the

total number of the ground truth of the correct cases FN rate is calculated according to
Equation (3):

FN Rate =
FN

FN + TP
(3)

where TP is the number of the correct cases retrieved.
• Precision which represents the ratio between the number of TP and the total number

of retrieved cases. High precision means our system gives a more relevant result.
Equation (4):

Precision =
TP

TP + FP
(4)

• Recall is the ratio between the number of TP and the total number of correct cases.
Recall is calculated according to Equation (5):

Recall =
TP

TP + FN
(5)

• Accuracy is the number of correct cases examined divided by the number of all cases
examined. High accuracy means the system can detect malware effectively. Accuracy
is calculated according to Equation (6):

Accuracy =
TP + TN

N
(6)

where N is the total number of all values.
• F-measure, combines recall and precision. The best result of F-measures is the one

closest to 1. Equation (7) shows the formula of F-measure:

F-measure = 2 ∗ precision ∗ Recall
precision + recall

(7)

We calculated the detection rate for each malware family according to Equation (1).
Table 4 shows the detection rate for each malware family. As can be seen, 18 families have
a high detection rate which is above 90% excluding Boxer, ExploitLinuxLotoor, Hambo and
SMSreg families whose detection rates are between 84.21% and 88.89%. The Geinimi and
Jifak family have detection rates of 57.14% and 66.67%, respectively. The YZHC family has
the lowest detection rate of 31.58% due to the low number of tested samples. Having said
this, some families with a low number of test samples still yielded a worthy detection rate,
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such as Boxer and Hambo. Notably, DroidKungFu, Fakelnstaller, Opfake and Plankton
have the highest detection rates, approaching 99.28%, because they contain a high number
of test samples. It can be concluded that determining the detection rate of a family depends
on the number of samples used in training and testing, and on the complexity of the family.

Table 4. Detection rate of each malware family using DIP.

# Malware Family Detection
Rate % # Malware Family Detection

Rate %

1 Adrd 96.67 13 Glodream 94.74
2 BaseBridge 94.64 14 Hambo 87.50
3 Boxer 88.89 15 Iconosys 96.43
4 DroidDream 95.24 16 Imlog 92.86
5 DroidKungFu 98.05 17 Jifake 66.67
6 ExploitLinuxLotoor 86.96 18 Kwin 93.94
7 FakeDoc 95.83 19 MobileTx 94.44
8 Fakelnstaller 99.28 20 Opfake 98.34
9 FakeRun 93.75 21 Plankton 98.96
10 Gappusin 94.44 22 SendPav 90.00
11 Geinimi 57.14 23 SMSreg 84.21
12 Ginmaster 95.54 24 YZHC 31.58

The results of accuracy, FP rate, FN rate, precision, recall and F1 score are presented in
Table 5. DIP showed 96.3% accuracy with 5% FP and 3% FN which shows how successful
our model is at predicting the correct category of the code. It has pinpointed malware code
with a precision of up to 94.0%. While the 96.0% recall indicates that we have only missed
0.04 of malware code. The F-measure of 94.9% indicates that the model provides a balanced
precision and recall score.

Table 5. Results of malware detection using DIP.

Measure Value

FP Rate 5%
FN Rate 3%
Precision 94.0%
Recall 96.0%
Accuracy 96.3%
F-measure 94.9%

We compared the results of DIP with rival approaches that used the Drebin dataset
for malware detection in Table 6. The missing figures in the comparison are denoted by
ε. Based on Table 6, DIP technique scored the highest on accuracy, precision, and recall,
with 96.3% for accuracy, 94% for precision, and 96% for recall. On the other hand, the
benchmark algorithms’ highest accuracy was 96% achieved by the dynamic classifier in [45].
However, that classifier is capable of binary classification only. Among the benchmarks,
the static classifier in [16] got the highest precision and recall at 93% and 95%, respectively.
As shown by these results, DIP performed better than all state-of-the-art algorithms when
it was applied to detect malware on Android IoT platforms. DIP’s dynamic nature adds
to its advantages since it can detect more malicious features and recognize new malware
families easily.
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Table 6. Benchmarking DIP against related work.

Reference Static/Dynamic Accuracy Precision Recall

DIP Dynamic 96.3% 94.0% 96.0%
[40] Dynamic 91% 90.0% ε
[16] Static 94.5% 93.0% 95.0%
[35] Dynamic 95% 92.0% ε
[38] Dynamic 96% ε ε
[41] Dynamic 93.6% 91.0% ε
[42] Dynamic 80% ε ε
[43] Static 93% ε ε
[44] Dynamic 95.7% ε ε

6. Conclusions and Future Work

In this paper, we presented a model to detect malware in IoT Android systems.
As a first step, the system dynamically analyzes the malware datasets to extract call
sequence features that are used by the applications for completing specified tasks. After
that, suspicious calls are selected. Then, the MSA process is done during training to produce
a profile for each malware family. Finally, the trained PHMM model is applied to classify
malware as malicious or benign and to which family it belongs.

We evaluated our proposed system using 4785 malicious apps that were extracted
from the Drebin dataset and 500 benign apps extracted from Google Play. We took into
consideration seven performance measures, including detection rate, precision, recall,
accuracy, F-measure, FN and FP. We observed high detection rates (for most malware
families), 96.3% accuracy, 94.0% precision, 96.0% recall and 94.9% F-measure with 5% FP
and 3% FN. A benchmark test was then conducted against eight rival Android malware
detection frameworks. Results showed that our proposed model performed superiorly
when compared to other models.

On the other hand, our model has some limitations. First, it focused on Android IoT
systems only. Second, it relied on the Derbin dataset which lacks recent updates. Third, the
results are sometimes affected by the FP problem, which means the system might classify a
specific system behavior as malicious when it is not.

Possible directions that can be taken in this field to address these limitations include
testing the system on different operating systems and using more recent datasets. Another
direction is to reduce the FP problem based on collective detection using Blockchain
technology.
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