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Abstract: Compared with other natural fibers, coir fiber has good strength characteristics and
long-term anti-biodegradation ability. At present, most studies on randomly distributed coir fiber-
reinforced soil have focused on cohesionless soil or granular soil. In this paper, the influence of
randomly distributed coir fiber on the deviatoric stress and shear strength index of red clay with
different fiber content was assessed by a consolidated undrained (CU) triaxial compression test. Since
the hyperbolic variational character of the stress–strain relation of the samples conformed to the
hyperbolic hypothesis of the Duncan–Chang model of nonlinear elastic model, the Duncan–Chang
model was used to fit it, and the influences of fiber content and confining pressure on the parameters
of the Duncan–Chang model were studied. The fiber content was determined by testing to be 0%,
0.2%, 0.25%, 0.3%, 0.35% and 0.4% of the dry soil mass. It has been found that coir fiber distributed
in a random radial manner can significantly increase the deviatoric stress of red clay, and thus can
be effectively used in the case of soil and fiber mixing. The cohesion of the red clay first increases
and then decreases with the increase in fiber content, with an optimum content of 0.3%. The internal
friction angle changes little with increasing fiber content.

Keywords: triaxial test; coir fiber; stress–strain relationship; shear strength; Duncan–Chang model

1. Introduction

In the field of geotechnical engineering, in order to pursue harmony with nature and
practice the concept of environmental protection, researchers have engaged in extensive
exploration and achieved certain research results [1–20]. One of the exploration paths is
to find natural materials and combine them with soil to form biomass fiber-reinforced
soil. As a renewable and environmentally friendly material, coir fiber has a certain tensile
strength and elongation, as well as water resistance, mildew resistance, insect resistance,
and non-breakable and non-perishable properties. Compared with other natural fibers,
coir fiber has a longer life [21] and can even be used as a suitable medium for plant growth
due to its high lignin content (about 46%).Using coir fiber as a reinforcing material can
not only improve the strength and deformation resistance of the reinforced soil but also
reduce the project cost. Therefore, such soil is a good biomass fiber-reinforced material, and
it can also be applied to slopes, roadbeds, and other engineering practices. M. Suhendra
et al. [22] used coir fiber to reinforce slopes and found that it could generate additional shear
strength. Sheela Y. et al. [23] conducted a long-term comparative analysis of reinforced
and unreinforced roads in five areas and found that the use of coconut-shell geotextiles to
reinforce roads can reduce road deflection. Rajeswari et al. [24] used coir fiber to reinforce
sand and found that the ultimate bearing capacity and settlement characteristics of the
foundation on fiber-reinforced sand were significantly improved. G. Narendra Goud
et al. [25] used coconut shell pith and lime to improve the expansion characteristics of
expansive soil, making it suitable for the construction of flexible pavement. The fiber-
reinforced soil-live tree pile slope supporting structure studied by our research group is
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aimed at ensuring the short-term stability of slopes by exerting the reinforcement effect
formed between the coir fiber and the filled soil. The long-term stability of the slope is
guaranteed by the root-anchoring and anti-sliding effect [26,27] after the root system of
the living tree pile is developed. Therefore, it is very important to study the mechanical
properties and constitutive model of coir fiber-reinforced soil for the short-term stability
of a slope. In addition, chemical treatments such as alkali treatment, brine treatment,
acetylation treatment, benzoylation of the fiber and permanganate treatment [28] can be
used to make the fiber less susceptible to corrosion. Gu et al. [29] used NaOH and CCl4 to
treat coir fiber and found that NaOH and CCl4 could effectively improve the cohesion and
tensile properties of the fiber. Anggraini et al. [30] adopted a nano treatment method to
improve the durability and shear strength of coir fiber.

To investigate the mechanical properties of coir fiber-reinforced soil, Qin et al. [31]
studied the reinforcement effect and variation law of coir fiber soil under different reinforce-
ment conditions by using an indoor triaxial test. G. L. Sivakumar Babu et al. [32] added
coir fiber to expansive soils and investigated the laws of coir fiber content, surrounding
pressure, and fiber diameter on strength using a triaxial shear test. S. M. Dasaka et al. [33]
studied the influence of the length and quantity of coir fiber on soil shear strength and
found that coir fiber can effectively solve many short-term stability problems related to
shear strength and permeability in geotechnical engineering. Widianti A. et al. [34] added
coir fiber to expansive soil and investigated the effect of waste coir fiber content on the
stress–strain relationship, shear strength parameters, and elastic modulus of the mixture.
Jishnu et al. [28] studied the mechanical properties of coconut leaf-reinforced soil with a
triaxial shear test and found that coconut leaf is a good reinforcement material for enhanc-
ing engineering performance and can be successfully used in various civil engineering
applications such as slopes. Kar et al. [35] used coir fiber as a reinforcement material and
carried out direct shear tests, unconfined compressive strength tests, and consolidation
tests to study the strength and compressibility of fiber-reinforced soil. Maliakal et al. [36]
found that randomly distributed coir fiber can significantly improve the shear strength of
clay through a series of consolidated undrained triaxial compression tests. A. Diambra
et al. [37] established a new procedure to determine the directional distribution of fibers in
reinforced sand samples and found that the directional distribution of fibers was far from
isotropic. Stefania et al. [38] analyzed the influence of a small number of fibers with a high
aspect ratio on sandy gravel through tests in a large triaxial instrument.

The constitutive model of soil was established to better reflect the strength and defor-
mation relationship of soil. Since the Duncan–Chang model has fewer parameters and is
easy to determine, it can better reflect the nonlinear characteristics of the soil, so it is widely
used in mechanical properties analysis and numerical simulation of fiber-reinforced soil.
Deng et al. [39] studied the influence of fiber content on the Duncan–Chang model parame-
ters of polypropylene fiber cement silty clay by triaxial compression test. Feng et al. [40]
constructed a modified Duncan–Chang model that can reflect the influence of the polyester
fiber yarn blending ratio through the analysis of triaxial shear test data. Zhao et al. [41] stud-
ied the strength characteristics of fiber-reinforced soil under different polypropylene fiber
content and confining pressure through triaxial tests, and used the Duncan–Chang model
to describe its stress–strain relationship and proposed a calculation method to determine
the model parameters. Hu et al. [42] studied the influence of polyvinyl alcohol fiber on the
engineering properties of solidified silt and Duncan–Chang model parameters through a
series of triaxial tests. Zhang et al. [43] mixed polypropylene fibers with different mass
ratios into coal gangue-modified expansive soil for triaxial consolidation drainage tests
and used MATLAB software to obtain the fitting function of fiber content and confining
pressure to model parameters a and b, and verified the fitting degree of the Duncan–Chang
model.

Most of the published literature on the reinforcement of soil with randomly distributed
coir fiber is currently related to the reinforcement of non-cohesive or granular soil. There
has been limited research on the use of randomly distributed coir fiber in cohesive soil, and
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very little work has been done in combination with the Duncan–Chang model. In order to
make coir fiber more applicable to slope engineering, this paper mainly discusses the stress–
strain relationship and strength characteristics of coir fiber-reinforced soil under different
fiber content and confining pressure through the consolidated undrained triaxial shear test
and studies the influence of fiber content and confining pressure on Duncan–Chang model
parameters.

2. Materials and Methods
2.1. Test Materials

In this paper, the test soil was taken from a school soil in Tianxin District, Changsha
City, Hunan Province. After the soil samples were taken back to the laboratory, the
basic physical properties were measured according to the “Highway Geotechnical Test
Procedures” (JTG3430-2020). The results are shown in Table 1 and Figure 1. To ensure the
homogeneity of the reinforced soil samples made, the soil collected on site was air-dried
and crushed, and then passed through a 2 mm sieve. Coir fiber is a type of long fiber with
a multi-cell aggregation structure. Its diameter is 100–450 µm, length is 10–25 cm, density
is 1.12 g/cm3.

Table 1. Basic physical parameters of red clay.

Specific
Gravity

Maximum
Dry Density

/(g·cm−3)

Optimum
Moisture
Content

/%

Liquid Limit
ωL/%

Plastic Limit
ωP/%

Plasticity
Index

IP

2.74 1.70 20.0% 49.0 22.7 26.3
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2.2. Test Methods

The influence of the coir fiber content on the strength and deformation of the red clay
was studied using a soil static triaxial apparatus. Firstly, the range of coir fiber content was
determined by consulting the relevant literature. Secondly, after a series of tests, it was
found that the coir fiber content with an interval of 0.05% was more in line with the test
requirements. Therefore, the coir fiber content was determined to be 0%, 0.2%, 0.25%, 0.3%,
0.35%, and 0.4% of the dry soil mass, as shown in Figure 2. The consolidated undrained
(CU) test method was used in the test. The confining pressures of 100 kPa, 200 kPa, 300 kPa,
and 400 kPa were applied to each group of samples with different fiber contents, and the
shear rate was set to 0.08 mm/min. Three groups of parallel tests were carried out under
each test condition. The peak point of the stress–strain relationship curve was taken as the
failure standard. When there was no peak point, the axial strain reached 15%, which was
regarded as the failure of the specimen.
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Figure 2. Coir fiber incorporated in soil.

2.3. Sample Preparation

According to the requirements of the “Highway Geotechnical Test Procedure” (JTG3430-
2020), the specimens for this test were prepared in six batches according to the different
doses, mixed, maintained, and saturated under the same conditions. The soil was prepared
under the condition that the optimal moisture content obtained from the compaction test
was 20%. After preparation, the soil was put into a plastic bag and placed in a moisturizing
dish for sealing and curing for 24 h so that the moisture would be evenly distributed. The
triaxial sample for the test was 39.1 mm in diameter and 80 mm in height. The dispersed
coir fiber was mixed into the soil sample according to the proposed fiber mix ratio and
thoroughly and evenly mixed. Five layers were compacted, 27 under each layer, to ensure
that all five layers of the sample contained a random radial distribution of coir fiber. Finally,
a vacuum saturation device was used to saturate the sample. The prepared sample is
shown in Figure 3 and the sample during loading is shown in Figure 4.
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3. Experimental Results and Analyses
3.1. Stress–Strain Relationship

By sorting out the triaxial test results for plain soil and coir fiber-reinforced soil
samples, the stress–strain curves of each sample could be obtained by taking the axial
strain ε1 as the abscissa and the principal stress difference σ1–σ3 as the ordinate, and the
stress–strain curves of each sample could be analyzed, as shown in Figure 5.
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Figure 5. Relation curve between principal stress difference and axial strain. (a) 0% coir fiber; (b) 0.2%
coir fiber; (c) 0.25% coir fiber; (d) 0.3% coir fiber; (e) 0.35% coir fiber; (f) 0.4% coir fiber.

As can be seen from Figure 5:

(1) Under different confining pressures and different fiber contents, the stress–strain
relationship curves of plain soil and coir fiber-reinforced soil have similar trends,
both of which are hyperbolic. With the increase in axial strain, the rate of increase in
deviatoric stress decreases gradually, and the final deviatoric stress tends to a stable
value. The stress–strain curve shows a typical strain-hardening type.
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(2) Compared with plain soil, the peak deviatoric stress of five coir fiber-reinforced soil
samples with different levels of fiber content increased substantially, indicating that
the addition of coir fiber can affect the strength and deformation resistance of soil.

(3) Under low confining pressure (100 kPa, 200 kPa), the peak deviatoric stress of rein-
forced soil with different levels of coir fiber content shows little difference, indicating
that the deviatoric stress is less affected by confining pressure under low confining
pressure. Under high confining pressure (300 kPa, 400 kPa), the peak deviatoric stress
of coir fiber-reinforced soil increases first and then decreases with the increase in
fiber content, that is, there is an optimal coir fiber content. When the fiber content is
0.3%, the peak deviatoric stress reaches the maximum, and the reinforcement effect
is the best. When the fiber content is too much, the fiber in the soil will be gathered
together, such that the degree of occlusion and friction between the soil and the fiber
becomes low, and it is easy to form penetrating cracks in the sample, which destroys
the integrity of the soil due to the existence of potential failure surfaces.

(4) When the axial strain of the soil is small (ε1 < 1%), the stress and strain curves of the
plain soil and the coir fiber-reinforced soil are basically equivalent, indicating that
the coir fiber cannot play a good role under a small strain. This is mainly because
when the soil deformation is small, the external force is also small, the occlusal
friction between the soil and the fiber is weak, the cohesion of the soil itself is not
much enhanced, and the degree of fiber bending in the soil is not enough, and the
spatial constraint effect on the soil is weak, so the reinforcement effect is not obvious.
With the increase in axial strain ε1, the deviatoric stress of coir fiber-reinforced soil
increases rapidly, and the greater the confining pressure, the greater the increase in
the deviatoric stress, indicating that in the case of a certain small strain, coir fiber
can play an early role in inhibiting the deformation of the soil, and the reinforcement
effect of fiber soil is obviously reflected. When the axial strain reaches a certain value
(ε1 > 4%), under the same fiber content, the greater the confining pressure, the greater
the corresponding deviatoric stress. This is because there are more voids in the soil.
The larger the confining pressure, the faster the void closure, the stronger the lateral
restraint force, and the greater the deviatoric stress. From Figure 6, it can be seen
that the pore pressure of the coir fiber-reinforced red clay sample increases to varying
degrees compared with the plain soil. According to the effective stress principle of
Terzaghi, σ = σ′ + u, it can be known through calculation that although the pore water
pressure u is increasing, the total stress is increasing faster, thus the effective stress σ′

is still increasing from the overall point of view, and, therefore, the deformation of the
specimen is constrained.
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Figure 6. Relation curve between pore water pressure and axial strain at 300 kPa.

(5) Under the same fiber content, the deviatoric stress of soil increases obviously with
the increase in confining pressure. Taking fiber content of 0.3% as an example, the
deviatoric stress of soil under confining pressure of 100 kPa, 200 kPa, 300 kPa, and
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400 kPa is 115 kPa, 234 kPa, 345 kPa, and 457 kPa, respectively. The deviatoric stress
of 400 kPa is 297.39% higher than that of 100 kPa, which indicates that increasing
confining pressure can improve the failure strength of the soil.

3.2. Shear Strength Parameters

The Mohr–Coulomb strength theory was used for the analysis based on the results of
triaxial tests on the soil, and the Mohr stress circle at the time of sample damage and the
shear strength envelope of the sample could be plotted as shown in Figure 7. According
to the Mohr–Coulomb strength envelope of each specimen, the cohesive force c and the
internal friction angle ϕ of each specimen were obtained by fitting as shown in Table 2.
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Table 2. Shear strength index of samples.

Fiber Content/% c/kPa ϕ/(◦)

0 1.28 19.99
0.2 6.18 19.73

0.25 8.95 19.28
0.3 10.41 20.94

0.35 7.60 20.49
0.4 6.68 20.36

Figure 8 shows the influence of different levels of coir fiber content on the shear
strength index of soil. For the consolidated undrained test of normally consolidated
saturated soil, the cohesion is 0 in theory. Because the maximum dry density method was
used in this test, partial cohesion also existed in the plain soil sample. From the diagram, it
can be seen that with the increase in fiber content, the cohesion of coir fiber-reinforced soil
showed a trend of increasing first and then decreasing. When the fiber content was 0.3%,
the cohesion of the soil increased most significantly. Therefore, 0.3% fiber content was the
optimal coir fiber content. With the increase in fiber content, the change in internal friction
angle was not large, indicating that the friction characteristics of the fracture surface were
basically unchanged after adding coir fiber to clay.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 
 

  

(a) (b) 

Figure 8. Variation in shear strength index with fiber content. (a) influence of fiber content on cohe-

sion; (b) influence of fiber content on internal friction angle. 

3.3. Failure Characteristics of Coir Fiber-Reinforced Soil 

The failure mode of the coir fiber-reinforced soil sample is shown in Figure 9. From 

the diagram, it can be seen that the failure mode of the sample was a mainly bulging fail-

ure, that is, after the failure, the sample underwent lateral bulging, with large intermediate 

deformation, small ends, drum-shaped, and no obvious fracture surface. The deformation 

was gradual from the middle to the ends, and the shape was uniform. During the test, due 

to the friction between the two ends of the specimen and the upper and lower loading 

device, the restraint effect of the specimen from the two ends to the middle was gradually 

reduced, so the deformation characteristic of the middle was large, and that of the two 

was small. It can be found from the diagram that under the same fiber content, the larger 

the confining pressure, the greater the lateral binding force on the sample and the smaller 

the lateral bulging deformation. Under the same confining pressure, when the fiber con-

tent was 0%, the deformation of the sample was larger. The addition of the coir fiber could 

effectively reduce the lateral deformation of the sample, but the overall difference was not 

significant. 

 

Figure 9. The failure mode of specimen under triaxial test. 

4. Duncan–Chang Model and Parameter Analysis of Coir Fiber-Reinforced Red Clay 

From Figure 5, it can be seen that the stress–strain relationship curve of coir fiber-

reinforced red clay is a typical strain hardening type, which conforms to the hyperbolic 

hypothesis of the Duncan–Chang model of a nonlinear elastic model. The Duncan–Chang 

model is widely used in numerical simulation and engineering practice and has great re-

search value. Therefore, this paper used this model to fit the stress–strain relationship of 

coir fiber-reinforced red clay, and obtained the influence of fiber content and confining 

pressure on the parameters of the Duncan–Chang model. 

4.1. Establishment of the Model 

In 1963, Kondner [44] proposed that the hyperbolic curve can be used to fit the curve 

according to the stress–strain relationship curve of a large number of soil triaxial tests. The 

hyperbolic equation is shown in Equation (1). Duncan et al. proposed a widely used 

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

c/
k
P

a

fiber content/%

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

φ
/（

°）

fiber content/%

Figure 8. Variation in shear strength index with fiber content. (a) influence of fiber content on
cohesion; (b) influence of fiber content on internal friction angle.

3.3. Failure Characteristics of Coir Fiber-Reinforced Soil

The failure mode of the coir fiber-reinforced soil sample is shown in Figure 9. From the
diagram, it can be seen that the failure mode of the sample was a mainly bulging failure, that is,
after the failure, the sample underwent lateral bulging, with large intermediate deformation,
small ends, drum-shaped, and no obvious fracture surface. The deformation was gradual from
the middle to the ends, and the shape was uniform. During the test, due to the friction between
the two ends of the specimen and the upper and lower loading device, the restraint effect of
the specimen from the two ends to the middle was gradually reduced, so the deformation
characteristic of the middle was large, and that of the two was small. It can be found from the
diagram that under the same fiber content, the larger the confining pressure, the greater the
lateral binding force on the sample and the smaller the lateral bulging deformation. Under
the same confining pressure, when the fiber content was 0%, the deformation of the sample
was larger. The addition of the coir fiber could effectively reduce the lateral deformation of
the sample, but the overall difference was not significant.
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Figure 9. The failure mode of specimen under triaxial test.

4. Duncan–Chang Model and Parameter Analysis of Coir Fiber-Reinforced Red Clay

From Figure 5, it can be seen that the stress–strain relationship curve of coir fiber-
reinforced red clay is a typical strain hardening type, which conforms to the hyperbolic
hypothesis of the Duncan–Chang model of a nonlinear elastic model. The Duncan–Chang
model is widely used in numerical simulation and engineering practice and has great
research value. Therefore, this paper used this model to fit the stress–strain relationship
of coir fiber-reinforced red clay, and obtained the influence of fiber content and confining
pressure on the parameters of the Duncan–Chang model.

4.1. Establishment of the Model

In 1963, Kondner [44] proposed that the hyperbolic curve can be used to fit the curve
according to the stress–strain relationship curve of a large number of soil triaxial tests.
The hyperbolic equation is shown in Equation (1). Duncan et al. proposed a widely used
incremental elastic model based on this hyperbolic stress–strain relationship, which is
called Duncan–Chang model.

σ1 − σ3 =
εa

a + bεa
(1)

In the formula: σ1 and σ3 are large and small principal stresses, respectively; a and b
are parameters related to soil properties; σa is axial strain. For the conventional triaxial test,
σa = σ1.

By transforming Equation (1), we can obtain:

ε1

σ1 − σ3
= a + bε1 (2)

In conventional triaxial tests, since dσ1 = dσ2 = 0, the tangent modulus is

Et =
d(σ1–σ3)

dε1
=

a

(a + bε1)
2 (3)

According to Equation (3), when ε1=0 ε1, the initial tangent modulus Ei Et = Ei can be
obtained. Then, the initial deformation modulus Ei is

Ei = Et

∣∣∣∣∣ε1=0 =
a

(a + bε1)
2

∣∣∣∣∣ε1=0 =
1
a

(4)

The formula shows that the parameter a represents the reciprocal of the initial defor-
mation modulus Ei.

According to Equation (2), when ε1 → ∞ , the limit deviatoric stress difference (σ1–σ3)ult
is

(σ1–σ3)ult = lim
ε1→∞

(σ1–σ3) = lim
ε1→∞

ε1

a + bε1
=

1
b

(5)

This formula shows that the parameter b represents the reciprocal of the limit deviatoric
stress (σ1–σ3)ult corresponding to the asymptote of the (σ1 − σ3) ∼ ε1 hyperbola.
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In the hyperbolic stress–strain relationship, the strength (σ1–σ3)f of the specimen at
failure usually does not reach the ultimate deviatoric stress (σ1–σ3)ult, so the failure ratio
Rf can be defined as

Rf =
(σ1–σ3)f
(σ1–σ3)ult

(6)

Substituting Equations (4)–(6) into Equation (3), the expression of tangent deformation
modulus Et is

Et = Ei

[
1− Rf

σ1 − σ3

(σ1 − σ3)f

]2
(7)

4.2. Parameter Analysis

The above triaxial shear test data are organized by a–b, and the results obtained are
shown in Figure 10. According to the test analysis, the ε1

σ1−σ3
∼ ε1 of coir fiber-reinforced

cohesive soil is approximately a first-order linear relationship, indicating that the (σ1–σ3) ∼
ε1 hyperbolic relationship can be well established. The strength and tangent elastic modulus
of coir fiber-reinforced cohesive soil can be reasonably determined according to the Duncan–
Chang model, which conforms to the strain-hardening relationship. Parameters a and b are
the intercept and slope of the curve ε1

σ1−σ3
∼ ε1, respectively.
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Figure 10. ε1/(σ1–σ3) ∼ ε1 curve of sample. (a) 0% coir fiber; (b) 0.2% coir fiber; (c) 0.25% coir fiber;
(d) 0.3% coir fiber; (e) 0.35% coir fiber; (f) 0.4% coir fiber.



Appl. Sci. 2023, 13, 556 11 of 15

By fitting and calculating the data of unreinforced fiber soil and coir fiber-reinforced
soil, this paper gives the Duncan–Chang model parameters of the specimens with different
fiber content under different confining pressures, as shown in Table 3. It can be seen from
the table that under the same fiber content, the parameters a and b gradually decrease with
the increase in confining pressure. Contrarily, the initial deformation modulus Ei and the
ultimate deviatoric stress (σ1–σ3)ult of the sample increase with the increase in confining
pressure, while the failure ratio Rf is in a fluctuating state.

Table 3. Tangent deformation modulus and related parameters.

Fiber Content
(%)

Confining
Pressure (kPa) Parameter a Parameter b Ei

(×103 kPa) (σ1–σ3)ult (kPa) Rf

0

100 0.00471 0.00930 212.31 107.53 0.9951
200 0.00386 0.00577 259.07 173.31 0.9809
300 0.00315 0.00365 317.46 273.97 0.9892
400 0.00223 0.00252 448.43 396.83 0.9777

0.2

100 0.00418 0.00850 239.23 117.61 0.8673
200 0.00207 0.00513 483.09 194.93 0.9952
300 0.00160 0.00333 625.00 300.30 0.9923
400 0.00127 0.00238 787.40 420.17 0.9758

0.25

100 0.00385 0.00906 259.74 110.38 0.9966
200 0.00177 0.00527 564.97 189.75 0.9960
300 0.00149 0.00318 671.14 314.47 0.9762
400 0.00113 0.00240 884.96 416.67 0.9648

0.3

100 0.00330 0.00851 303.03 117.51 0.9786
200 0.00202 0.00422 495.05 236.97 0.9875
300 0.00139 0.00278 719.42 359.71 0.9591
400 0.00087 0.00205 1149.43 487.80 0.9635

0.35

100 0.00453 0.00862 220.75 115.98 0.9743
200 0.00279 0.00505 358.43 198.02 0.9948
300 0.00187 0.00296 534.76 337.84 0.9502
400 0.00138 0.00223 724.64 448.43 0.9634

0.4

100 0.00460 0.00826 217.39 121.05 0.9665
200 0.00355 0.00482 281.69 207.47 0.9736
300 0.00298 0.00297 335.57 336.70 0.9474
400 0.00201 0.00227 497.51 440.53 0.9670

In 1963, Janbu proposed an empirical formula reflecting the relationship between
initial tangent modulus Ei and confining pressure:

Ei = Kpa

(
σ3

pa

)n
(8)

In the formula, K and n are test constants, and Pa is atmospheric pressure, generally
taken as 101.33 kPa.

It can be seen from Equation (8) that log10
Ei
pa

= log10 K + n log10
σ3
pa

, that is, log10
Ei
pa
∼

log10
σ3
pa

is a linear relationship. The log10
Ei
pa
∼ log10

σ3
pa

relationship curves of samples with
different levels of fiber content were drawn in the coordinate system, and linear fitting was
carried out. The fitting results are shown in Figure 11. From the diagram, it can be found
that on the one hand, the initial tangent modulus increases with the increase in confining
pressure; on the other hand, the initial tangent modulus increases first and then decreases
with the increase in fiber content, but both are higher than the initial tangent modulus of
unreinforced fiber soil. This shows that adding coir fiber to the soil can improve the initial
tangent modulus of the soil, and when the fiber content is 0.3%, the initial tangent modulus
reaches its highest value.
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Figure 11. Relationship curve between initial tangent modulus and confining pressure of sample.

5. Discussion

A. Widianti et al. [34] added coir fiber to expansive soil and found that under the same
confining pressure, the sample had maximum deviatoric stress when the fiber content was
0.6%, which was similar to our research results. The reason for the difference in the optimal
fiber content between the two studies may be due to the different types of reinforced soil
tested. In addition, our study of coir fiber-reinforced red clay showed that its deviatoric
stress was higher than that of the coir fiber-reinforced expansive soil studied by A. Widianti
et al. [34]. The reason may be due to the different test methods. Our study adopted the
consolidated undrained test method, and the strength of the consolidated soil was higher
than that of the unconsolidated soil. A. Widianti et al. [34] found that the cohesion of the
soil was highest when the fiber content was 0.6%. When it exceeded 0.6%, the cohesion of
the soil would decrease. This trend is the same as the change rule in our study, which found
that the cohesion of soil increased first and then decreased with increasing fiber content,
and reached a maximum at 0.3%.

All of the formulas of the Duncan–Chang model are calculated under the condition
that σ3 is constant, that is to say, it is obtained under the condition that the lateral stress is
constant and the axial stress is increased. The problems of stress path and dilatancy are
not considered, and the influence of the intermediate principal stress cannot be reflected,
which is its limitation. In this paper, samples with a diameter of 39.1 mm and a height of
80 mm were used for research. If conditions permit in the future, samples with larger sizes
can be used for research, such as 69.1 mm × *125 mm, which can better reflect the stress
and deformation of coir fiber-reinforced red clay in practical engineering. The deformation
mechanism of coir fiber in soil can also be further investigated by microscopic experiments.

6. Conclusions

In this paper, the influence of coir fiber content on the strength characteristics of red
clay was studied by the consolidated undrained triaxial test, and the parameters were
analyzed in combination with the Duncan–Chang model. This provides an important
reference value for the strength theory of coir fiber-reinforced red clay. The following
conclusions were drawn:

(1) The strength characteristics of red clay can be effectively improved by adding coir
fiber to the soil. Under the optimal fiber content, the failure strength of the sample is
nearly three times that of plain soil.

(2) When the axial strain is small, the stress–strain relationship curves of the plain soil
and the coir fiber-reinforced red clay are consistent, indicating that the reinforcement
effect is not obvious at this time. With the increase in axial strain, the occlusal friction
between the soil and the fiber and the tensile resistance of the fiber gradually play a
role, which improves the shear strength of the soil and increases the deviatoric stress
of different samples.
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(3) Compared with plain soil, the cohesion of red clay mixed with fiber increases by
4.9~9.13 kPa, and reaches the maximum when the fiber content is 0.3%, while the
internal friction angle of red clay mixed with fiber is not much different from that of
plain soil.

(4) Under the same fiber content, the parameters a and b gradually decrease with the
increase in confining pressure, and the initial deformation modulus Ei and ultimate
deviator stress (σ1–σ3)ult of the sample increase with the increase in confining pressure.
Additionally, the initial tangent modulus Ei increases first and then decreases with
the continuous increase in fiber content. The rule of change is in line with the test
situation and has guiding significance.
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