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Abstract: The extraction of a target speaker from mixtures of different speakers has attracted extensive
amounts of attention and research. Previous studies have proposed several methods, such as
SpeakerBeam, to tackle this speech extraction problem using clean speech from the target speaker
to provide information. However, clean speech cannot be obtained immediately in most cases. In
this study, we addressed this problem by extracting features from the electroglottographs (EGGs) of
target speakers. An EGG is a laryngeal function detection technology that can detect the impedance
and condition of vocal cords. Since EGGs have excellent anti-noise performance due to the collection
method, they can be obtained in rather noisy environments. In order to obtain clean speech from
target speakers out of the mixtures of different speakers, we utilized deep learning methods and used
EGG signals as additional information to extract target speaker. In this way, we could extract target
speaker from mixtures of different speakers without needing clean speech from the target speakers.
According to the characteristics of the EGG signals, we developed an EGG_auxiliary network to
train a speaker extraction model under the assumption that EGG signals carry information about
speech signals. Additionally, we took the correlations between EGGs and speech signals in silent and
unvoiced segments into consideration to develop a new network involving EGG preprocessing. We
achieved improvements in the scale invariant signal-to-distortion ratio improvement (SISDRi) of 0.89
dB on the Chinese Dual-Mode Emotional Speech Database (CDESD) and 1.41 dB on the EMO-DB
dataset. In addition, our methods solved the problem of poor performance with target speakers of
the same gender and the different between the same gender situation and the problem of greatly
reduced precision under the low SNR circumstances.

Keywords: speech extraction; SpeakerBeam; electroglottograph; pre-processing

1. Introduction

Speech extraction refers to the extraction of individual signals from mixed signals,
which was first proposed to address the cocktail party problem [1,2]. Interference in speech
can decrease the quality of information being communicated. In addition, interference in the
speech can severely affect other related tasks, such as automatic speech recognition (ASR).
Current speech recognition technology can accurately recognize an individual speaker, but
when there are two or more speakers, the accuracy of speech recognition is greatly reduced.
Thus, speech extraction has become an important factor in obtaining speech with better
quality and intelligibility.

Many studies have been carried out on the speech extraction problem. The initial at-
tempt was based on traditional methods. For example, methods based on signal processing
estimate the power spectrogram of noise or ideal Wiener filters from the perspective of
signal processing, e.g., spectral subtraction [3] and Wiener filter [4,5]. Additionally, another
algorithm based on decomposition is represented as follows:

X = WH (1)
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where X is the spectrogram of a signal and is decomposed into the matrix product of a
base matrix W and activation matrix H. Non-negative matrix factorization (NMF) lets
W and H be non-negative to obtain non-negative matrix factorization[6,7], which can be
used to obtain the basic spectral patterns of non-negative data. Another method is called
computational auditory scene analysis (CASA) [8], which uses auditory grouping cues.
The CASA method [9] models auditory signals and utilizes the similarities between the fun-
damental frequencies of speech signals. A method based on Bayesian inference rules was
proposed in a study by Barniv [10]. This method describes the formation process of pure
tone sequencing as “auditory streaming” and estimates auditory sequencing by processing
prior probability using the Bayesian criterion. Another method based on neural compu-
tation represents auditory flows in terms of units of neurons and competition between
auditory flows is realized by inhibitory connections between neurons. Wang [11] devel-
oped a method that utilizes local and global inhibitory mechanisms to separate auditory
flows. Another method by Mill [12] is based on time coherence, which uses a prediction
mechanism to promote competition among different groups. The methods mentioned
above extract speaker by establishing mathematical models, so their performances are not
applicable in more complex situations. Additionally, the accuracy of the extracted speech
using traditional methods is far below that of the deep learning methods.

In recent years, deep learning methods have achieved good results in speech extraction
under challenging conditions such as non-stationary interference. There have been many
studies on speech extraction using deep learning methods. However, most of the previous
studies have relied on the use of clean speech from the target speaker and they have
achieved their targets by training networks on data from the target speaker, thus generating
models to extract particular targets. The models are trained on fixed speaker pairs or target
speakers. These models also rely on the assumptions that the amount of the data being put
into the network is sufficient and substantial, and that speakers without substantial data
cannot be extracted. However, clean speech from particular target speakers cannot always
be obtained, and sometimes only a few of the utterances from the target speaker can be
recorded in a conversation. So, we tried to find a method that could solve the problem of
needing substantial clean speech from the target speaker.

Some methods have been already proposed to solve this problem. The SpeakerBeam
network [13] was proposed to solve the speech extraction problem by training speaker-
independent models that are informed by additional speaker information rather than
creating particular models for target speakers. However, this method relies on data pro-
vided by the additional speaker information and the additional information can only be
obtained from conversations without any speech overlaps or the personal devices, which is
inadequate for training.

To solve the problem of needing additional speech records, we explored some new
approaches to speech extraction and investigated EGG signals. These kind of signals come
from the vibrations in human throats, and can be recorded without interference from
other noises. In addition, the EGG signals of particular speakers can be recorded during
conversations in any situation, which increases the amount of additional target speaker
information. By utilizing EGG signals from a target speaker, features can be extracted from
the signals and applied to deep learning methods for speech extraction. Because EGG
signals provide information about particular speakers, designated speech can be extracted
from a conversation. Since EGG signals can be obtained in any situation during the process
of speaking, they can also be used for real-time speech extraction.

This paper is organized as follows: In Section 2, we examine studies related to speech
extraction and present our work on the topic. Section 3 introduces the materials and the
methods used in our study and illustrates our model in detail. In Section 4, we compare the
results from our network to those from previous studies using different datasets and under
different signal-to-noise ratios (SNRs). In Section 5, we discuss our work and findings.
Finally, Section 6 presents our conclusion and introduces the future directions of our study.
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2. Related Works

Speech extraction algorithms can be divided into single-channel speech extraction
algorithms and multi-channel speech extraction algorithms [14,15] according to the number
of microphones that are used to record the speakers. Single-channel speech extraction
is usually solved with time-domain or frequency-domain methods while multi-channel
speech extraction is solved using the methods for extracting coherent signals from different
speakers. In our work, we mainly focus on the problems of single-channel speech extraction.

With the rapid development of machine learning and artificial intelligence, the per-
formance of deep-learning-based audio signal processing algorithms has been further
improved. Speech extraction technology has also advanced thanks to the development of
deep learning [16–24]. In most cases, target speech is extracted in the frequency domain. In
these methods, networks obtain spectrograms of the target speech using short-time Fourier
transforms(STFTs) and then generate spectrograms of the estimated speech. Other methods
are based on the time domain, which mainly work by extracting the time domain features
of target speech and can solve the problem of phase mismatch by using adaptive front-end
and direct regression instead of STFTs.

Deep clustering (DC) is a frequency-domain method that was proposed by Her-
shey [25] in 2016. In this method, the amplitude spectrogram features of (T, F) dimension
mixed speech are mapped into a higher dimension (T, F, D) deep embedded feature space,
i.e., each time-frequency unit (T, F) is mapped into a D-dimensional feature vector, which
makes the mixed input features more distinguishable. The target of this method is to
generate binary masks, which allocate the areas belonging to the target speech with a mask
of 1 and the areas belonging to the other speech with a mask of 0. By multiplying the binary
masks by the spectrograms of mixed speech, the network can cover the areas of noise on
the spectrograms of mixed speech and obtain target speech from the mixed speech.

Another technique is permutation invariant training(PIT). In 2017, Yu [26] proposed
the PIT method and applied it to the speech extraction task. This method selects the smallest
mean square error (MSE) as the optimization target and effectively solves the problem of
the permutation of the target and interference to find the best match for the desired target
compared to DC. In 2021, Yousefi [27] combined the traditional PIT method with long short-
term memory (LSTM) and managed to improve the algorithm efficiency. The algorithm
has a probabilistic optimization framework and solves the problem of the low efficiency
of PIT by finding the best output label allocation. This method is significantly superior
to traditional speech extraction methods that use the signal-to-distortion ratio(SDR) and
source-to-interference ratio (SIR). In conclusion, the PIT algorithm provides a good training
criterion for speaker-independent speech extraction to deal with the permutation and
combination problems.

In summary, the frequency-domain methods depend on the consistency of the outputs.
These methods have multiple outputs, which make it difficult to define the target outputs
of the network. Moreover, inverse short-time Fourier transforms (ISTFTs) with enhanced
amplitude spectrogram and original mixed-phase spectrograms have certain impacts on
speech extraction performance.

To solve the problems with the frequency-domain methods, the time-domain methods
are used. Conv-TasNet is one of the most common methods. In 2019, Luo [28] proposed the
convolution time-domain audio separation network (Conv-TasNet), which is superior to
several time-frequency amplitude masks for dual-speaker speech extraction. This method
build learnable front ends instead of STFTs, thereby generating features that are similar to
those of a spectrogram.

In 2021, Li [29] proposed the dual-path recurrent neural network (DPRNN), which
breaks long audio clips into smaller chunks to optimize the recurrent neural network (RNN)
in a deep model. The DPRNN significantly minimizes the model size compared to the time-
domain audio separation network (TasNet) and enhances speech extraction performance.

Although the studies mentioned above have obtained excellent results in dealing
with speech extraction problems, the networks tend to be complicated and lack portability.



Appl. Sci. 2023, 13, 469 4 of 19

Time-domain speech extraction methods can achieve good extraction effects, but they are
calculated point by point, and the time-domain models tend to be complex and require
expensive computation costs.

SpeakerBeam and VoiceFilter [30] are examples of target speech extraction models
that can be used in both the frequency domain and time domain using extra information
from target speakers. SpeakerBeam uses a sequence summary network to generate spectro-
grams containing the features of the target speaker’s speech while VoiceFilter concatenates
spectrogram features and d-vector features, which are extracted from the last hidden
layer of the deep neural network, to estimate the clean speech of target speakers. In 2018,
Žmolíková [31] optimized this method using ASR technology and utilized predicted hidden
Markov model (HMM)-state posteriors to improve the masks. In 2019, Žmolíková [32] also
refined SpeakerBeam to train models using extra information about target speaker instead
of training particular models for target speakers. This network utilizes information about
target speakers from adapted speech [33], both for single-channel and multi-channel speech
extraction and achieves better performance than former networks. SpeakerBeam has also
been modified with an attention mechanism [34] to extract features from the additional
information, which effectively improves the performance of the multimodal SpeakerBeam
network [35]. Additionally, Delcroix [36] proposed an implementation of SpeakerBeam in
the time-domain, with auxiliary speaker information added to the network. However, all of
the speech extraction algorithms mentioned above are based on the premise that all mixed
speech can be separated to obtain clean speech from a target speaker, but it is difficult to
achieve this in practical application.

Therefore, we focused on finding other signals that could provide information about
the target speech and eventually identified EGGs [37–40], which were invented by Adrian
Fourcin [41]. EGGs are a kind of skin electrical signal that measure vocal cord vibrations
during laryngeal vocalization. The acquisition of EGG signals is not susceptible to other
noise or vibrations. Thanks to method of collecting EGG signals directly from people’s
throat, they can be obtained effectively in extremely noisy environments. In 2020, Bous [42]
utilized a deep neural network and EGGs to estimate glottal glosure instants(GCI), and
optimized the method by using the analysis synthesis settings of real speech signals, which
improved the final performance for glottal closure instants. In 2020, Cangi [43] proposed a
measurement to test the reliability of EGGs, which shows the differences in the values of
vowels between different genders or individuals. This method illustrates the possibility of
EGGs being used in speech processing. The features of the EGG signal extraction module
were proposed based on LSTM units [44] to replace SpeakerBeam’s feature extraction
network. This method works through voiced segment extraction, feature extraction, and F0
smoothing and achieves a 91.2% accuracy in the classification of EGGs. In 2022, Chen [45]
proposed a cross-modal emotion distillation model that uses fundamental frequencies from
EGG signals to improve the emotion recognition accuracy of emotional databases. Since
previous studies have proved that EGGs can improve performance for other acoustic tasks,
we applied EGGs to speech extraction tasks to verify whether EGGs can improve speech
extraction performance.

In our work, considering that EGG signals are not susceptible to other noises, we
proposed a network based on EGGs to extract target speakers from mixed speech. This
method differs from previous speech extraction methods that require clean speech from
the target speaker as it only needs to collect EGG signals when recording speech, which
simplifies the speech extraction procedure. As seen in the waveforms of EGG signals and
speech signals, sound segments and silent segments are both relevant. In addition, to
utilize the time domain features of EGG signals, we proposed a method to process mixed
signals using information provided by the EGG signals.
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3. Materials and Methods
3.1. Materials

The CDESD that was mainly used in our work was collected by Jing [46]. Each record
in this database consists of one channel of speech signals and one channel of EGG signals.
Moreover, there is a temporal correlation between the EGG waveforms and the speech
waveforms, and the voiced (V), silent (S), and unvoiced (U) segments [47] of speech cor-
respond to different parts of the EGG signals, which can easily be discriminated. The
speech samples in the database were recorded using high-standard equipment and con-
tain different genders and different speech and EGG signals. The database contains 20
individual speakers, including 7 females and 13 males, expressing different sentences and
emotions. The female speakers are labeled as F11, F12, F15, F16, F17, F18 and F20, and the
male speakers are labeled as M01, M02, M03, M04, M05, M06, M07, M08, M09, M10, M13,
M14 and M19. The annotations for the speech samples reaches a high level with 11,363
documents in all. Table 1 illustrates the gender and length distributions of the records in
the CDESD.

Table 1. The gender and length distributions of the records in the CDESD.

Gender Distribution Length Distribution

Male Female <1 s ≥1 s, <2 s ≥2 s

743 3926 1550 7839 1974

Since EGG signals and speech signals are preserved in the same file, before our EGG
model could be trained, the speech and EGG signals needed to be separated from the chan-
nels. The whole experiment was split into four parts and in each part, we chose different
combinations of genders as the target and interference speakers and compared the SDR,
signal-to-distortion ratio improvement (SDRi), scale invariant signal-to-distortion ratio
(SISDR) and SISDRi to evaluate the speech extraction performance in each group. SISDR
is usually taken as the objective function, which can further improve speech extraction
performance. SISDR and SDR are defined as follows:

XT = X∗ ·X̂
‖X̂‖2

XE = X∗ − XT

SDR = 10log10
‖X̂‖
‖X̂−X∗‖

SISDR = 10log10
‖kXT‖2

‖kXE‖2

(2)

where X∗ is the output speech of the network and X̂ is the original signal. SISDR illustrates
whether the extraction results meet expectations. The SISDRi and SDRi calculation is
as follows: 

SDR1 = 10log10
‖X̂1‖
‖X̂1−X∗1‖

SDR2 = 110log10
‖X̂2‖
‖X̂2−X∗2‖

SDRi = SDR2 − SDR1

SISDR1 = 10log10
‖kXT1‖2

‖kXE1‖2

SISDR2 = 10log10
‖kXT2‖2

‖kXE2‖2

SISDRi = SISDR2 − SISDR1

(3)

where SISDR1 represents the SISDR between mixed speech and true speech, and SISDR2
represents the SISDR between generated speech and true speech.

As is shown in Figure 1, Equations (2) and (3), using SDR as a measurement can
cause problems. If the volume of X∗ is increased properly, XE decreases (as shown by
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the dotted line), and the SDR increases, which means that the level of volume affects the
SDR. Using SISDR as a measurement can avoid these problems, for XE and XT increase
simultaneously when X∗ increase. If SDR is chosen as the single indicator, numerical
indicators can improve when the actual effects deteriorate. The SISDRi measurement uses
the square of the projection modulus of the estimated value vector in the direction of the
truth vector, instead of the square of the projection modulus of the estimated value vector in
the perpendicular direction to the truth vector, in order to avoid the SDR problem. SISDRi
is defined as the difference between the estimated mixed signal SISDR and the estimated
true value signal SISDR. Compared to the common SISDR measurement, SISDRi can better
measure optimization effects.

SDR SI-SDR

Figure 1. Diagrammatic sketches of SDR and SISDR, in which speech signals are indicated by vectors.

3.2. Methods

The methods utilized in our study relied on a basic SpeakerBeam network. Consider-
ing the difference between EGG signals and speech signals, we proposed a network that
was suitable for EGG feature extraction. In addition, we took the time-domain character-
istics of EGG signals into consideration, according to correlaitions between EGG signals
and speech signals in silent and unvoiced segments, by performing pre-processing before
mixed speech was input into the network.

3.2.1. The Configuration of SpeakerBeam

Our proposed models to deal with speech extraction problems were inspired by the
SpeakerBeam network. The SpeakerBeam network is a combined network with multiple
spectrogram amplitude inputs and spectrogram amplitude outputs. According to previous
studies, the network can be divided into two parts: an auxiliary network that inputs
the speech spectrograms of the target speaker’s additional information and extracts the
target speaker’s features; and a main network that inputs mixed speech spectrograms
and the target speaker’s features and outputs estimated time-frequency masks. Finally,
ISTFTs are performed using the enhanced amplitude spectrograms and the original phase
spectrograms. Figure 2 shows the specific configuration of the SpeakerBeam network.

The method used to extract features from the frequency domain of the target speaker’s
speech has worked well in previous studies. In this method, speech signals are transformed
from the time domain into the two-dimensional frequency domain via STFTs.

In our study, the vertical coordinate of a spectrogram was the feature dimension,
which represented the feature vector of one frame. The horizontal coordinate was the frame
dimension, and the time-domain sequence length divided by the window interval was
rounded up to 173 columns. The length of the different speech samples was set to 1 s.
The spectrograms were imported into the network after taking the modulus value. The
estimated amplitude spectrograms of target speech signals were obtained by multiplying
the amplitude spectrograms of mixed speech by the estimated mask values. The process
was defined as follows:

M = g(|Y|, |A|) (4)

Ŝ = M�Y (5)
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where g stands for neural network’s estimation of the mask of the STFT signal M, Y and A
represent the mixed speech and the extra information from the target speaker, respectively.
| · | is the magnitude of the signals, and � represents matrix multiplication of the mixed
speech and binary masks. The horizontal coordinates of the spectrograms represented time,
the vertical coordinates represented frequency, and the values of the coordinate points
represented voice energy. In Figure 3, the deeper the color, the stronger the voice energy of
the coordinate point.

+

Neural Network
STFT

STFT

·

Target
Speech

Mixed
Speech

Extra
Speech

Estimated
Mask

Estimated
Speech

ISTFT

Interfering
Speech

Figure 2. The overall scheme of the SpeakerBeam network used to separate target speech from
mixed speech.

Mixed SpeechTarget Speech Estimated Mask Estimated Speech

Time

Freq

Figure 3. The spectrograms of the target speech, the mixed speech, mask and the estimated speech.
The energy value is represented by the color. The deeper the color, the stronger the voice energy.

After the STFT transformation, the amplitudes of the different frequencies of speech
were converted into logarithmic scales and the color sizes (amplitudes) were converted into
decibels to form spectrograms. Then, the estimated speech was obtained by multiplying
the mixed speech by the estimated masks.

Neural networks that use additional information from target speakers are common
modeling methods for solving acoustic problems. These networks can be expressed as follows:

Xk+1 = σk(Lk(Xk, W, b)) (6)

where Xk is the input of the layer k, σk is the activation function, and Lk(Xk, W, b) = WX+ b,
where W is the weight and b is the bias vector of the layer. These networks can extract
features from target speakers but may lack specificity for different features. The process of
these methods is as follows:

Xk+1 = σk(λ� Lk(Xk, W, b)) (7)
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where λ is the weight vector of the features, which is determined by the target to be
extracted by the network. SpeakerBeam [48] utilizes a sequence summarizing network
with an attention mechanism. The attention mechanism can learn from different frames
of speech and summarize the frequency information of a target speaker’s speech. In a
previous study, an attention mechanism was used to obtain target areas that need to be
focused on and quickly screen out high-value information from large amounts of data. The
value of attention is obtained as follows:

attention(X, q) =
N

∑
i=1

αixi (8)

where α is the outcome of the Softmax layer, which contributes to the weight of each feature,
and xi represents the frames of the spectrogram matrix. Attention mechanism [49,50] can
estimate binary mask for each frame in a spectrogram and improve the SI-SNR of mixed
speech extraction.

3.2.2. The Processing of the Datasets

Before generating our model for target speaker extraction, all signal amplitudes had to
be normalized to the [−0.5,0.5] interval on a linear scale and the length of each signal was
extended or shortened to 1 s at a sample rate of 22,050 Hz. The target and interference choice
is to be made either according to gender or randomly. In this study, we created a subset of
the database that was based on combinations of the genders of the target speaker and the
interference speaker to generate mixed signals. Figure 4 demonstrates our procedure for
generating the subsets.

Figure 4. The process of EGG and speech signal extraction on the CDESD including the separation
and the mixing procedures. The original signals consist of both speech signals and EGG signals.

In the training stage of the experiment, we selected target speakers and interference
speakers randomly from the male and female samples in the CDESD. The mixing model
was defined as follows:

Y(m)[n] = s(m)
0 [n] + G ∗ v(m)[n] (9)

where Y is the mixed signal, s0 is the target speech, G is the gain of the interference
speech, v is the interference speech, and m is the index of discrete time. In our study, the
following combinations of target-interference speakers were generated: female-female (FF),
female-male (FM), male-female (MF), and male-male (MM).

In the FF and MM groups, we selected seven speakers as the target speaker and
subsequent samples in the database were selected as the interference speakers. In the FM
and MF groups, we selected one female or male target speaker and an interference speaker
of the other gender. In each group, 100 target speakers and 100 interference speakers were
randomly chosen from the CDESD to generate seven sets of mixed speech, which contained
70,000 (100 × 100 × 7) pieces of data in total. Out of all the samples in the database, 90%
(63,000) were chosen to be training data while 10% were chosen to be validation data. In
terms of the extra speech for feature extraction, considering every speaker in the database
has 20 sentences that were recorded with different emotions, we chose the first three
sentences to ensure that the content of the validation set was different from the content of
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the test set. When mixing the target speech and interference speech, we set the ratio of the
target speaker to interference speaker to obtain different SNRs. In most of our experiments,
the SNR was set to 2.5 dB.

3.2.3. Model For Electroglottograph Speech Extraction

In our experiments, the extra speech was replaced by EGG signals. As a result, the
auxiliary network for extracting the features of target speakers needed to be improved. As
EGGs come from vibrations in the throat, only the fundamental frequencies of the EGG
waveforms carry information about speech. However, the inputs for our auxiliary network
were speech spectrograms, which were two-dimensional data. So, the EGGs had to be
transformed into two-dimensional data. In our study, we generated spectrograms of the
EGG signals, which encoded information about the glottal pulses.

As Figure 5 indicates, the spectrograms of the recorded EGG signals contained extra
information such as signals from the throat, which can provide more information about
the identity of the speaker. Based on previous studies on EGGs and speech extraction, we
eventually developed a speech extraction model that was fit for EGG signals.

Figure 5. A comparison between the spectrograms of EGG signals and speech signals from the
same utterance.

Based on the features of the EGG signals, we designed a speech extraction neural
network, which is shown in Figure 6. The main network accepted the spectrograms of
mixed speech as inputs while the auxiliary network accepted the spectrograms of EGG
signals as inputs. In the main network, Tanh layers were used after each linear layer for
nonlinearity. The spectrograms of target speakers were obtained by multiplying the binary
masks and the spectrograms of mixed speech. The MSE loss between the estimated target
speaker speech spectrogram and the original target speaker speech spectrogram was taken
as the cost function. The LSTM layers in the bottom half of the network were removed
because of the gradient disappearance that occurs in the training process of multi-layer
convolutional networks. Our model used a logistic sigmoid to activate the output layer.
The auxiliary network for extracting the characteristics of target speaker EGGs consisted of
two convolution layers, one ReLU activation layer, and a Softmax layer. This new network
reduced computational complexity and produced a better speech extraction performance
by using EGGs.

3.2.4. The Electroglottograph Pre_Processing Algorithm

The original EGG signals had baseline drift interference that was caused by irrelevant
vibrations. To obtain EGG signals with less interference, the EGG signals were filtered
in the time domain and frequency domain. High-pass filtering was performed first. A
high-pass filter was used to remove interference from the power supply.
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BLSTM

Linear

Conv

ReLU

Conv

Softmax

Mixed Speech

Electroglottograph

·

Sigmoid

Conv

Tanh

Conv

Tanh

256 × T

256 × T

1024 × T

256 × T

256 × T

512 × T

512 × T

512 × T

512 × T

512 × T

512 × T

256 × T

256 × T

Figure 6. The configuration of our EGG_auxiliary network, which utilized a Softmax layer to extract
the features of a target speaker via an attention mechanism. The mixed speech and EGG signals were
processed simultaneously.

The frequency-domain features of EGG signal were also utilized in the neural network.
However, the EGG signals were input after undergoing STFTs, which could negelect time-
domain features. As a result, considering the relevance of EGG signals and speech signals in
the time domain, we used the signal envelopes [51] from the Hilbert transforms to identify
the speech of the target speaker and extract it from the EGG signals. The process is shown
in Figure 7.

Figure 7. An example of a waveform in CDESD. The top panel shows the speech of the speaker,
the middle panel shows the EGG signals, and the bottom panel shows the EGG signals after high-
pass filtering.

Since the EGG signals were recorded at the same time as the speech signals, they
were similar in some parts of the time domain. In silent segments of speech, there were
no vibrations in the throat, so the EGGs showed silent segments. The same occurred in
other segments as well and the trend of the waveforms was consistent. As a result, there
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were correlations between the EGG signals and the speech signals in some of the speech
segments, which meant the time-domain features of EGG signals could be used to solve the
speech extraction problems. So, we also developed a pre_processing algorithm to deal with
the correlations between the EGG and speech signals and applied it to the speech extraction
task. The method filtered the silent segments and processed other relevant parts of speech.
The average value of the filtered envelope signals was taken as the threshold, with values
greater than the threshold considered to be 1 and those less than the threshold were
considered to be 0.5, according to the window function method. Finally, we obtained the
target speaker’s speech. The division method was accurate for voiced segments involving
vowels but could lose information from the original speech waveforms of unvoiced and
silent sounds.

As shown in Figure 8, the envelopes of the EGG signals were calculated to process
the mixed speech and the new mixed speech was then preliminarily processed (the silent
segments from the target speech were filtered out and some of the unvoiced segments were
processed before being input into the network).
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Figure 8. The waveform of one of the signals in the pre_processing algorithm.

4. Experiments and Results

This section details our experiments,in which we compared the performances of
different inputs for our neural network (i.e., extra target speech and EGG signals). The
experiments were evaluated using the SDR and SISDR metrics, as defined in Section 3. In
addition, the Adam [52] optimizer was used with a learning rate of 1× 10−4 . The training
batch size was set as 256 with 100 epochs.

4.1. Experiments
4.1.1. Datasets

The experiments were performed on two datasets: the CDESD and the EMO-DB,
which was recorded in German. Table 2 shows our comparison results and the details of
each dataset, including the number of male and female speakers and the number of speech
data points in the training and test sets.
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Table 2. The total number of speakers and the numbers of target speaker and mixed speech samples.

Training Sets Test Sets
Speakers Mixtures Target Speakers Mixtures Target

CDESD 20 63,000 9000 20 7000 1000
EMO-DB 10 16,200 3240 10 1800 360

The first dataset (CDESD) contains recordings in two channels. In total, 100 samples
from each speaker were selected as target speech and interference speech. The EGG signals
in the datasets and three sentences from each speaker were then used for feature extraction.
The datasets have 7 males and 13 female speakers, which we combined into seven groups
for training and testing. The second dataset (EMO-DB) consists from 10 speakers, including
the speech signals and EGG signals of each speaker saying the same sentences in German.
We mixed the speech samples from these datasets to generate SNRs between −5 and 5 dB.
For both datasets, we selected the samples randomly to form mixtures of target speech and
interference speech. We used a 22,050 Hz sampling frequency for all of our experiments.

4.1.2. Experimental Settings

Based on the SpeakerBeam network, we proposed EGG_Aux and Pre_EGG_Aux
networks. We set the batch size to 256, with a learning rate of 1× 10−4. We used sequence
summarization with an attention mechanism for the extraction of target speaker features
to inform the networks about the target speaker. Due to the attention mechanism, the
networks could focus on the more useful information provided by the EGG signals and
extract target speech more accurately.

The architecture of the networks consisted of bidirectional long short-term memory
(BLSTM) layers and convolution layers. The loss function was MSE loss between the ampli-
tudes of target speech and estimated signals. Additionally, although SDRi has been selected
as the metric to compare performance in previous studies, in our work, we considered
SISDRi metric in order to compare the outcomes more reasonably.

4.2. Results
4.2.1. Comparison to SpeakerBeam

To evaluate the effectiveness of using EGG signals to solve speech extraction tasks, we
compared the performances of FD-SpeakerBeam and SpeakerBeam based on EGG signals.
For the SpeakerBeam experiments, we provided the network with extra information about
the target speaker, including the extra sentences from the datasets. For the EGG_Aux
network experiments, we input EGG signals into the network. In addition, we utilized
the time-domain characteristics of the EGG signals to process the silent segments from the
mixed speech before the Pre_EGG_Aux experiments. Therefore, both frequency domain and
time domain features were utilized in this work. An example of the estimated waveforms
is shown in Figure 9.

For a fair comparison between the different speech extraction methods, the same
amount of extra information was used from both datasets and we used the SDRi and
SISDRi metric to compare the results. Table 3 shows the SDRi and SISDRi values from the
different experiments.

Table 3. A comparison between the SDRi and SISDRi on the CDESD for SpeakerBeam and the two
methods proposed in our paper. The parameters are the average of all test results.

Model Training Dataset SDRi (dB) SISDRi (dB)

SpeakerBeam CDESD 3.43 4.39
EGG_Aux CDESD 4.55 5.25

Pre_EGG_Aux CDESD 4.58 5.28
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Target Speech

Mixed Speech

Estimated Speech

Figure 9. An example of estimated target speech.

The results showed that in the field of deep learning, EGG signals could provide
more information and a better target speech extraction performance than common speech
signals, EGG signals could also be obtained in noisy environments, which offers extensive
prospects. The first set of experiments compared the performances of the considered
methods on the CDESD and EMO-DB datasets, which were originally created for emotion
recognition. The first part of Table 3 shows the results for the SpeakerBeam network, which
achieved an SISDRi of 4.39 dB for mixtures of two voices on CDESD. The second part of
the table shows that the EGG signals achieved a better performance than normal speech
signals for the SpeakerBeam network. The SDRi was 4.58 dB and the SISDRi was 5.28 dB,
which were 33% and 20% higher in the validation sets, respectively, showing that the
extracted frequency-domain features of the EGG signals provided more information for
the network to solve the speech extraction problem. The experiment also utilized the
time-domain features of the EGG signals, because previous experiments have only focused
on the frequency domain and have overlooked the time-domain features of EGG signals,
which are consistent with normal speech signals in silent and unvoiced segments. The
results showed that the time-domain features of the EGG signals improved the performance
of the networks at a low level. The reason for the this could be that time-domain features
were taken into consideration in the STFTs. Moreover, the algorithm that filtered out the
silent segments during prepocessing could have filtered out some of the unvoiced or voiced
segments by mistake. Despite the slight improvement in the SDRi and SISDRi metrics, the
results showed that the pre_processing of EGG signals could help to solve the target speech
extraction problem.

To verify this improvement in solving speech extraction task using EGG signals, we
carried out further experiments on EMO-DB dataset, which was recorded in German and
has 2 s speech samples compared to the 1 s speech samples in the CDESD. Table 4 shows
the SDRi and SISDRi results for the two considerd methods on the EMO-DB dataset.

Table 4 shows that the EGG signals improved the speech extraction performance on
both the CDESD and EMO-DB dataset, meaning that EGGs could help in the extraction of
speech in different languages.
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Table 4. A comparison between the SDRi and SISDRi on the EMO-DB dataset. The parameters are
the average of all test results.

Model Training Dataset SDRi (dB) SISDRi (dB)

SpeakerBeam EMODB 2.28 0.99
Pre_EGG_Aux EMODB 3.69 2.71

4.2.2. Comparison between Genders

Considering the shortcomings in the same-gender speech extraction performance of
the SpeakerBeam network, we compared speech extraction performance when the target
and interference were of different genders. Table 5 shows the results which were calculated
using the average values for different speakers of the same gender.

Table 5. The SISDRi (dB) on the CDESD. The results are divided into four groups according to the
gender of the target speaker and the gender of the interference speaker. The left letter represents the
gender of the target and the right letter represents the gender of the interference speaker.

Model FF MM FM MF

SpeakerBeam 3.12 2.46 3.55 4.58
Pre_EGG_Aux 5.12 3.46 5.37 4.37

Table 5 shows the SDRi when the target speakers and interference speakers were of
different genders. For the SpeakerBeam network, the speaker extraction was better when
the speakers were of different genders but the same-gender speech extraction performance
was poor. In our experiment, the SpeakerBeam network with EGG signals performed
better when dealing with same-gender speech extraction. The SDRi for female-female(FF)
speech extraction was 5.12 dB and the SDRi of male-male(MM) speech extraction was
3.46 dB improvement, which meant that the differences between the EGG signals were
more significant than the differences between speech signals when the speakers were of the
same gender. When the speakers were of different genders, the female speech extraction
performance was better. In conclusion, EGG signals could better identify the features of
individual speakers in most situations.

In Figure 10, it can be seen that the speech extraction performance was better when
dealing with female speakers and that the speech extraction performance tended to be
poor when dealing with male speakers. The different throat construction of males and
females could be the main cause of this phenomenon. Additionally, the EGGs of the female
speakers were more suitable for speech extraction.

Figure 11 shows the results of the speech extraction experiments involving different
target speakers. The SDRi was better for female speakers than male speakers. The results
showed that EGG signals were more useful for female speech extraction.

Figure 12 shows the SDRi and SISDRi under different SNRs using SpeakerBeam and
Pre_EGG_Aux network.

4.2.3. Comparisons between Different SNRs

In our previous experiments, we set the SNR a 2.5 dB, which meant that the amplitude
spectrogram of interference speech was 0.75 times that of the target speech. To evaluate the
speech extraction performance under different circumstances, we set SNRs from −5 dB to
5 dB to test the validation sets and compare speech extraction performance.

From Table 6, it can be seen that the improvements increased when the noise increased,
meaning that the EGG signals performed better for speech extraction in noisy environments.
The SDRi and SISDRi values decreased by about 1.5 dB while the SNR value increased by
2.5 dB, which showed that speech extraction performance was better in environments with
low SNRs.
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Table 6. The SDRi and SISDRi under different SNRs on the CDESD using our Pre_EGG_Aux network.

SNR (dB) −5 −2.5 0 2.5 5

SDR (Mixed Speech) −3.99 −1.41 1.07 3.10 6.11
SDR (Prediction) 5.98 6.74 6.95 8.87 11.35

SISDR (Mixed Speech) −4.00 −1.41 1.07 4.08 6.11
SISDR (Prediction) 4.70 6.74 7.35 9.45 11.08

SDRi 9.97 8.15 6.95 5.77 5.25
SISDRi 8.70 7.15 6.29 5.37 4.97

Figure 10. A box-plot of the SDRi and SISDRi results for different gender groups using the pre_
EGG_Aux method.

Figure 11. A column chart of the SDRi for different target speakers using the two methods.
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SDRi SISDRi
Figure 12. The SDRi and SISDRi under different SNRs on the CDESD using the SpeakerBeam and
our Pre_EGG_Aux network.

The figures above show the speech extraction results under different SNRs for tar-
get speakers and interference speakers of different genders. It can be seen that the
Pre_EGG_Aux algorithm performed better under the different SNR circumstances, meaning
that our speech extraction method for performed better in different environments.

5. Discussion

In Section 4, we detailed the series of speech extraction experiments that we conducted
to compare speech extraction performance and identify the best method. To explore the
effects of information extraction using different signals, we compared the SpeakerBeam
network and our EGG_Aux and Pre_EGG_Aux networks. The results showed that on the
CDESD, the SDRi increased by 1.12 dB while the SISDRi increased by 0.86 dB with the
EGG_Aux network. When using the Pre_EGG_Aux network, the SDRi increased by 1.15 dB
while the SISDRi increased by 0.89 dB. From these results, we could infer that the EGG
signals provide more information than speech signals and could extract more information
from time-domain features. In addition, we tested our networks on the EMO-DB. These
results showed that using the Pre_EGG_Aux network increased SDRi by 1.41 dB and the
SISDRi by 1.72 dB, meaning that our proposed method had a better speech extraction
performance for different languages.

As for different speech extraction circumstances, we conducted experiments involving
different genders. The EGG method achieved a better performance in most situations,
especially when the target speaker and interference speaker were of the same gender. In
the female-female situation, the network using EGGs achieved a 2 dB increase, while
a 1 dB increase was achieved in the male-male situation. In terms of speech extraction
performance involving speakers of the same gender, the Pre_EGG_Aux network achieved
a similar level to that involving different genders. As shown above, when dealing with
female speech extraction, the network using EGG signals achieved better results, which
meant that the EGG signals from female speaker were easier to recognize than those of
male speakers.

To verify the performance of our model under different SNRs, we mixed samples from
the datasets using different amplitude spectrograms and compared the results for SNRs
ranging from −5 dB to 5 dB. As shown in the Results Section, the SISDRi was 8.70 dB
when the SNR was set as −5 dB, while the SISDRi was 4.97 dB when the SNR was set as
5 dB. These results suggested that our model had a better speech extraction performance in
noisier environments.

6. Conclusions

In this paper, we proposed a new method for target speech extraction. We input
the EGG signals of target speakers and extracted target speech from noisy environments.
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As EGGs are not susceptible to noise, we could solve the speech extraction problem in
situations with significant noise. When using the EGG_Aux network, the speech extraction
performance increased by 32.7% in terms of SDRi, while the SISDRi value improved
by 19.6%. When using the Pre_EGG_Aux network, the speech extraction performance
increased by 33.5% in terms of SDRi, while the SISDRi value improved by 20.3%. Moreover,
the gap between speech extraction performance when dealing with problems involving
different genders was reduced by using EGGs. The gap between the speech extraction
performance for the same gender and different genders was initially 1.28 dB but decreased
to 0.58 dB by using the Pre_EGG_Aux network, showing that EGGs helped the network
distinguish target speakers more accurately.

In future work, we aim to design new speech extraction models that can solve problems
in more complex situations. Additionally, we hope to also propose other methods to
integrate more information from target speakers and achieve better results.
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