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Abstract: Nowadays, quickly changing customer demands are a big challenge in the manufacturing
industry, especially for job shops, which are typical coupling and nonlinear multi-input–multi-
output (MIMO) systems. In order to achieve good shop floor performance in the presence of
short-term demand fluctuations, a key performance indicator—work in process (WIP)—is required to
be effectively controlled in the vicinity of the desired levels. For this purpose, a machinery-oriented
capacity adjustment approach via a reconfigurable machine tool (RMT) is employed to flexibly
balance capacity and load in the case of a bottleneck. A mathematical model concerning the RMT
and WIP was first established in the presence of uncertainty and delays. The operator-based robust
right coprime factorization (RRCF) method was adopted to stabilize the uncertain system, and
adaptive integral separated proportional–integral (ISPI) tracking controllers were further designed to
improve the transient and robustness performance. The performance of the proposed ISPI-RRCF was
analyzed and compared with that of a state-of-the-art method in a simulation. The results showed
that both control systems could ensure that the WIP was within an allowed bound, while the former
had lower overshoots, shorter setting times, and more concentrated distributions facing stochastic
demands. This further indicated the effectiveness of the proposed algorithm in the avoidance of
serious bottlenecks and unbalanced capacity distributions.

Keywords: operator theory; adaptive tracking capacity control; job shop; reconfigurable machine tool

1. Introduction

With rapidly changing customer demand, along with the requirements of cost-effectiveness,
high customization, and short delivery time, manufacturing processes have become more
complex and dynamic [1,2]. Job shops are a typical flexible production mode for producing
a variety of products with small lot sizes. However, they suffer from a high work-in-process
(WIP) level, high costs, long lead times, and low productivity, which may lead to bottlenecks
and cause performance deterioration [3,4]. To cope with these challenges and achieve good
shop-floor performance in a job shop environment, as an effective supporting tool for
compensating and balancing the capacity distribution, capacity adjustments are conducted
on the operational layer. In [5], a decentralized capacity control structure was designed to
deal with bottlenecks for the capacity balance between workstations in job shop systems.
In [6], an improved centralized model predictive control (MPC) algorithm was proposed
to optimize capacity adjustment processes to avoid serious bottlenecks. A local capacity
adjustment was discussed based on the H∞ algorithm to ensure that the WIP was in the
vicinity of a planned level in [7]. These studies show that capacity adjustment is an effective
way to improve performance, even with small modifications during a high load period.
Instead of labor-oriented approaches (e.g., overtime), a reconfigurable machine tool (RMT)
can be promoted as a new opportunity for a machinery-oriented capacity adjustment [8].
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In [9], a harmonizing throughput–time capacity adjustment approach via an RMT was
proposed to improve productivity while maintaining a certain flexibility in complex job
shops. In [10], the WIP of workstations was also controlled by utilizing the flexibility of
RMTs in the capacity adjustment of complex manufacturing processes.

Although RMTs play a vital role in terms of flexibility and reconfigurability, they
are only an enabler for capacity adjustment. Therefore, an effective control method for
the usage of RMTs is of crucial importance in the context of Industry 4.0 [11]. Due to its
simplicity and wide applicability, the proportional–integral–derivative (PID) algorithm has
been applied for single-input–single-output (SISO) systems. Kim and Duffie first adopted
the PI algorithm in the backlog control of a single-workstation production system [12]. They
further extended the application to the capacity control of a multi-workstation production
system with disturbances [13]. In [14], the development of a PID method was discussed
with respect to its incorporation with other advanced algorithms in practical applications,
and the challenges in design and tuning for difficult problems, especially for systems
with nonlinearities, coupling, disturbances, and delays (e.g., in a job shop), were also
put forward.

In contrast to the PID, operator-based robust right coprime factorization (RRCF) is
an advanced control method for a class of nonlinear systems that can be appropriately
decomposed by using operator theory to design robust controllers via Bezout identity [15].
Deng proposed a new condition for the robust controller design of nonlinear systems
with unknown bounded disturbances, which extended the application [16]. Improved
RRCF algorithms were proposed to deal with delays, disturbances, and couplings [17,18].
This method was mathematically demonstrated and applied for a variety of fields, such
as a highly nonlinear ionic polymer metal composite with hysteresis [19], a multi-joint
manipulator [20], and a coupling multi-tank process [21], which was readily applicable for
job shop systems for capacity control via RMTs. In previous work, this method was applied
in capacity control. However, the performance still needs to be improved, especially for
adaptive tracking control. To improve the tracking performance, a feedback-linearization-
based PID method was proposed for the path tracking of micro-actuators to reduce the
tracking error in [22]. Salehi Kolahi et al. designed a non-singular fast terminal sliding-
mode control for the path tracking of nonlinear second-order systems with compound
disturbances in [23]. For adaptive control, a neural network (NN) is an effective method.
Nguyen et al. recommended an adaptive robust position control technique by integrating
an radial basis function NN (RBF-NN) and NN-based disturbance observer for disturbed
electro-hydraulic servo systems [24]. Ruan et al. also proposed an RBF-NN adaptive
sliding-mode controller for nonlinear electromechanical actuator systems with uncertainty
and disturbances [25].

Considering the key performance of job shops, WIP is essential, as it greatly influences
many key performance indicators, e.g., energy efficiency, throughput, and delivery date
reliability [26,27]. Hence, the purpose of control is to guarantee that the manufacturing
process works on an expected WIP level via flexible capacity control with RMTs and to
ensure the closed-loop stability in which the performance indicators (e.g., WIP) remain
bounded while converging toward desired values or an acceptable stability region. In [28],
the authors investigated the problem of WIP regulation via RMT assignment in a job shop
with a constant flow probability. Desirable control performance and the stability of the
closed-loop system were achieved by using MPC with terminal endpoint constraints. How-
ever, the preferred assignment of RMTs for capacity adjustment belonged to a continuous
optimization case. To solve this problem, the authors further extended their work and
employed MPC in association with a deterministic method (e.g., branch and bound) and
stochastic optimization techniques (e.g., genetic algorithm) for the integer assignment of
RMTs [29]. However, transportation delays were not taken into consideration, and the
computational complexity of this method was very high due to the iterative online opti-
mization. In [30], the complexity of workstations was described as a nonlinear operator,
and the WIP was controlled by considering the productivity and customer requirements.
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This also indicated the applicability of operator theory in the capacity control process. To
measure the control performance, transient and robustness were two key factors facing
stochastic customer demands. As a key transient performance indicator, overshoot reflects
the bottleneck level of workstations and the capacity distribution; therefore, it is expected
to have a low value.

The above survey revealed that the integration of RMTs and RRCF was an effective
means of capacity control. However, there is still much work to be done to improve the
performance in capacity control systems while considering practical applications. This
research is concerned with quickly solving the serious bottleneck represented by the high
overshoot and unbalanced capacity reflected by the robustness in job shops facing stochastic
demands. To solve this problem, an improved adaptive tracking capacity control algorithm
is proposed by integrating the RRCF and ISPI with a single-neuron algorithm. The main
contribution can be summarized as follows:

• To decrease the complexity of a high-coupling job shop manufacturing process and au-
tonomously realize rapid responsiveness among workstations, a decoupling-controller-
based operator was designed to decompose the complex MIMO system into multiple
SISO systems.

• To ensure the steady-state performance and keep the WIP level for each workstation in
the vicinity of the planned values while considering disturbances and delays, robust
controllers were theoretically designed by using the RRCF method based on the
Bezout identity.

• To effectively decrease the overshoot and excessive adjusting time in the face of large
deviations, integral separated PI-type tracking controllers based on the RRCF (ISPI-
RRCF) for the decomposed SISO systems were designed to improve the transient
performance.

• To adaptively adjust the parameters of the ISPI-RRCF tracking controllers and enhance
the performance in real time, a single neuron associated with the supervised Hebb
learning algorithm was adopted, where the related weight coefficients were constantly
updated in the presence of disturbances and delays.

The remainder of this paper is structured as follows: Firstly, a mathematical model
concerning job shop systems with RMTs is introduced in Section 2. Thereafter, Section 3
introduces the adaptive capacity controller design process based on operator theory. Later
on, Section 4 discusses the implementation of the proposed adaptive tracking capacity
control method in a simulation, and then the results are analyzed and compared with those
of a previous method. Finally, this paper is concluded in Section 5.

2. Mathematical Model

In the process of adaptive capacity controller design for a job shop, a mathematical
model is an important factor for the controller’s design. In this section, a funnel-based
development model is discussed, and it integrates the customized flexibility of RMTs
within complex manufacturing processes [29,30]. In this model, the performance indicators
considered are the input rate, output rate, and WIP level; these are not of interest for any
single events or orders in the time domain. A general job shop manufacturing system,
which consists of n workstations, is shown in Figure 1 [5]. The parameters and variables in
the mathematical model of this system are shown in Table 1.

Due to the multiple parallel production paths of multiple products, the WIP levels
of all workstations are generally higher than those in flow shop processes. Therefore, all
machine tools are assumed to be working at the maximum productivity; then, the orders
of the output rates of each workstation can be assumed to be the sum of all machines’
capacities. Taking DMTs’ high productivity into account, the capacity of a workstation
includes the customizable part of DMTs and the changeable part of RMTs. This is given by

c̄i(t) = nD
i · vD

i + nR
i · vR

i . (1)
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Table 1. Variables within a job shop system with RMTs.

Variable Description

X I
ji(t) Order input rate from the jth to the ith workstation for j, i ∈ {1, . . . , n}

X I
i (t) Order input rate in the ith workstation for i ∈ {1, . . . , n}

XO
ij (t) Order output rate from the ith to jth workstation for i, j ∈ {1, . . . , n}

XO
i (t) Order output rate in ith workstation for i ∈ {1, . . . , n}
pij Order flow possibility from the ith to the jth workstation for i, j ∈ {0, . . . , n}
pi0 Order flow possibility from the ith workstation to final stage for i ∈ {1, . . . , n}
p0i Order flow possibility from an initial stage to the ith workstation for i ∈ {1, . . . , n}
nR Number of RMTs in the system
nD

i Number of DMTs in the ith workstation for i ∈ {1, . . . , n}
vD

i Order output rate of DMTs in the ith workstation for i ∈ {1, . . . , n}
vR

i Order output rate of RMTs in the ith workstation for i ∈ {1, . . . , n}
XD

i (t) Disturbances in the ith workstation for i ∈ {1, . . . , n}
ui(t) Number of RMTs in the ith workstation i ∈ {1, . . . , n}
yi(t) WIP level in the ith workstation i ∈ {1, . . . , n}

τ1 Transportation delay between workstations in X I
i (t)

τ2 Reconfiguration delay of RMTs in ui(t)

If the number of RMTs is considered as a single input, then the output rate of the
ith workstation is approximately equal to the capacity, which could be adjusted by the
assigned number of RMTs. Then, the output rate is represented by

XO
i (t) = nD

i · vD
i + ui(t) · vR

i . (2)

As one of the key performance indicators, WIP has a great influence on productivity,
delivery date, throughput, and cost. Therefore, the purpose of a capacity adjustment is to
guarantee that every workstation works on an expected WIP level. Then, the WIP of each
workstation can be described as the output signal of the model given by

yi(t) = yi(0) +
∫ t

0
X I

i (τ)− (nD
i · vD

i + ui(τ) · vR
i )dτ. (3)

However, customers’ demands are volatile, and delays, including transportation
delays between workstations and reconfiguration delays of RMTs, always exist; cf. Figure 1.
Considering these factors, the mathematical model can be represented by

yi(t) = yi(0) +
∫ t

0
X I

0i(τ − τ1) + XD
i (τ)

+
n

∑
j=1

pji · (nD
j · vD

j + uj(τ − τ2 − τ1) · vR
i )

− (nD
i · vD

i + ui(τ − τ2) · vR
i )dτ,

(4)

where the transportation time τ1 is constant in this paper, and the reconfiguration delay τ2
is δ when RMT changes its operation from one to another workstation, but it only exists in
the object, not in the original one. Thus, the reconfiguration delay is asynchronous and can
be represented by

τ2 =

{
δ, ui(t+) ≥ ui(t−),
0, else.

(5)
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X I
0i(t− τ1) X I

1i(t− τ1) X I
ji(t− τ1) · · ·· · · X I

ni(t− τ1)

X I
i (t− τ1)

XD
i (t)ri

ith workstation
ui(t− τ2) yi(t)

XO
i (t)

XO
i0(t) XO

i1(t)
· · ·

XO
ik(t)

· · ·
XO

in(t)

Figure 1. The general model structure of the n-workstation job shop system [31].

Furthermore, though the machine tools are assumed to be working at the maximum
production rate, the capacity of the whole system is limited, and it depends on the number
of RMTs in the job shop. For a job shop with n workstations and nR RMTs, the number of
RMTs at the jth workstation ui(t) is a non-negative integer, which can be described with
following constraints:

ui(t) ∈ N0 and
n

∑
i=1

ui(t) 6 nR. (6)

For these constraints, the truncation b·c and fractional approach [5] are utilized with

ûi(t) =



bui(t)c, if
n
∑

i=1
ui(t) ≤ nR nR

n
∑

j=1
uj(t)

ui(t)

, else.

Therefore, when the sum of the RMTs exceeds nR, ûi(t) is obtained with the fractional
discrete value. Otherwise, the truncated value ui(t) is chosen.

3. Operator-Based Adaptive Capacity Control

For the capacity controller design, an improved operator-based adaptive capacity
control method is proposed. Within this method, the multi-workstation job shop system
is firstly decoupled into a set number of SISO systems. Thereafter, a local controller of
the decoupled SISO system is designed based on operator theory, where an ISPI tracking
controller is proposed according to the RRCF (ISPI-RRCF) method, and a neuron algorithm
is used to optimize the parameters of the ISPI-RRCF controller. In this section, the content
includes the mathematical preliminaries of operator theory, the decoupling control of the
MIMO system, and the local adaptive capacity control of the decoupled SISO systems.

3.1. Mathematical Preliminaries

In operator theory, a job shop manufacturing system can be represented by an operator
Q, which is a mapping from the input space U to the output space Y. The domain and
range of Q are defined with D(Q) and R(Q), respectively. N (U, Y) donates the set of all
nonlinear operators, and the Lipschitz semi-norm of Q on N (Ds, Y) is defined via

‖Q‖ := sup
x,x̃∈Ds&x 6=x̃

‖Q(x)−Q(x̃)‖Y
‖x− x̃‖U

.
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For such complex job shop systems, the purpose is to design an adaptive capacity
controller to guarantee that the job shop works at a predefined level. When the semi-
norm is finite, the system is called finite-gain input–output stable (simply called ‘stable’).
The operator-based definitions and theorems are given as follows; cf. [5] for details.

Definition 1. Consider a causal and stabilizable operator Q : D(Q) → R(Q). It has the right
factorization Q = N ◦ D−1, where N is causal and stable, while D is causal, stable, and invertible.
Then, the right coprime factorization (RCF) of Q, which is shown in Figure 2, is defined based on
the Bezout identity:

R ◦ N + S ◦ D = M, (7)

where R : R(N) → D(Q) and S : R(D) → D(Q) are causal and stable, and M : D(Q) →
D(Q) is a unimodular operator.

u
D−1

w
N

y

R

l−

e
S−1

v

Figure 2. The right coprime factorization for an SISO system.

As shown in Figure 2, except for the input signal u and the output signal y, there exists
a quasi-state signal w from the right factorization. v and l are the referred and feedback
signals , and e is the error. With this definition, the dynamics of this control system can be
described with the following theorem [5].

Theorem 1. Consider a causal and stabilizable operator Q : D(Q)→ R(Q). If it has RCF, then
this system is stable and can be equivalent to y = N ◦M−1(v).

When considering bounded uncertainties or disturbances, if the above system Q still
has the right factorization with

Q = (N +4N) ◦ D−1 (8)

where4N is an unknown bounded operator, then the following definition is given.

Definition 2. Consider a bounded disturbed system Q (8). If there exist two operators R and S
satisfying the Bezout identity R ◦ (N +4N) + S ◦ D = M̃, then, the system has robust right
coprime factorization (RRCF), as shown in Figure 3, where M̃ is also a unimodular operator.

Similarly to the Theorem 1, the RRCF of the disturbed system can be equivalent
to y = (N +4N) ◦ M̃−1(v). These definitions provide an effective tool for the control
and analysis of a class of nonlinear systems, especially for complex dynamic job shops.
The details of the controller design process are introduced in the following; these include
the decoupling controller design for MIMO systems and the local adaptive capacity control
of SISO systems.
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u
D−1

w
N

y

4N

+

R

l−

e
S−1

v

Figure 3. Nonlinear feedback system with disturbances.

3.2. Decoupling Control for MIMO Systems

A multi-workstation, multi-product job shop manufacturing process is a typical
MIMO system with various delays, uncertainties, and couplings. From the definitions
in Section 3.1, RRCF was adopted in the capacity control of this system. Based on the
mathematical model in (4), the input rate from the initial stage X I

0i(t) was assumed to
randomly change with a Gaussian distribution, which was considered the uncertainty of
the system. The disturbance XD

i (t), e.g., the rush order, which was also from the initial
stage, was included in the uncertainty XD

i (t), which was represented by4Ni. Then, the
right factorization of the complex MIMO system was Q = (N +4N) ◦ D−1, where the N
and D were designed with

wi(t) = D−1
i (uj(t− τ2 − τ1))(ui(t− τ2))

= X I
0i(t− τ1) +

n

∑
j=1

pji · (nD
j · vD

j + uj(t− τ2 − τ1) · vR
j )

− (nD
i · vD

i + ui(t− τ2) · vR
i ) (9)

yi(t) =Ni +4Ni = yi(0) +
∫ t

0
wi(τ) + XD

i (τ)dτ. (10)

In (9), there are couplings among the input signals ui for i ∈ {1, . . . , n}, which can
be described as n linear equations. The solution is obtained with ui(·) = ∑n

j=1 Dij(wj)(·).
In order to simplify the computation for the RRCF-based capacity control of the MIMO
system, the following theorem is given for the decoupling controller design [5].

Theorem 2. Consider the decoupling control system shown in Figure 4. If there exists a linear
operator G and a stable and invertible operator Z with

n

∑
j=1,j 6=i

[Zij(wi)](wj) + Gi ◦ Dij(wj) = 0 (11)

Zii(wi) + Gi ◦ Dii(wi) = Li(wi) (12)

to ensure that Li is stable and invertible, then the MIMO system is decoupled, where
L = (L1, . . . , Ln) is the decoupled operator with vi = Li(wi).

u
D−1

w
N

4N

+

y

Z

−

ed
G−1

v

L−1

Figure 4. Decoupling structure of the MIMO system.

With this theorem, the stability of the decoupled job shop system can be proved based
on the following proposition (cf. Proposition 1 in [5] for a detailed proof).
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Proposition 1. Consider the system (4). Let the decoupling parameters hi be finite with |hi| 6= 1
vR

i
,

let G = (G1, . . . , Gn) be the identity operator, and let Zii be unimodular for i = 1, . . . , n, such that

n

∑
j=1,j 6=i

[Zij(wi)](wj) = −
n

∑
j=1,j 6=i

Gi ◦ Dij(wj),

holds; then,

Li(wi) = (hi −
1

vR
i
) · wi −

vD
i nD

i
vR

i
(13)

holds. Furthermore, Li(wi) is stable and invertible if nR is sufficiently large.

3.3. Local Adaptive Capacity Control

The above decoupling controller transformed the MIMO system into n independent
SISO systems. Then, while considering each decoupled SISO system, the local adaptive
capacity controller is designed in two parts, namely, the RRCF controller and adaptive
tracking controller for the robustness and tracking performance, respectively.

For the decoupled SISO system, the RRCF operators Ri and Si are designed with the
Bezout identity: Ri ◦ (Ni +4Ni) + Si ◦ Li = M̃i. Then, the following theorem is presented.

Theorem 3. Consider the MIMO system (4) with the decoupling controller in Proposition 1. If the
ith workstation has its local RRCF controller,

Ri(s(·)) = (1− Ki) · s(·)′ (14)

S−1
i (s(·)) =

(hivR
i − 1)s(·)
vR

i Ki
−

vD
i nD

i
vR

i
. (15)

for i = 1, 2, · · · , n, and the RRCF control parameter Ki ∈ (0, 1), then the feedback control system
shown in Figure 5 is stable.

ui
L−1

i

wi
Ni

yi

4Ni

+

Ri

li−

ei
S−1

i

vi

Figure 5. RRCF control of the decoupled MIMO systems.

Proof. The coupling system (4) can be represented with yi(t) = NiL−1
i for i = 1, 2, · · · , n

by using Proposition 1. According to the definition of RRCF 2, let

L−1
i (s(·)) =

s(·)vR
i + vD

i nD
i

hivR
i − 1

(16)

(Ni +4Ni)(s(·)) =
∫
(s(·))dt. (17)

Additionally, according to Theorem 1, the control system can be equivalent, and its
Lipschitz semi-norm is

‖Ni +4Ni‖ : = sup
s,s̄∈Ds&s 6=s̄

‖(Ni +4Ni)(s)− (Ni +4Ni)(s̄)‖Ys

‖s− s̄‖Us

< 1 + |XD(t)|. (18)
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Because the uncertainty XD
i (t) is bounded, the Lipschitz semi-norm ‖(Ni +4Ni)‖ is

finite. Finally, this can prove that the above local RRCF control system is stable.

Based on the RRCF controller designed for robust stability, a PI-type tracking controller
(PI-RRCF), as proposed in [16], was investigated. Though integration could eliminate static
differences and improve control accuracy, it may cause a large deviation in the system
output during the start-up or in face of significant changes with respect to the set value,
which would lead to the accumulation of integrations with the resulting overshoot or
oscillation [32]. To solve these problems, therefore, an integral-separation PI tracking
controller is proposed, which is called ISPI-RRCF algorithm; cf. Figure 6 for a sketch. Then,
the tracking controller Ci in the jth workstation is designed as

Ci(s(·)) = C0
i · s(·) + β · C1

i ·
∫

s(·) (19)

where C0
i and C1

i are tracking parameters, β is the integral term selector switch coefficient,
and ε is the threshold, i.e.,

β =

{
0 |s(·)| > ε

1 |s(·)| ≤ ε
(20)

ui
L−1

i

wi
Ni

yi

4Ni

+

Ri

li−

ei
S−1

i
−

ec
i

Ci

viri

Figure 6. Nonlinear feedback tracking control of the MIMO system.

From (19) and (20), it can be seen that the integration does not work in the case of
overshoot when the deviation exceeds the given threshold, and conversely. the integration
would be (re-)introduced to minimize the static error once the deviation falls into the
threshold. Now, the ISPI-RRCF feedback tracking control system is discussed with the
following theorem.

Theorem 4. Given the bounded and disturbed MIMO system (4) and the tracking operator Ci
in (19), the closed-loop system in Figure 6 is stable.

Proof. When the system is at the initial zero state, as shown in Figure 6, it obtains
yi = (Ni +4Ni)Ci(ec

i (·)) with

yi(t) =
∫

C0
i (e

c
i )(t) + βC1

i

∫
(ec

i )(τ)dτdt +
∫

C0
i (XD

i )(t) + βC1
i

∫
(XD

i )(τ)dτdt

=
∫

C0
i (ri − yi)(t) + βC1

i

∫
(ri − yi)(τ)dτdt +

∫
C0

i (XD
i )(t) + βC1

i

∫
(XD

i )(τ)dτdt.
(21)

By calculating the Laplace transformation of (21), it can be represented with

Q̂ : Yi(s) =
C0

i s + βC1
i

s2 + C0
i s + βC1

i
· (Ri(s) + Di(s)).
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Let Si(·) = Ri(·) + Di(·); then, the Lipschitz semi-norm is obtained via

‖Q̂‖ : = sup
F∈(0,∞)

sup
S 6=Ŝ

‖[Q̂(S)]F − [Q̂(Ŝ)]F‖
‖[S]F − [Ŝ]F‖

= sup
F∈(0,∞)

|
C0

i s + βC1
i

s2 + C0
i s + βC1

i
| ≤ 1.

(22)

Hence, the above feedback tracking control system is stable.

To improve the tracking control performance in complex dynamic environments,
the parameters of the PI-type control are usually adaptively tuned by metaheuristic al-
gorithms [33]. In this paper, an artificial neural network (ANN) method was considered,
and a single neuron was utilized to adaptively adjust the parameters of the tracking con-
trollers [34] (i.e., C0

i , C1
i in (19)). In this case, the inputs of the single neuron were defined as

xi0 = ec
i − ecp

i and xi1 = ec
i = ri − yi, i = 1, · · · , n, where ec

i is the error between the desired
and current feedback of the system, and ecp

i represents the previous error. By using the
connection weights of xij in the single neuron, the relationship between the input xij and
the ith output vi in the context of incremental PI control is given as

vi = vp
i + Ki

1

∑
j=0

ŵijxT
ij ŵij = wij/

∣∣∣∣∣ 1

∑
j=0

wij

∣∣∣∣∣ (23)

where wij is a weighting coefficient, and Ki > 0 is the proportional coefficient of the neuron.
Concerning the self-adaptive learning rules, the supervised Hebb learning algorithm was
adopted; this included the learning rate ξij > 0 and the correlative functions of input xij,
output vi, and output error ec

i of the neuron, i.e.,

wij := wij + ξijec
i vixT

ij (24)

With the update of the wij iteration, the parameters of the tracking controllers Cij, j =
0, 1 for all workstations would be changed, and satisfactory tracking performance could be
guaranteed in the presence of disturbances and delays.

Overall, the adaptive integral separation PI combined with the RRCF (ISPI-RRCF)
method for WIP tracking control via RMTs is outlined in Algorithm 1.

Algorithm 1 Framework of the adaptive ISPI-RRCF

Require: Given the MIMO system with disturbances Q = (N +4N) ◦D−1;
1: Transfer the MIMO system into a set number of SISO systems via decoupling controllers

Z and G;
2: Design RRCF controllers R and S for each decoupled SISO system (workstation) to

guarantee stability in the presence of uncertainty and delays.
3: Adopt ISPI controllers C for WIP tracking while decreasing overshoot;
4: Optimize the parameters of the C-based single neuron to improve the transient and

robustness performance;
Ensure: Converged WIP level (output) for each workstation within a given prescribed

threshold through the assignment of RMTs (input).

4. Numerical Simulation

In this paper, a job shop manufacturing process with four workstations and nR = 10
RMTs for three products [31] is considered. The flow probabilities between the workstations
were dynamically changed with volatile demands for three different types of products.
The system settings and simulation results are given below.
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4.1. Simulation Settings

The demands for the products were bounded and normally distributed in the form of
the randi([45, 56]) function, which was the uncertainty of the system. In terms of parameter
adjustments on the tracking controllers, the initial values of the weight and learning rate
of the single neuron were identical for both the PI-RRCF and ISPI-RRCF control systems.
The threshold in the ISPI-RRCF system was set to ε = [90 90 90 90]. The practical stability
region concerning the converged WIP level was set to±3 ∗ vRMT

j . The reconfiguration delay
of the RMTs was 2 h, and the transportation delay between each workstation was 1 h. With
these settings, together with those in Table 2, a performance analysis and a comparison of
both control systems are given in the following.

Table 2. Simulation settings of the case study [35].

Workstation 1 2 3 4

Initial WIP level 400 400 300 200
Referred WIP level 240 400 400 240
Number of DMTs 4 2 2 4
Output rate of DMTs 20 40 40 20
Output rate of RMTs 10 20 20 10

4.2. Dynamic Performance Analysis

The dynamic performance of each workstation and product in both the PI-RRCF
and ISPI-RRCF capacity control systems while facing stochastic demands are shown in
Figures 7–10. The dynamic optimization values of both the PI and ISPI tracking control
parameters with the single neuron are given in Figure 9.

In Figure 7, the blue and red lines represent the WIP levels controlled by PI-RRCF
and ISPI-RRC, respectively. In workstation 1, the initial WIP constantly increased with the
orders flowing into the workstation at the initial stage, which could cause a bottleneck.
This phenomenon can be explained—in the first few hours, the RMTs were not completely
reconfigured and assigned to workstations due to reconfiguration delays and transportation
delays (cf. Figure 8). However, the ISPI-RRCF control system showed a quicker response
than that of the PI-RRCF system in terms of assigning RMTs to the workstation in the case
of a bottleneck. After 20 h, the WIP levels were kept in the vicinity of the planned values
for both the ISPI-RRCF and PI-RRCF control systems. Nonetheless, the former showed
better dynamic performance with lower overshoots and shorter settling times. In contrast
to workstation 1, the initial WIP levels in the other workstations were lower than or equal
to their respective planned values. As the order outputs were higher than the input rates,
the WIP levels decreased in the first few hours. Later, with more orders flowing through
these workstations, the WIP started to increase and approach the planned levels. However,
due to the lag effect caused by delays and the accumulation of integration, PI-RRCF had a
higher overshoot and longer settling times. This indicated that, compared with the previous
PI-RRCF, the proposed ISPI-RRCF could effectively improve the transient performance to
avoid a high overshoot, which represented the bottleneck level and unbalanced capacity
distribution. This greatly improved the productivity and decreased the production costs.

Figure 8 shows the distribution of RMTs of each workstation in the capacity control
processes, which shows that the response in the ISPI-RRCF control system was quicker
than that of the PI-RRCF system in the assignment of RMTs to the required workstations.
With the orders flowing to the next workstations, two RMTs, one RMT, and one RMT
were, respectively, assigned to workstations 2, 3, and 4 at the 9th, 14th, and 15th hours,
respectively. However, in the PI-RRCF system, five RMTs, one RMT, one RMT, and one
RMT were, respectively, assigned to workstations 1, 2, 3, and 4 at the 5th, 9th, 27th, and
35th hours, respectively. Additionally, the ISPI-RRCF showed a bit less utilization of RMTs
while facing quickly changing customer demand, which could reduce the production
costs from the machine tools. Therefore, this indicates that the ISPI-RRCF could predict
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possible bottlenecks and assign enough RMTs to balance the capacity distribution by
using the customized flexibility of RMTs. This further illustrates the quicker response
in the ISPI-RRCF control system for effectively deducing high overshoots and avoiding
bottleneck problems, which highly decreased the production costs and improved the
dynamic performance.
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Figure 7. WIP levels of workstations for stochastic demands.
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For the tracking control parameter values, Figure 9 shows the dynamic optimization
results obtained by using the single neuron in both the PI-RRCF and ISPI-RRCF capacity
control processes. With the decoupling control, each workstation was an independent SISO
system. Therefore, the parameter optimization was relatively independent in both the
PI-RRCF and ISPI-RRCF systems. However, compared with Figure 8, the curves for the KP
(i.e., C0

i ) and KI (i.e., C1
i ) in ISPI-RRCF showed relatively stable behaviors after 10 h, while

the PI-RRCF took a longer time. The KI values in all workstations went toward 0 to avoid
high overshoots when the error was over set threshold in the ISPI-RRCF control system.
However, the KI values were not zeros in the PI-RRCF system, which explained one of
the reasons for the high overshoots. From the overall settings, these values had relatively
quicker updating in ISPI-RRCF in order to solve bottlenecks, and they had relatively stable
settings when facing bounded stochastic input rates. This illustrated the effectiveness of
the proposed adaptive algorithm based on a single neuron with supervised Hebb learning.
On the other hand, this could also imply the better dynamic and robust performances in
the ISPI-RRCF control system.
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Figure 9. Value of the tracking controller’s parameters.

Unlike the performance analysis in the workstations, the input and output rates of
each product were not independent, which caused dynamic changes in the workstations’
productivity. When facing stochastic demands, the input rates of each product were the
same in both control systems, as shown with the black lines in Figure 10. The blue and red
lines represent the product output rates in the PI-RRCF and ISPI-RRCF control systems.
Products 1, 2, and 3 were produced starting from the first, second, and first workstations
and were finished at the third, fourth, and fourth workstations, respectively. The output
rate of each product was produced by the DMTs at the beginning. With the additional
RMTs assigned to the later two workstations, the output rates were quickly increased
around the input rate in 20 h in the ISPI-RRCF system. However, the PI-RRCF system
took a longer time. Additionally, the output rates in ISPI-RRCF were around the input
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rate for most of the time, which showed that there was greater customer satisfaction in
this system. In summary, when facing stochastic customer demands, both control systems
were able to provide the required output products, while the proposed ISPI-RRCF system
still showed better dynamic performance with a quicker response for satisfying customers’
stochastic demands.

Considering the transient performance in the above figures, it was concluded that
both control systems could deal with stochastic demands to guarantee that the WIP of
workstations was kept in the vicinity of the desired level and that the output rate of the
products was kept close to the input rates. However, the proposed adaptive ISPI-RRCF
tracking capacity control system showed better behaviors with a quicker response and
lower overshoot. This indicated that the control system could significantly avoid serious
bottlenecks and quickly balance the capacity distribution to improve the productivity and
decrease the inventory and production costs, which also illustrated the effectiveness of the
proposed ISPI-RRCF method.
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Figure 10. Dynamic performance of the products.

4.3. Robustness Analysis

Stochastic customer demands and different types of products were considered when
measuring and analyzing the robustness of the capacity control systems. In this part, ro-
bustness was defined as the mean and standard deviation of the output variables. The dis-
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tribution of the error between the planned and current WIP at each workstation is given
in Figure 11. The blue and red error bars are the distributions of errors in the PI-RRCF
and ISPI-RRCF capacity control systems. These showed that the distributions in the red
bars of all workstations were highly concentrated, with smaller mean values and standard
deviations than those of the blue bars, which indicated that the WIP values of the worksta-
tions were distributed closer to the desired levels in the ISPI-RRCF system, with a higher
robustness. Additionally, the red error bars were distributed over zero, which meant that
the WIP levels of the workstations were lower than the planned level in most cases. This
illustrated the lower possibility of bottleneck occurrence in this control system.

Figure 12 shows the distribution of products while considering the input and output
rates. The black error bars present the distribution of order input rates. The blue and red
error bars in the PI-RRCF and ISPI-RRCF were relatively broad, but the latter distribution
was still relatively concentrated. This showed that the robustness when considering the
order output rate of products in the ISPI-RRCF system was still higher than that in the
PI-RRCF system.
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Figure 11. Error distributions between the planned and current WIP of the workstations.
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The overall statistics of the transient and robustness performance in both the ISPI-
RRCF and PI-RRCF control systems are summarized in Table 3. The mean number of RMTs
(MRMT) and standard deviation of RMTs (SDRMT) at each workstation were close in the
ISPI-RRCF and PI-RRCF control systems. Nonetheless, the mean value of the absolute
error (MAE) between the desired and actual WIP, as well as the standard deviation of the
absolute error (SDAE), were smaller in the ISPI-RRCF system, which further indicated
the higher robustness of this capacity control system. The transient performance when
considering the overshoot and settling times of these two control systems was also collected.
This further showed that the dynamic performance in the ISPI-RRCF system was better
than that in the PI-RRCF system, with smaller overshoots and shorter settling times.

Table 3. Statistics of the capacity control systems.

Number of the Workstation 1 2 3 4

MRMT in PI-RRCF 2.22 0.99 0.87 1.65
MRMT in ISPI-RRCF 2.23 1.01 0.87 1.66
SDRMT in PI-RRCF 1.22 0.41 0.69 1.52
SDRMT in ISPI-RRCF 1.17 0.52 0.49 1.11
MAE in PI-RRCF 18.85 34.62 51.97 60.90
MAE in ISPI-RRCF 17.24 13.25 26.65 21.55
SDAE in PI-RRCF 16.28 16.37 49.79 65.72
SDAE in ISPI-RRCF 10.43 10.46 28.89 34.74
Overshoots in PI-RRCF 0.72 0.15 0.41 0.96
Overshoots in ISPI-RRCF 0.60 0.14 0.02 0.12
Setting time in PI-RRCF 21 5 32 48
Setting time in ISPI-RRCF 6 5 13 18

In summary, for the capacity control of the complex job shop system with transporta-
tion delays, reconfiguration delays, and stochastic demand, the key system performance
indexes and control performance indexes are discussed. The system performance indexes
were represented by the WIP of the workstations and the output rate of the products,
while the control performance indexes were represented by the transients and robustness.
The performance of the proposed adaptive ISPI-RRCF and PI-RRCF control systems is
compared and analyzed in this section. The system performance indexes showed that both
control systems could keep the WIP and product output rate at the desired value to ensure
productivity and satisfy customer demands. However, ISPI-RRCF had better transient and
robustness performance in terms of its lower overshoots, shorter settling times, and smaller
means and standard deviations. This indicated that the proposed algorithm could greatly
improve the performance to avoid serious bottlenecks and balance the capacity distribution
for high productivity, low costs, and high customer satisfaction.

5. Conclusions

This paper focused on the adaptive tracking capacity control of complex job shops.
Considering stochastic customer demands, an improved ISPI-RRCF adaptive capacity
control method was proposed to enhance the transient and robustness performance. Con-
sidering the customized flexibility of RMTs and the complexity of job shops, including
stochastic customer demands, reconfiguration delays of RMTs, and transportation delays
between workstations, a funnel-based mathematical model was introduced for the capacity
controller design. Based on this model, an operator-based capacity controller was designed,
which included a decoupling controller for the MIMO system and, later, a local ISPI-RRCF
capacity controller for decoupled SISO systems. In particular, the local ISPI-RRCF con-
troller was designed by including an RRCF controller and ISPI tracking controller, where
the parameters were dynamically optimized by a single neuron based on the supervised
Hebb learning algorithm. The stability of the closed-loop system was theoretically proven
based on the Lipschitz norm. Finally, a case study for the capacity control of a job shop
system was implemented in a simulation. The transient and robustness performance of the
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proposed ISPI-RRCF control system was analyzed and compared with that of a previous
PI-RRCF control system. The results showed that when considering the system perfor-
mance indexes, both the proposed ISPI-RRCF and the previous PI-RRCF capacity control
systems could keep the WIP of all workstations in the vicinity of the planned levels and
could keep the output rate of the products close to the input rates. However, for the control
performance indexes, the proposed ISPI-RRCF system had a better transient performance
with smaller overshoots and shorter settling times, as well as better robustness, with a
smaller MAE and SDAE. Therefore, the effectiveness of the proposed adaptive ISPI-RRCF
capacity control algorithm could be proven due to the avoidance of serious bottlenecks
and the balancing of capacity distribution problems. This research also provides new
opportunities for manufacturers for higher productivity, lower costs, and greater customer
satisfaction when facing challenges from quickly changing markets, new technological
revolutions, and sustainable manufacturing.
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