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Abstract: Lithium is a chemical element on the cutting edge due to its lithium-ion batteries used
in both electronics and electric vehicles. The emerging use of lithium-ion batteries in electric ve-
hicles comes as a promising solution to sustain green transportation. The implications of green
transportation could be understood by exploring lithium production and its application concepts.
This article expands on those concepts by discussing the lithium supply and how vital lithium is to
green technology. Statistical analysis has been applied to determine: (1) The degree of balance and
interdependence between lithium raw materials and electric vehicle production, (2) the influence
of electric vehicle demand on lithium production, and (3) the contribution of electric vehicles to
reducing carbon emissions from road transport. This study provides necessary information on the
availability and demand for lithium, which could be the basis for drawing up policies for electric
vehicle expansion and lithium supply efficiency.

Keywords: lithium source; lithium production; lithium-ion battery; electric vehicles; carbon emissions;
green transport; climate change

1. Introduction

As the global population grows, so does travel and transportation demand, resulting
in increased fuel consumption. Thus, carbon dioxide (CO2) emissions and other gases such
as carbon monoxide (CO) and nitrogen oxide derivatives (NOx) gradually accumulate in
the atmosphere. The long-time dependence on fossil fuels has negatively affected the daily
lives of human beings. It causes climate change, geopolitical compromise, and unrest [1].
In particular, climate change has become a global matter to deal with. To tackle climate
change, governments and non-governmental organizations (NGOs) have signed different
treaties. The most known treaties are the Kyoto Protocol, the Paris Agreement, and the
UN Sustainable Development Goals [2,3]. All the member states that signed the treaties
agreed to reduce carbon emissions by enhancing green and renewable energy technologies.
This initiative directly touches on different sectors such as transportation systems, electric
power systems, and manufacturing. Transportation systems need to shift from fossil fuel
to electric vehicles, and electric power systems need to focus mostly on power storage. In
addition to electronics, both the above sectors need lithium batteries, thus skyrocketing the
global lithium demand.

The increasing demand for rechargeable equipment and portable electronic devices
(mostly laptops and cell phones that showed remarkable human dependence during the
COVID-19 pandemic [4]) requires the development of technology that enables energy
storage devices to have a high energy and power density [5]. Among them includes
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batteries [6–8] and super-capacitors [9–12]. Since Alessandro Volta invented the first
battery in 1801, the quest for high-performance batteries has continued, and some battery
technologies, such as Ni-MH [13,14], Ni-Cd [15], and Li-ion batteries [16–19], are now in
use. Among the most well-known batteries, lithium-ion batteries (LIB) have shown to have
the highest energy capacity, ranging from 120 to 200 Wh/kg [20], and they are welcome for
various application purposes [21], particularly in electronics and electric vehicles [16,22–25],
which are considered the next generation to reduce CO2 emissions.

Numerous factors are pushing the use of LIB, such as climate change, non-steady
prices of fossil fuels, and the increasing geopolitical conflicts linked to fossil fuels. The
current emergency of reducing CO2 emissions has made a rush to change from fossil energy-
transportation dependence to green transportation, requiring large manufacturing of LIB.
Lithium demand has significantly risen in recent years due to its industrial importance
in manufacturing LIBs. Their applications were initially focused on electronic devices;
however, in the last decade, their focus has shifted to electric vehicles [26]. Up to the
present, global transport commonly relies on the fossil resource “petroleum”, whereby
more than half of global oil consumption goes to the transport sector [18]. The increasing
price of fuel cannot be seen only as a problem for gasoline vehicles, it can also be seen as an
advantage for the electric vehicle market. As the fuel price swings, people prefer to shift to
electric vehicles.

1.1. Impact of Fossil Fuels on the Climate

According to Gates [27], the mass consumption of fossil fuels is not environmentally
friendly and is contributing greatly to the rise in global average temperatures. Gil-Alana
and Monge [28] said that CO2 from fossil fuel combustion alone accounts for 70% of total
greenhouse gas emissions. It includes oil combustion, coal, peat, and other natural gases
that release carbon dioxide into the atmosphere. The increasing number of fuel-consuming
vehicles contributes significantly to carbon emissions and air pollution [29]. By taking into
account the transport sector, it contributes about 23% of global greenhouse emissions, of
which approximately 73% are emitted from road transport [30,31]. If the emissions from all
the transport means (i.e., air, water, and road transport) are considered, passenger vehicles
(public and private) contribute more than half (Figure 1). According to Gates [27], there
is a high risk of continuous global temperature growth if nothing is done to contain CO2
emissions. He also predicted the temperature changes based on the possible circumstances
of future carbon emissions. His predictions show that (1) temperature may continue to rise
if the CO2 emissions continue to rise; (2) temperature may fall if CO2 emissions slow; and
(3) temperature will drop if more CO2 is removed than emitted. These emissions cause a
threat to global health, the economy, and social sustainability.

Due to the recent devastating consequences of climate change [32] and the non-steady
price of oil, mostly created by geopolitical conflict [17,33], it seems irresponsible to not
think about alternatives to fossil fuels. Among the promising alternatives include the
use of biofuels, natural gas [33] and LIBs. As it becomes a global goal to reduce carbon
emissions [34], almost all countries have developed new policies to reduce greenhouse gas
emissions up to zero [30] starting from the transportation sector. However, transitioning
to zero emissions requires cracking down on all modes of transportation and reducing
their emissions to zero, which will not be an easy task. Even though it has become an
emergency to replace fuel vehicles, we cannot ignore the fact that nearly the entire supply
chain emits carbon dioxide into the atmosphere. It includes the emissions that occur during
the mining activities, oil production process, upgrading and transport to the refinery,
manufacturing, etc.
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Figure 1. Transportation carbon emissions by sub-sectors. Data from [35,36].

Finding a solution becomes a global responsibility for exploring promising opportuni-
ties to shape fossil-fuel-free transportation systems. The technology of this system could
shape the future transport systems [16] that should be in agreement with the reduction of
CO2 emissions [37]. In the battle to reduce carbon emissions from transport, lithium plays a
pillar role to manufacture LIB that are used in the current green transportation technology.
The public and governments adopted LIB electric vehicles as the technology with clear
performance advantages and high energy storage compared to the other battery types [38].

As electric vehicle demand goes up, so does lithium raw materials (LRM) demand. The
rise in lithium demand may require additional knowledge of lithium to be attached. The
knowledge of the currently available lithium production, resources, reserves, growth rate of
demand, and future supply is eminent. For this reason, the article focuses on the properties
of lithium mineral production and examines how important lithium is in terms of green
transportation technology. It is done by looking at the connection between LRM (lithium
production), the demand for electric vehicles, and other factors that are important for green
transportation. The authors assume that the increase in EVs, leading to an increase in
lithium production, contributes to the reduction of CO2 emissions from road transportation.
This article is an associated output of the project “SMART technologies to improve the
quality of life in cities and regions”, which aims to improve urban life by means of modern
technologies and the use of SMART methods.

1.2. Lithium Properties and General Applications

Lithium is the lightest metal and the least dense solid element. It is a soft silver-white
metal classified in the alkali group of the periodic table of elements. It is as highly reactive
and flammable as other alkali elements. Those properties make lithium only exist in nature
as compounds (ionic form), mostly in the form of carbonates. Because of such physical
and chemical properties, industries usually use lithium carbonate in various industrial,
technical, medical, and other applications [28]. It is traded in two main compounds, which
are Li2CO3 and LiOH [39,40], and both compounds make up the largest part of lithium
available on the market. According to Jaskula [41], lithium global end-use markets are
divided into seven applications, including batteries, with a large share of 74%, followed
by ceramics and glass with 14%, and others (Figure 2). Its applications in manufacturing
lithium-ion batteries have undergone a tremendous increase from 23% in 2010 [42] to 74%
of total traded lithium in 2021 [41]. Price gradually increased following the adoption of
electric vehicles; for example, the average price of lithium carbonate increased from around
USD 5000 in 2010 [43] to USD 17,000 per ton in 2021 [41].
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1.3. Properties of Lithium towards Lithium-Ion Battery

Lithium, like other metals, oxidizes in the air to form Li2O, Li3N, Li2CO3, and LiOH.
Among them, Li2CO3 is the favorable product of weathering lithium metal. However,
the oxidation rate remains relatively low, resulting in the inefficiency of the process [44].
Not only does the air influence the oxidation of lithium, but also other parameters such
as humidity, the atmosphere composition, duration of exposition to the air, temperature,
and thickness of lithium-sheets are involved [45]. The study by Kahl et al. [44] revealed
that it requires two days to complete the oxidation of 1 mm of lithium-sheet thickness at
constant ambient temperature. The oxidation speed and efficiency can be accelerated by
higher temperatures [19]. Those properties of resisting oxidation in ambient conditions
make lithium a selective element to be used as an anode for batteries. However, once the
reaction is accelerated by a high temperature, lithium creates a high affinity with oxygen
and nitrogen. Even efficient or fast oxidation is successful at higher temperatures [44,45],
resulting in the non-recycling of lithium-anode production residues. Table 1 lists the types
of LIB based on the applications.

Table 1. Applications of different Lithium-ion batteries. Adapted from [43,46].

Type Applications Estimated Global Market Share (%)

Primary Lithium They are single-use LIB for electronics, that
range from button cells to car batteries. n/a

Lithium cobalt oxide (LiCoO2)

They have the high energy storage density
required for portable electronics. Thus, used
in portable electronic devices (e.g., phones,

laptops, tablets, cameras, etc.).

37.2

Lithium nickel manganese cobalt oxide
(NMC) (LiNiMnCoO2)

They are used in power tools, EVs, energy
storage, and medical devices. 29

Lithium manganese oxide (LiMn2O4)

It has a shorter life than others and has a high
discharge or recharge with better thermal

stability. It is used in power tools, EVs, and
medical devices.

21.4

Lithium nickel oxide (LiNiO2) They are used in EVs. 7.2

Lithium iron phosphate (LiFePO4)
Not thermally stable as other cathodes. They

are used in energy storage tools, EVs, and
medical devices

5.2



Appl. Sci. 2023, 13, 405 5 of 26

1.4. Lithium in Electric Vehicles

Lithium was first used in batteries in the 1970s [47], and it has since been used in
a wide variety of applications. Those batteries are categorized as: (1) Primary batteries
that are single-discharge. They have high charge density, light, and long life. However,
their high cost per unit is still a burden to the consumers; (2) secondary batteries that are
rechargeable. These rechargeable batteries are those used in electric vehicles, which are in
high demand, necessitating a large amount of lithium production.

Electric vehicles are defined as vehicles powered by an onboard battery that can be
charged from an external source of electricity. It includes plug-in hybrid electric vehicles
(PHEVs) and battery electric vehicles (BEVs) [48]. Electric vehicles are often referred to
as “plug-in electric vehicles” (PEVs). Since climate change has become a global concern,
carbon emissions has been identified as one of the biggest contributors to global warming.
The electric vehicles have become a major project introduced to reduce carbon emitted from
road transportation. In this process, lithium plays a significant role in making batteries
capable of saving electric power (Figure 3).
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Currently, there are three types of electric vehicles (Table 2) that use lithium-ion
batteries, and they are classified based on their technology and the type of connection to
the power grid.

Table 2. Types of electric vehicles based on battery technology. Data from [29].

Types of Electric Vehicles Descriptions

All-electric Vehicles

All-electric vehicles are the first generation of EVs that use the energy stored in
batteries to power electric motors and provide propulsion power. They are called
non-polluting vehicles or zero pollution vehicles. They are plug-in electric vehicles

(PEVs). Although they have the advantage of being charged to the power grid
either at home or in public places, their batteries are of limited capacity and cannot
run long distances. They do not give off any greenhouse gases at all and can be

charged with energy from renewable sources.

Hybrid Electric Vehicles (HEVs)

They have both a fuel engine and an electric motor. Their battery capacity is
sufficient to save energy from the fuel engine and brakes. About 1.5 million HEVs
have been sold in the last decade. However, they are dependent on the fossil fuel

consumption engine.

Plug-in Hybrid Electric Vehicles (PHEVs)

They are combinations of Hybrid Electric Vehicles (HEVs) and All-Electric Vehicles.
Their batteries require more capacity than HEVs because they are rechargeable

from the power grid. The PHEV battery must be capable of fast discharge and fast
recharge. It is therefore possible to travel longer distances.
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1.5. Lithium Sources

The major sources of lithium are contained in three main deposit types: pegmatites, con-
tinental brines, and hydrothermally altered clays [49]. Chile contains 41% of global reserves
and is located within brine lake and salt crust deposits (sometimes called salars) [50,51]. Due
to numerous faults and volcanic eruptions presented in the Chile region [49], it estimates to
have a huge reserve of up to 120 thousand square kilometers [51]. Brines with a lithium
high concentration of about 0.3% are found in the Salars of Chile, Bolivia, and Argentina,
while lower concentrations are found in the United States (such as Kings Mountain Belt,
Smackover, Salton Sea, Great Salt Lake, etc.) [52] and the Tibetan Plateau [26,53]. Pegmatites
formed as a result of the crystallization of magma at depth in the crust and have consider-
able lithium deposits, like in Australia [52]. It can also be recovered from clays [54,55] in
various ratios using techniques described in Talens Peiró et al. [26], and seawater [54,55]
using an adsorption technique [56] and other techniques described in [26,56]. However,
the recovered lithium concentration in seawater is relatively small at 0.17ppm compared to
that of salars between 1000–3000 ppm [26].

Many sources report different reserve estimates. The assumption of different studies
estimates a range of 4–30 million tons [54,57]. The highest estimate was in 2011 when they
estimated 39 million tons [54], but the most recent data of 2022 estimated a rounded number
of 22 million tons [41]. This difference in estimation is due to the feasible assumption of
lithium recovery that is different from one researcher to another. Kunasz [58] doubted the
estimation method by saying that some of the calculation methods used are overvalued
due to the use of hard rock deposit guidelines in estimating brine resources. He argued
that resources may turn into reserves following the advancement of extraction and pro-
duction technology. Based on the three main types of lithium deposits (pegmatite and
spodumene, mineralized springs, and salar sediments) with a grade range of between 1%
and 2.31%, there is an estimated 1.27 million tons of Li2O. All these deposits are available
in Afghanistan and can probably make Afghanistan the global lithium mining hub [26].
Countries with reserves and their mineral deposits are listed in Table 3.

Table 3. Main lithium-bearing minerals that have greater lithium content by countries. Adapted from [18].

Country Main Mineral Formula Lithium Content (%)

Afghanistan spodumene LiAlSi2O6 3.73
Australia spodumene LiAlSi2O6 3.73
Austria spodumene LiAlSi2O6 3.73

Brazile
Petalite LiAlSi4O10 2.09

spodumene LiAlSi2O6 3.73

Canada
spodumene LiAlSi2O6 3.73
pegmatites Unspecified 0.49

petalite LiAlSi4O10 2.09

China
Lepidolite KLi2Al(Al,Si)3O10(F,OH)2 3.58

spodumene LiAlSi2O6 3.73
petalite LiAlSi4O10 2.09

DRC spodumene LiAlSi2O6 3.73
Finland spodumene LiAlSi2O6 3.73

Mali Amblygonite (Li,Na)AlPO4(F,OH) 3.44
Portugal Petalite LiAlSi4O10 2.09
Namibia Petalite LiAlSi4O10 2.09

Russia
pegmatites not specified 0.49
Lepidolite KLi2Al(Al,Si)3O10(F,OH)2 3.58

spodumene LiAlSi2O6 3.73
Serbia Jadarite LiNaSiB3O7(OH) 3.16
Spain Lepidolite KLi2Al(Al,Si)3O10(F,OH)2 3.58

Sweden spodumene LiAlSi2O6 3.73
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Table 3. Cont.

Country Main Mineral Formula Lithium Content (%)

USA
spodumene LiAlSi2O6 3.73
pegmatites Not specified 0.49
Hectorite Na0.3(Mg,Li)3Si4O10(OH)2 0.53

Zimbabwe
pegmatites Not specified 0.49
spodumene LiAlSi2O6 3.73

2. Data and Methods

This research was carried out in a methodical manner using quantitative research
theories as a guide. It was necessary to construct a research design (Figure 4) that outlines
the complete process of the study in order to make sure that the data collection and analysis
go as smoothly as possible.
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Figure 4. Conceptual research design.

The study follows the correlation research guidelines to establish a relationship be-
tween LRM, EVs, and CO2 emissions from road transportation. The influence of EVs on
LRM production has also been investigated. Moreover, the other parameters involved in the
green transportation cycle have also been observed. Archival data, one of the correlational
research methods, has been used to collect data. This method helps track the statistical
patterns of the above-said variables. The data collected spanned a decade (since 2010),
which was chosen based on the time span of the EVs’ significance increase.

Sets of data have been collected from different sources, including public sources
and specialized institutions, and published articles. The US Geological Survey (USGS)
conducts research and publishes annual reports on global mineral commodities. Its reports
have been used to sort data on lithium resources, production, and reserves [59]. Many
studies of lithium minerals have previously been conducted [18,26,39,40,46,60–62] and their
important data for this study were collected and reviewed. The carbon emissions and global
temperature-related data have been collected from public institutions’ websites [63,64] and
in various research articles like [27,30,65–67]. Canalys [68], IEA, and other publications
provide data that helps to obtain an understanding of LIB manufacturing, consumption,
and electric vehicles [29,69–72].
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Statistical analysis has been conducted to examine and verify the hypothesis. For
instance, Pearson correlation analysis was applied to identify the interdependence between
lithium and electric vehicles, which in turn determines the degree of green transport. The
correlation coefficient Equation (1) that fits the entire value of a variable between −1 and 1
has been used to measure the strength of the relationship between lithium production and
EV sales and other related factors.

r = ∑ (xi− x)(yi− y)√
∑ (xi− x)2∑(yi− y)2

(1)

where r stands for correlation coefficient, xi stands for the values of the x-variable in a
sample, x represents the mean of the x-variable, yi stands for the values of the y-variable in
a sample, and y stands for the mean of the y-variable.

According to the characteristics of green transport cycle parameters, EV was identified
as a control factor that may influence the behavior of other variables. To investigate its
influence on lithium production, an algorithm (Algorithm 1) has been applied. It is seen
that the timing and manufacturing of EVs are influenced externally by different factors,
including EV market demand and the availability of EV stocks. That market demand seems
to be the trigger for the entire process. The algorithm has been used to demonstrate how EV
demand initiates and dictates the entire system of EV manufacturing and the raw material
supply chain. Number of EV demand was taken as input of the algorithm to run.

Algorithm 1. Global impact of electric vehicle market demand on lithium production

Let n be the number of EV in EV stock and C be the threshold value for allowed CO2
Input: n, EV market demand
Output: Correlation between EV sales, EV stock, LIB production, CO2, CS and LRM

1 Initialization of variables: assign n to EV stock
2 Procedure (EV market demand)
3 EV market demand→ EV sales //
4 EV sales→ EV stock
5 while (Li resources! = Ø) do:
6 for each year do:
7 measure CO2
8 check n in EV stock
9 if n ≤ minimum AND CO2 < C do:
10 extract LRM
11 produce LIB
12 if EV demand > EV stock do:
13 increase charging stations
14 end if
15 end if
16 end for
17 end while
18 End procedure

3. Results

After conducting the statistical analysis on the variables, the correlation matrix that
shows the core relationship between them was produced in Table 4. Both the results of
the above algorithm and correlation coefficients have used to construct Figure 5. Here, the
data used in algorithm and correlation coefficient calculation were collected from different
sources, including EV charging stations (slow and fast chargers) [73], global EV sales [74],
global electric vehicle stock and market share [75], and CO2 emissions [76].
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Table 4. Correlation coefficients of parameters involved in the lithium-EV simplified supply channel.
LRM: Lithium Raw Materials, CS: Charging Stations, LIB: Lithium-ion Batteries, EV: Electric Vehicle,
CO2: Carbon dioxide emitted from road transport.

Parameters LRM CS LIB EV Sales EV Stock CO2

LRM 1
CS 0.84 1
LIB 0.89 0.98 1
EV sales 0.91 0.99 0.99 1
EV Stock 0.88 1.00 0.99 0.99 1
CO2 −0.80 −0.98 −0.96 −0.96 −0.97 1
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Here, all six (6) variables involved in the cycle, which are LIB, CS, LRM, EV sales,
EV stock, and CO2 emissions from road transport, have been examined. Apart from the
EV sales factor, which is considered the skeleton of the entire system, some other factors
have either direct or indirect influence on others. In Figure 5, black line arrows that show
direct influence and dash line arrows that show indirect influence were used to briefly
explain the influential relationship between variables. Considering the arrows of “direct or
indirect implication” in Figure 5, it shows that EV sales have a direct influence on the other
variables. The quantity of LRM supply depends on the market demand for EVs, leading
to the proportionality of the LIB required to respond on the EV demand. The quantity of
EV demand and LIB necessary to the market eventually determine how much quantity of
lithium needed. Once the necessary LRM are produced, the manufacturing system starts.
Hence, the EV demand or EV sales are considered as a trigger that sends signals to the
lithium production field, and the availability of lithium determines the initiation of the
manufacturing operation. Thus, the lithium raw materials is referred to as system initiator.

CO2 emissions variable is the universal recipient of other variables’ influences, and all
of them implicate indirect influence on it except EV sales. Regardless, the direct or indirect
influence, correlation coefficients between them remain high. Correlation coefficients
determine the degree of interdependence between variables. The higher the correlation
coefficient between them is, the higher the interdependence within the system.
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The increasing electric vehicles demand is remotely controlling the lithium supply
chain from mining sites. The assessment of impact of the increasing electric vehicle demand
for lithium has been evaluated based on three intercorrelated groups (Figure 6). These
groups were formed based on the production environment and the correlation between
them. The variables with the same environment of production or same effect are more
correlated, and they are placed into the same group.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 29 
 

CO2 emissions variable is the universal recipient of other variables’ influences, and 
all of them implicate indirect influence on it except EV sales. Regardless, the direct or in-
direct influence, correlation coefficients between them remain high. Correlation coeffi-
cients determine the degree of interdependence between variables. The higher the corre-
lation coefficient between them is, the higher the interdependence within the system. 

The increasing electric vehicles demand is remotely controlling the lithium supply 
chain from mining sites. The assessment of impact of the increasing electric vehicle de-
mand for lithium has been evaluated based on three intercorrelated groups (Error! Refer-
ence source not found.). These groups were formed based on the production environment 
and the correlation between them. The variables with the same environment of produc-
tion or same effect are more correlated, and they are placed into the same group. 

 
Figure 6. Closed loop of lithium supply chain and its transformation toward EVs. 

3.1. First Group: “Mining Effect” 
It stands for the activities that occur in the mining field and presents the data mostly 

collected on the ground by different methods such as geochemical, geological, and geo-
physical surveys. This group positively or negatively responds to the EV demand. The 
increase in EV demand stimulates the increase production of this group variables. Taking 
an example of the last two decades, the yearly average growth of lithium production, re-
sources, and reserves was 11%, 11%, and 12%, respectively. Due to the proportionality 
between them, either an increase or decrease in one of them will directly impact the others. 
Error! Reference source not found. shows that the timing of the remarkable growth of 
lithium raw materials started after the electric vehicle became targeted transportation 
method in the global market around 2010. 

Figure 6. Closed loop of lithium supply chain and its transformation toward EVs.

3.1. First Group: “Mining Effect”

It stands for the activities that occur in the mining field and presents the data mostly
collected on the ground by different methods such as geochemical, geological, and geophys-
ical surveys. This group positively or negatively responds to the EV demand. The increase
in EV demand stimulates the increase production of this group variables. Taking an exam-
ple of the last two decades, the yearly average growth of lithium production, resources,
and reserves was 11%, 11%, and 12%, respectively. Due to the proportionality between
them, either an increase or decrease in one of them will directly impact the others. Figure 7
shows that the timing of the remarkable growth of lithium raw materials started after the
electric vehicle became targeted transportation method in the global market around 2010.

However, due to COVID-19 pandemic travel restrictions that disturbed the global
supply chain [77], and the consequences of lithium overproduction in 2017 and 2018 that
declined price [78], production in 2019 and 2020 has declined. The exploration outcomes
did not cease, which is shown by the gradual growth of new resources and reserves. After
the pandemic, there was a lot of demand for lithium raw materials, which caused a lot of
them to be produced.

The strong correlation coefficients between mining effect variables indicate that the
availability of LRM in its current state is promising to positively respond to the EV demand.
As shown in Table 5, there is a strong positive correlation between all three variables. This
positive correlation, especially between the growth of lithium production and resources,
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may predict a prominent rise in LIB production for EVs and for other LIB-dependent
devices.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 29 
 

 
Figure 7. Trends of Lithium production (102), resources (105), and reserves (105) between 1994 and 
2021. 

However, due to COVID-19 pandemic travel restrictions that disturbed the global 
supply chain [77], and the consequences of lithium overproduction in 2017 and 2018 that 
declined price [78], production in 2019 and 2020 has declined. The exploration outcomes 
did not cease, which is shown by the gradual growth of new resources and reserves. After 
the pandemic, there was a lot of demand for lithium raw materials, which caused a lot of 
them to be produced. 

The strong correlation coefficients between mining effect variables indicate that the 
availability of LRM in its current state is promising to positively respond to the EV de-
mand. As shown in Error! Reference source not found., there is a strong positive correla-
tion between all three variables. This positive correlation, especially between the growth 
of lithium production and resources, may predict a prominent rise in LIB production for 
EVs and for other LIB-dependent devices. 

Table 5. Pearson correlation of mines effect group at a significant level of 0.01. 

Parameters Lithium Production Lithium Resources Lithium Reserves 
Lithium Production 1   
Lithium Resources 0.958 1  
Lithium Reserves 0.87 0.959 1 

The gradual rise of lithium production, which is proportional to lithium resources 
and reserves, can be one of the characteristics of the continuous growth of LIB manufac-
turing and continuous positively respond to EV demand. Even though EV demand is in-
creasing, lithium production never stops, and LIB production did not suffer much during 
COVID-19 [77], demonstrating that there is a good correlation of continuous supply ac-
cording to market needs. 

3.2. Second Group: “Industrial Effect” 
It stands for the activities that take place in the refineries, factories, and industries, or 

activities that involve industrial technology. The LRM is assumed to be measured in terms 
of lithium production from the first group of mining effects. The quantity of LRM that 
reach industries may determine the quantity of the LIB to be produced. 

0
100
200
300
400
500
600
700
800
900

1000

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

M
et

ri
c 

to
ns

Years

Lithium production Lithium resources Lithium reserves

Figure 7. Trends of Lithium production (102), resources (105), and reserves (105) between 1994
and 2021.

Table 5. Pearson correlation of mines effect group at a significant level of 0.01.

Parameters Lithium Production Lithium Resources Lithium Reserves

Lithium Production 1
Lithium Resources 0.958 1
Lithium Reserves 0.87 0.959 1

The gradual rise of lithium production, which is proportional to lithium resources and
reserves, can be one of the characteristics of the continuous growth of LIB manufacturing
and continuous positively respond to EV demand. Even though EV demand is increasing,
lithium production never stops, and LIB production did not suffer much during COVID-
19 [77], demonstrating that there is a good correlation of continuous supply according to
market needs.

3.2. Second Group: “Industrial Effect”

It stands for the activities that take place in the refineries, factories, and industries,
or activities that involve industrial technology. The LRM is assumed to be measured in
terms of lithium production from the first group of mining effects. The quantity of LRM
that reach industries may determine the quantity of the LIB to be produced.

Generally, the number of batteries installed in each EV is known based on the size and
use of the vehicle, and the amount of lithium needed in each battery based on the vehicle
type (BEV, PHEV, or HEV) is also known [26]. However, it could be a hard task to count
electric vehicles manufactured based on production batteries or vice versa. The demand for
lithium and EV can be estimated based on the market growth, and the previous statistics of
production can be the basis for assessing market demand satisfaction.

There is something crucial in this group, which is the “infrastructure”. It can be con-
sidered as the skeleton of the entire cycle of green transport. It does not matter how many
batteries or EV are manufactured, they will all need infrastructure to operate. Among them,
some are major and others are minor; here we only point out major infrastructures, which
are power grids and charging stations. The availability and accessibility of charging stations
are essential factors to consider while adopting EVs in the transportation system. Even
though there is a range anxiety developed around those infrastructures, it has proven to be
an effective green technology that can effectively reduce CO2 emissions. As governments
set a timeline target for implementing full adoption of EVs, there should be cooperation
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with automakers to boost the effort of constructing more EV charging stations as fast as
they can. The availability of the aforementioned infrastructures determines the degree of
development in adopting green transport. Figure 8 show the interdependence between
industrial effect variables. The strong positive correlation coefficient between LRM and LIB
(0.894) indicates the growth of pairs sustainably.
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China, as the largest consumer of EVs and LIB production, is investing heavily in
constructing EV charging stations [79], marking a non-backing step towards green trans-
portation. Due to the proportional relationship between LIB and charging stations, the
augmentation of EV sales may trigger an increase in both LIB and LRM.

3.3. Third Group: “Public Effect”

It is the consumption stage that is played by the public whereby the use of all products
containing LIB occurs. This stage gives the properties of evaluating the adoption of EVs as
green transport. The evaluation includes the increase of EVs on the road and the reduction
of CO2 emitted from roads. From observation of Table 4 and Figure 9, there are two sets
of results to be distinguished. The first set is made up of negative correlations between
CO2 emitted by vehicles and global EV sales (−0.96), and CO2 emitted by vehicles and
EV stock (−0.97). The negative correlation indicates the significant contribution of EVs in
reducing road CO2 emissions. The second set is made up of a positive correlation between
EV stock and EV sales (0.99). The rise of EV sales and stock shows a strong signal for
accepting the use of EV in transportation. It significantly contributes to the decrease of
the CO2 emitted from road transport, which was the philosophy and objective behind the
adoption of electric vehicles. It predicts a significant reduction in CO2 emissions if the
public quickly shifts from gasoline to electric vehicles.

The increase of EV in public gradually declines the CO2 emitted by transportation.
Referring to the results presented in Figure 9, the negative correlation indicates that the
increase in EV (notably green transport) contributes to the decline in carbon emissions.
However, it is pity to say that even if the CO2 emitted by vehicles declined, there is no sign
of global temperature reduction because of the gradual increase of CO2 emissions from
other sources, which made global total CO2 emissions stay on the rise. It is believed that
in the next decade, the proportional relationship between carbon emissions and global
warming will be heavily dependent on the growth of EV consumption. Both of them are
inversely proportional to green transport, which means the significant quantity of EVs
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consumed by the public may directly control carbon emissions and indirectly contribute to
the control of global warming.
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4. Discussion
4.1. Manufacturing of Lithium-Ion Battery and Demand

The rapid rise of LIB and EVs (Figure 10) is inevitable due to the positive mindset of
climate change activists towards reducing carbon emissions. The prediction shows that
it will reach around 9000 GWh in 2030 [80]. This rapid shift in transportation methods
creates competition among governments (with the help of EV manufacturers) to the point
where having a large capacity of domestic LIB manufacturing becomes a source of pride
for a country for being ahead of the pack in the race of EV technology. The country with
the highest manufacturing rate of LIB in terms of GWh corresponds to its access to raw
materials. Access to LIB raw materials created a significant gap in the capacity of countries
to produce LIB. For instance, as shown by statistics of 2021 [81], China is leading the race
with 79% of the global LIB GWh production, while the United States comes second with
6.2%. China is not only dominating LIB production but also leading the battery supply
chain as the largest exporter of LIB [82].

According to Alice and Sumangil [81], LIB production (GWh) will triple between
2020 and 2025. By accounting for global LIB production, including passenger electric
vehicles, electric two/three-wheelers, electric buses, energy storage systems, electric trucks,
consumer electronics, and electric off-highway vehicles, it may reach 900 GWh in 2023 [83],
and by considering total LIB production regardless of the uses, it may cross 1330 GWh
in 2023 [80]. At present, approximately 90% of global battery research is focusing on
LIB since NiMH has reached its fundamental technical limits [84]. The decline of NiMH
advantages LIB to become the dominant technology as predicted by [85] and proven to
be the most promising technology for EVs. The amount of lithium used in LIB varies
based on the battery chemistry and type of electric vehicle [86]. However, regardless of
the chemistry of the cathode and anode, the lithium amount in a battery can vary between
0.17 kg and 12.68 kg [26]. Thus, both properties are crucial during the estimate calculation
of lithium demand.
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4.2. Advantages of Lithium-Ion Batteries

The development of new battery components that will considerably boost the real-
world performance of LIB has been the main focus of research in the field of battery
chemistry. Over the last decade, the cathode, anode, binder, and polymer’s fundamental
performances have been independently improved through meticulous chemical composi-
tion alteration.

A new generation of electrochemical generators was created in the middle of the
1960s by using a very pure lithium-metal foil on an anode and a lithium salt solution as an
electrolyte. The experimental development of LIB was in parallel with many other batteries
such as nickel-metal hydride (Ni-MH) and nickel-cadmium (Ni-Cd) batteries. However, the
performance of lithium batteries was far better than that of other types. That advantageous
performance lies in the lithium ions Equation (2) produced through a straightforward
reaction that releases one electron through the external circuit and introduces one ion into
the cathode’s porous structure [88] (Figure 11).

Li→ Li+ + e− (2)
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The era of digitalization always considers time minimization as a primary goal. The
same modern technology is focusing on new discoveries that enhance efficiency, durability,
and time-saving. By considering such factors, LIB has more convincing advantages over
other types of batteries. These advantages include a low memory effect, a high specific
power of about 300 W/kg with a high specific energy of 100 Wh/kg, and a long life
of 1000 cycles [38,91]. These excellent characteristics make LIB preferred over nickel–
metal hydride batteries (NiMH) as reliable energy storage technology for electric vehicles.
Interestingly, the energy storage density of LIB is twice that of NiMH batteries. Apart from
its high energy density [92], LIB has shown good performance in high-temperatures and is
also recyclable [38].

4.3. Lithium and Electric Vehicles Market

Recently, lithium supply has become an expanding concern owing to e-mobility
obtaining a choice of internal combustion engine e-vehicles. Due to their remarkable energy
storage capacity [15,40,93], Li-ion batteries have been critical contributors to e-mobility in
recent decades. For example, driving 60 km in an e-vehicle requires only 1.4 to 3.0 kg of
lithium [44]. Its consumption has also seen a significant increase due to the high demand
for rechargeable lithium-ion batteries that are extensively used in electric vehicles, portable
electronic devices, and other electric tools [41].

By considering the sources and market for lithium, EV batteries consume 65% of global
lithium production. While other products require lithium metal, such as pharmaceutical
tools, enamel, glass, ceramics, and lubricating grease [40,44], the global lithium demand
was intended to rise to 77,200 tons [44] in 2019. An estimation shows that the consumer
demand will continue to rise up to 188,000 tons by 2027 [44] and about 78% of the global
supply is only from Australia and Chile, which makes it a critical metal [41,44,94]. Taking an
example of China, the price of lithium carbonate reached approximately 170,000 rmb/per
ton at the end of 2017, then it underwent a relatively slow decline to 41,000 rmb at the
end of 2020 due to the COVID-19 pandemic that partially suspended industrial activities.
Surprisingly, the price resurges from 42,000 rmb in January 2021 to 497,000 rmb per ton in
March 2022. The increase in price surged by over 265% due to the unprecedented demand
for lithium batteries for electronics and EVs [4]. The global electric vehicle market increased
sales in 2021 and is expected to double sales and delivery in China during 2022, with an
estimation of over 5 million sales and 9.5 million units worldwide [95]. This should come
with a secure lithium long-term supply channel to avoid increasing mineral scarcity and
environmental concerns. Since 2010, when EV ideology influenced the vehicle market, the
global total of electric vehicles sold account for more than 17.6 million in 2021. Statistics for
2021 show that among global sold passenger vehicles, 8.3% are electric vehicles [69,96].

According to canalys [68], the global electric vehicle market estimates that 6.5 million
electric vehicles were sold worldwide in 2021. It increased by 109% compared to 2020 sales.
Those electric vehicles include fully electric and plug-in hybrid passenger cars. However,
the global market itself did not grow much, only growing 4% due to the consequences of
COVID-19 travel restrictions and chip shortages. Currently, China is the global leading
country in consuming EVs, with 50% of all global sold EVs (Figure 12) and is also the
largest manufacturer of LIB [71]. Europe comes second with 35%, and together with China
make up 85% of total EV global sales, which accounts for 15% of all new car sales.

4.4. Electric Vehicles vs. Total Vehicle Vehicles

The word “technology” could be the best definition of auto industry development
in the last decade. Electric vehicles have seen remarkable development during the last
decade. Except for the time of COVID-19, when vehicle purchases for transport services
slowed, global sales increased by more than 40% every year during the last decade. They
are a critical component of attempts to decarbonize the transportation industry. While their
sales are rising, the move to greener transportation may not be occurring quickly enough to
achieve climate objectives. Figure 13 shows that when EV sales reached one million, overall
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vehicle sales started declining. Importantly, the increase in EV sales decreases the number
of gasoline vehicle sales, which creates an obvious gap between the global total vehicle
and gasoline vehicle sales. As the popularity of electric vehicles grows, gasoline vehicle
sales fall. According to data from [97,98], the decline in gasoline vehicle and overall vehicle
sales since 2017 coincides with the increase in EV sales. In 2017, annual EV sales crossed a
million and it was the same time when CO2 emissions from road transport started showing
a remarkable decline.
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4.5. Lithium Availability and Demand

Today, lithium is among the world’s most needed commodities. Due to the hurry-up
of the shift from gasoline to electric cars and the growing geopolitical oil tension, clean
energy technology is among the best choices. Being a part of a solution without promising
long-term sustainability is not enough. So it is inevitable to evaluate lithium availability
by distinguishing its production, resources, and reserves. Since EV adoption and battery
production are expanding, any new sources of lithium supply will play a critical role in
mitigating the rising demand. Lithium in metallic form started getting attention in 1994,
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and since that time, it has gradually increased up to the present. However, it showed a slight
decrease in 2009 due to the global economic crisis of 2008 [28]. According to Jaskula [41],
global lithium resources have reached approximately 89 million tons, reflecting an extreme
increase of over 63% since 2010 due to the growing demand for industrial uses and more
than 24 countries, led by Bolivia (with 24%), sharing that resource.

The increasing demand for electronics and EVs necessitates enough LIB, which has
drastically increased production. This demand has been accelerated by government poli-
cies towards the promotion of electric cars. The European Union, for example, promotes
EVs through two directive bills: (1) Directive 2006/32/EC of the European Parliament
and of the Council of 5 April 2006 on energy end-use efficiency and energy services; and
(2) directive 2009/33/EC of the European Parliament and of the Council of 23 April 2009
aimed at promoting clean and energy-efficient road transport vehicles [26]. The European
Union goes far in green transport by introducing the Green Car Initiative in its Economic
Recovery Plan [99]. Furthermore, as part of the Green Car Initiative, the European Commis-
sion’s Transport and Energy General Direction (DG TREN) finances a significant European
“electromobility” initiative on electric vehicles and other EV related infrastructures [100].
It recently issued a revised Clean Vehicles Directive (Dir. 2014/24/EU and 2014/25/EU)
that promotes clean mobility solutions and strengthens the deployment of low-and zero-
emission vehicles. Each member state of the EU launched a detailed plan for deploying
electric vehicles to decrease carbon emissions to zero starting from 2021 [101]. This initiative
necessitates huge lithium for LIB production.

Though the speed and duration of achieving e-mobility is different, all countries on
the globe are implementing green transportation initiatives. Here, the authors take a few
EU member states as an example and discuss their big plans to promote green transport for
the past decades. They have put in place national programs for EVs, including financing
research, purchasing EV incentives such as reducing taxes, insurance facilities, providing
convenient parking and charging facilities, and numerous subsidies [26]. France is rolling
out countrywide charging stations and building plants for electric vehicle batteries; Britain
is ambitious to not only have the biggest electric vehicle plant in Europe but also the city
of London wishes to become European EV capital by investing millions of dollars in the
construction of electric vehicle infrastructure [85]. The Danish government is rolling out a
nationwide grid that is composed of thousands of charging stations and the government
charges EVs fewer taxes 25% compared to petrol vehicles (180% + 25%), free parking in
some cities, with free recharging stations at some parking spaces. In 2011, Portugal started
hurrying up to be one of the first buyers of EVs from Renault-Nissan; Spain aimed to achieve
1 million electric or hybrid vehicles on the road by 2014; In 2009, the U.S. Department
of Energy allocated $2.4 billion in grants to speed up the development of batteries and
electric-drive components, which made it the largest investment ever made in the history
of battery technology for electric vehicles. About 40% of that fund has been allocated to
LIB material supply, manufacturing, and recycling [102].

As the world recovers from the COVID-19 pandemic, which significantly affects
the mineral supply chain [4,103], the growth of lithium production heightens speed. In
response to the high demand for LIB and the increase in lithium price, there is a necessity
to massively produce lithium raw material. In the effort to recover from the pandemic,
production and consumption increased up to 21% and 33% in 2021, respectively. The
estimated round numbers are approximately 100,000 tons of production and 93,000 tons
of consumption in 2021 [41]. The worldwide battery factories are expected to increase
lithium demand by up to 3 million tons in the next decade. This should be in line with
the increasing access to raw materials for countries to increase LIB manufacturing. Beside
China, many countries are also in the race of producing LIB, so as time goes on, they are
ramping up the development of sustainable pathways of lithium raw materials flow and
building megaprojects of LIB. If it succeeds as planned, it is expected to gradually increase
global LIB production, at the same time would decrease the percentage of China’s global
share and increase other countries’ shares. Such shared responsibility of LIB production
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could be more securing supply in the case of a pandemic or other circumstances that disturb
the global supply happen.

4.6. Demand for the Two and Three-Wheelers

Two- and three-wheelers make up 90% of the global total electric vehicles on the
road, and only 20% of those two- and three-wheelers are electric [104]. Transport using
two/three-wheelers is growing faster in low- and middle-income countries. They are
concentrated in Asian, South American, and African countries. However, countries with
insufficient electric power still use fuel for two/three-wheelers and contribute to urban
air pollution [105]. Countries that emit large amounts of CO2 into the atmosphere, such
as China, the United States, India, and the United Kingdom, are putting extra effort into
electrifying public transportation systems, and e-bikes have a clear dominance share of
their electric two- and three-wheelers. Other countries prioritize the increase of electric
two- and three-wheelers over cars because of their lower power consumption and easier
affordability. China, for example, has a large number of electric two- and three-wheelers
due to its access to batteries and electric power. Their increase is also motivated by the
decline of the battery cell price up to 97% within 3 decades [106] and the expansion of
charging infrastructures [75].

There are different types of batteries used in two- and three-wheelers, but the most
known are lead-acid batteries and LIBs. However, regardless of the price, LIBs are the best
choice for e-bikes because they are light and have a higher capacity than others. There are
still some challenges with three-wheelers in developing countries due to poor drivability,
electricity blackouts, long charging times [105,107], and range anxiety that hinder the
electrification shift. Two- and three-wheelers are cheap and affordable for ordinary people,
and their demand is quite high. Both hybrids and plug-in hybrids have been developed to
reduce fuel consumption and at the same time reduce range anxiety [108].

According to the IEA [75], the stock of global electric two- and three-wheelers ac-
counted for about 290 million in 2020, and their 2020 sales were equivalent to a third of the
global total of two- and three-wheelers sold. Their stock estimates are to reach 490 million
in 2030, equivalent to 40% of total two/three-wheelers. Their battery demand was about
33 GWh in 2021 [109] and is estimated to be 100 GWh in 2030 [75]. Even if the European
Union market rises by 30% and boosts battery production to catch up with China, Asia is
still the biggest market for two/three-wheelers. To date, more than 120 countries account
for 85% of the global road fleets have announced net-zero emissions in the coming years.
Countries’ timelines for banning gasoline vehicles have been published [110,111], exclud-
ing two- and three-wheelers [75]. They deal with them separately; for instance, China
has already banned internal combustion engine two/three-wheelers in many cities [112].
Challenges remain in developing countries where electric power is still a major problem.

4.7. LIB Swapping Stations

With the growing number of e-mobility vehicles on the road, the charging process is
becoming a challenge for drivers. It takes 30 to 40 min to recharge batteries [113]. Charging
time is considered a weak point of EVs compared to fuel vehicles, which discourages or
delays some people from shifting to EVs. This issue was addressed by building large-
scale charging facilities, including fast-charging stations, with the goal of publicizing the
development of EVs. People who are still hesitating to use EVs and some of those who are
already using them have developed range anxiety (fear of getting an insufficient charge
before completing the designated duty) and fear of the cost of purchasing additional
batteries (as backups) that is expensive.

Apart from conventional fast-charging stations [114], the new charging infrastructure
of battery swapping stations has been integrated into the charging system [115] and operates
as an alternative to charging stations for reducing charging time and EV anxiety. It is a
method of removing the empty batteries and replacing them with fully charged ones.
This technology reduces the times wasted while charging from 40 to 5 min maximum.
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It is a widespread technology in China, and Chinese firm “Nio” takes the lead of this
technology in China, where it owns more than 130 battery swapping stations in 58 cities
in 2020 [116]. It is also expanding power swap stations in Europe (i.e., Norway) [113].
Other companies like Tesla, Honda, KYMCO, Immotor, Gogoro, etc., are also doing battery
swapping systems [117,118].

The battery swapping system has broad advantages for EV drivers, including the abil-
ity to resume journeys in a minute, extending the lifetime of batteries due to slow-charging
mode, always being equipped with fully charged batteries, releasing the burden of cost to
replace old batteries for EV owners, getting batteries with the latest technology without
additional cost, etc. The system targeted the public transportation in the beginning [114],
however, it is becoming popular in all EVs. Particularly, it can be performed by a robotic
system that takes less than one minute to complete the swapping operation [119]. Battery
swapping stations charge the batteries in a centralized manner and ensure the high effi-
ciency of swapping operations. Both the battery swapping system and the range-improved
LIB of up to 300 miles [120] reduce EV range anxiety. It gives a choice to drivers with
depleted batteries; they can either choose a charging station (if empty space is available) or
go to a battery swap station. Particularly, LIB that can travel long distance up to 300 miles
could help reduce EV charge anxiety (fear of not finding or accessing a charging station
point), which is also growing among EV owners. It is also ranked as one of the best methods
to collect old batteries for recycling.

4.8. Lithium Recycling

The transition to renewable energy technologies would result in a massive amount of
spent LIBs that would need to be recycled. Zeng et al.’s [121] estimation shows that the
spent LIBs may surpass 25 billion units, equivalent to 5 × 105 tons in 2020. According to
the LIB cathode technology [122], the end-of-life LIBs account for an important lithium
concentration of about 2–15% [3].

The recycling of rechargeable batteries should not only be for recovering economic
metals but also for saving the environment. There are other types of rechargeable batteries,
like NiCd and NiMH, that are composed of hazardous chemical elements (Cu, Zn, Co,
Mn, and Ni) and toxic elements (Hg, Pb, and Cd) [123–126] that should not be thrown
in the environment. Fortunately, the high demand expectations for lithium and cobalt
may prioritize the recycling of LIBs [3] over disposal. Due to several processing obstacles
and challenges, the rate of LIB recycling is still low. Since the spent LIBs contain toxic
materials and have a complex layered structure, manual dismantling (the separation of
useful from non-useful components) is highly challenging. Additionally, due to the lack of
systematic collection and sorting systems, mixing different types of spent LIBs complicates
the process and reduces the effectiveness of recycling. Due to these challenges, the cost of
recycled lithium may be more expensive than that from brines [3,127]. Some researchers,
like Tabelin et al. [3], labeled sorting end-of-life LIBs as the major challenge for recycling
companies, and urged that mixing different types of batteries (LIB, NiCd, NiMH, and
others) reduces the effectiveness of the process. He suggested a battery-tagging system as
one of the policies that can facilitate the segregation and collection of batteries with similar
properties based on the available recycling technologies. Fortunately, the technologies
that can deal with complex or mixed battery wastes are still underway, and they are being
developed with a critical cost comparison of manufacturing new materials over reusing,
recovering, and recycling LIBs [43,128].

Apart from lithium, spent LIBs have higher concentrations of other important metals
than natural ores, including cobalt (5–30%), copper (7–25%), nickel (0.2–10%), aluminum
(3–14%), and iron (20%) [121]. Considering a large numbers of metals to be recovered
from LIB recycling, it is gradually becoming an interesting project for private firms and
government institutions to fund [129]. Though electrification is becoming popular in devel-
oping countries, industrial-scale recycling seems to be almost impossible for those countries
because of huge capital costs for plant infrastructure and the lack of viable economics to
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make recycling operations stand alone. Currently, industrial recycling facilities are only in
developed countries, where they use methods like pyrometallurgy, hydrometallurgy or a
hybrid system for recycling [3]. Moreover, the unclear supply channel of spent batteries to
recycling companies still hinders significant global recycling progress.

Currently, the cost of the exploitation of primary lithium resources and reserves is
low [40] and is hindering the use of secondary source lithium. As a result, the recy-
cling rate remains insignificant compared to the total lithium supply [130]. According to
Boxall et al. [43], the recovered spent LIBs are less than 2%, and the remaining 98% go for
disposal, leading to the potential for serious damage to the ecosystem because of their
hazardous and toxic chemicals.

The hope of recycling growth relies on the price of lithium from primary sources, which
has been increasing since 2002 (from $1590/ton in 2002 [43] to $16,500/ton in 2022 [131])
and is expected to continue growing due to increasing future demand for EVs and larger
grid or off-grid energy storage devices. This price growth will deplete lithium from primary
sources and reinforce the recycling of LIBs to recover important metals that drive the energy
transition, such as Cu, Ni, Co, and Li. There are around 25 companies either planning or
currently recycling lithium batteries in North America and Europe. To increase the share
of recycled lithium, it also requires strengthening the partnership between automobile
companies and battery recyclers to have a sustainable supply channel for sharing batteries.

4.9. Production Growth

Given the last decade, which shows an increase in both production and manufacturing
of devices that require LIB to function, their rise was fueled by next-generation electric
car technology [4], and is expected to skyrocket in the coming years. The average of the
annual growth in the last decade (which is equivalent to the mean of average growth of
10 consecutive years) of EV sales is 40% (exclude 2019), implies the increase of 30% in
LIB, 12% in lithium production, 43% in charging stations, and –3% CO2 emissions from
road transportation.

In 2016, there was a high demand for lithium, which encouraged company producers
to increase their production. However, they ended up with overproduction in the next
two years (2017 and 2018). Companies such as Pilbara Minerals and Altura Mining, for
example, supplied glut production. Consequently, this overproduction directly dropped
the price of lithium commodities between 2018 and 2020. For example, the LiOH price fell
from $20.5/kg (January 2018) to $9/kg (December 2020), and the Li2CO3 price fell from
$19.25/kg (January 2018) to $6.75/kg (December 2020) [132]. Companies were forced to
reduce production in 2019 and 2020 due to the price drop, resulting in the swing in lithium
production (Figure 14). Unfortunately, COVID-19 found lithium production in its swinging
state and made it worse. Moreover, the reduction in production affected the lithium market
to a low extent due to the previous overproduction and COVID-19 restrictions in China
that slow down manufacturing.

Recently, the demand and sales of EV have skyrocketed. Its speed of increase must
be proportional to the lithium supply. The waste of used LIB should be minimized by
increasing the availability of technology for recycling. Lithium from both mining and
recycling activities can satisfy electric vehicle and electronics demand in the long-term,
and the enhancement of recycling may reduce the consumption share of lithium from
mining, which should be saved for future uses. The annual increase of electric vehicle sales
predicts a need for a huge amount of lithium in the future, so the plan of mobilizing more
lithium resources should be put in place to avoid an early shortage of lithium. Based on the
estimate, lithium consumption will reach 188,000 tons [44]. The demand for electric vehicles
is increasing faster than the speed of lithium production, which means that the lithium
necessary to produce LIB can exceed the lithium production in coming years. The demand
may be further accelerated by the increasing geopolitical tension between oil producer and
oil consumer countries.
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Even if the reported reserves seem to be enough for lithium demand, many lithium
production activities need to be in place to respond fast to either short-term or long-term
demand. Regardless of how far lithium exploration progresses, the effort to optimize
lithium recovery and recycling should be stepped up to address long-term production.
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4.10. Challenges Linked to LIB

During this battle of green technology, some problems linked to LIB still persist, such
as (1) reducing the amount of metal used in batteries that is not only expensive but also
their mining deteriorates the environment, (2) improvement of battery recycling is also still
on the list of pending problems to be dealt with [133]. China, as the global largest consumer
of lithium and LIB producer [134,135], has also pointed out the issue of the inappropriate
mechanism of recycling the spent LIBs [25]. Those spent LIBs could provide lithium and
other metals that are necessary for manufacturing batteries [136]. Countries producing a
high volume of LIB may invest heavily in recycling technology to increase local secondary
sources of lithium and avoid the future risk of damping battery chemicals. To achieve
recycling goals, private sectors need to step up with a significant effort rather than relying
on government institution policies alone.

5. Conclusions

The discussion within this paper provides a better understanding of the dynamic
behavior of lithium production, lithium-ion batteries, and electric vehicles towards reducing
CO2 emissions from road transportation. It creates the inter-correlation loop for lithium
supply based on how the various sections of the whole supply route relate to each other.

Since the electric vehicle industry expanded in 2010, the amount of lithium utilized
in battery production has climbed from 23% in 2010 to 74% in 2021, asserting its leading
position in the manufacture of lithium-ion batteries. A strong positive correlation coefficient
between lithium-ion batteries and EVs (0.99) shows the proportionality of their increase.
When EV sales surpassed one million, gasoline vehicle sales began to decline, signaling
the steady reduction in CO2 emissions from road transport. It is reaffirmed by the strong
negative correlation coefficient –0.95) between EV sales and CO2 from road transport. With
rising demand for lithium-ion batteries for electronics and electric vehicles, the lithium
required to produce lithium-ion batteries needs to ensure a long-term steady supply, which
necessitates boosting secondary lithium sources such as recycling.
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