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Abstract: Rutting (i.e., depressions along the wheel path) is a distress exhibited by flexible asphalt
pavements at high in-service temperatures negatively affecting ride comfort and safety. In this regard,
the fine asphalt mortar (i.e., bitumen filler and fine sand) plays a key role in the rutting potential
of the asphalt mixtures. Given this background, this manuscript presents a small-scale laboratory
experimentation aimed at assessing the rutting-related performance of a plain bitumen combined
with natural (limestone) or manufactured (steel slag) fine aggregates (size up to 0.18 mm) through
advanced experimental and theoretical approaches. Specific rheological tests through dynamic shear
were carried out to achieve this goal. The investigated asphalt blends came from a wider research
project focused on the implementation of a pavement solar collector (a road system to harvest the solar
energy irradiating the pavement). In particular, the present paper aimed at verifying the mechanical
suitability of the produced asphalt mixes with respect to permanent deformation resistance. Such a
small-scale investigation mainly showed that the previously selected constituent materials did not
imply criticisms in terms of rutting response.

Keywords: road pavement; asphalt; binder; mastic; fine mortar; rutting; permanent deformation;
fractional model; rheology; solar collector

1. Introduction

Rutting on road pavements is a common distress occurring at high in-service temper-
ature and consists of depressions of the surface asphalt layer(s) along the wheel path [1]
leading to lower ride quality and safety and, thus, higher maintenance costs [2–4].

From the physical point of view, rutting is generated by different sub-phenomena.
First, some early densification can occur after the opening to traffic. Such an early-stage
phenomenon is mainly related to the mix’s lithic skeleton [5] and can be also ascribed to
working loads, in particular for high-void bituminous mixes [6]. Moreover, a long-term
development of rutting is due to the shear-related deformations of the asphalt mixtures
which lead to visible lateral plastic flows in the proximity of the rut depressions [7–9]. A
further contribution could arise from local volume increase in the upheaval zone, where
local high-void contents can be detected [10]. Finally, the loss of materials due to raveling
along the rutted wheel paths can contribute, even if it is usually negligible with respect to
other contributions [11].

Thus, rutting can be associated with both inadequate bituminous mortar consistency
and aggregate skeleton structure. However, since the role of asphalt phase is generally
predominant with respect to that of aggregate gradation [12], the most relevant factor in-
volved in the study of rutting phenomena is typically related to the temperature-dependent
visco-elastic response of the bituminous phase [13], which affects the overall permanent
deformation resistance of the asphalt mixture [14].

In this regard, besides traditional basic indicators of bitumen behavior (viscosity,
softening point, etc.), more advanced parameters and methodologies are suggested to
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analyze permanent deformation resistance of asphalt binders such as, for example, G*/sinδ,
where G* is the norm of the complex shear modulus and δ is the corresponding phase angle
determined in the linear visco-elastic domain [15], as well as multiple stress creep-recovery
tests carried out in rotational (shear) configuration [16]. Moreover, various analytical and
physical models were developed/adapted to mathematically describe the rutting behavior
of asphalt pavements. As an example, a simple visco-elastic (Kelvin-Voigt) model was
used to analyze the binder shear resistance with respect to rutting [17] along with other
analytical tools [18], regression models and neural networks [19], or three-dimensional
finite element methods [20].

2. Research Goals and Approach

Given this background, this paper presents an experimental study aimed at evaluating
the rutting potential of different asphalt blends. In particular, the study is addressed to the
small-case analysis of such blends since, according to literature [21,22], mastic and mortar
phases of bituminous mixtures have a crucial influence on the mechanical performance of
asphalt mixtures [23]. In this regard, several researchers report that small-scale samples
including fine aggregate particles could reliably reflect the physical-chemical interactions
between the asphalt binder and the aggregates [24].

Starting from this assumption, this research study evaluates specific rutting-related
features at such a scale of analysis, investigating special constituent materials composing
the asphalt blends. In fact, the study builds upon a previous step of a wider research project
which investigated the thermal efficiency of a road energy harvesting system constituted
by a steel-pipe-based asphalt solar collector (ASC) and various asphalt mixes [25]. In such
a study [25], special constituent materials and mix-design proportions were selected for
thermal purposes mainly. The peculiar characteristics of the ASC were (Figure 1):

- thanks to its conduction properties, a manufactured steel slag aggregate was included in
the lithic skeleton (composed by natural limestone aggregate) in order to enhance the
thermal conduction within the asphalt layer, and the related solar collector efficiency [26];

- a rather fine aggregate gradation (with nominal maximum aggregate size of 8 mm) was
designed to make the mixture structure compatible with the presence of the collector
without compromising the functionality of the 4 cm thick covering asphalt layer;

- a low target air-void content was selected for enhancing the thermal transmission
within the asphalt layer, since air voids can act as insulators.
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Figure 1. Background from the previous research [25].

The above characteristics allowed an efficient energy collection, effectively converting the
solar radiation to thermal energy, but they can lead to unacceptable rutting potential. Therefore,
the present paper reports the high-temperature mechanical properties of the fine mortar phase
of the abovementioned asphalt mixes produced with energy harvesting purposes.

Overall, such a research study can enhance the knowledge in the field since it is
specifically addressed towards the study of unconventional materials (i.e., materials con-
taining steel slag aggregates and characterized by special proportions of constituents)
through the use of quite common testing methodologies, applied at unconventional scale
(i.e., fine mortar scale) and using unconventional methods of data analysis.
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In particular, the rutting performance at bitumen-, mastic-, and fine-mortar scale
was analyzed both using conventional (limestone) or steel slag aggregates and a plain
(non-modified) bitumen according to the original mix design for the asphalt layer of the
solar collector [25]. The Dynamic Shear Rheometer (DSR) was used to accomplish the
objective by testing the asphalt binder, mastics (bitumen + filler with size < 0.075 mm), and
fine mortars (bitumen + filler + fine aggregates with size up to 0.18 mm), reproducing the
constituent proportions of the original bituminous mixtures [25]. Such a testing approach
could be considered quite innovative, since few studies exist on the use of DSR for studying
the asphalt blends at fine-mortar scale [27].

After a preliminary characterization of the physical properties of the binder and the fine
aggregates, several rheological tests were performed analyzing the Linear Visco-Elastic (LVE)
properties and the rutting performance of the materials. Binder, mastics, and fine mortars
were tested after short-term laboratory aging (Rollin Thin Film Oven—RTFO—test according
to EN 12607-1) to simulate the real in-service conditions after material’s production and
paving. The experimental plan is summarized in Figure 2 (the codes in the flowchart are
specified in the following paragraphs).
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3. Materials and Methods
3.1. Constituent Materials

As anticipated, constituent materials were selected in order to reproduce the previously
studied asphalt mixes [25]. A 50/70 penetration grade non-modified bitumen (coded
as BITplain) was utilized as binder. Its basic characteristics are summarized in Table 1.
Limestone (coded L) and electric-arc-furnace steel slag (coded S) fine aggregates were used;
L represented a conventional reference natural material whereas S was a manufactured
aggregate that could also be used for recycling purposes. Physical properties of the studied
aggregates are reported in Table 2, whereas their morphological composition is given
in Table 3.

Table 1. Basic characteristics of the selected asphalt binder.

Characteristic Test Method Unit Value

Penetration at 25 ◦C EN 1426 0.1 mm 53
Softening point EN 1427 ◦C 50.0
Retained pen. at 25 ◦C after RTFO EN 1426 % 70
Increase in soft. point after RTFO EN 1427 ◦C 6.6
Ductility at 25 ◦C ASTM D113 cm >100
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Table 2. Physical properties of the selected aggregates.

Characteristic Test Method Unit
Value

Limestone Steel Slag

Particle density EN 1097-6 Mg/m3 2.76 3.84
Shape index EN 933-4 % 12.8 7.8
Flakiness index EN 933-3 % 10.5 8.3
Sand equivalent EN 933-8 % 78 92
Rigden voids EN 1097-4 % 32.7 –

Table 3. Morphological composition of the selected aggregates.

Aggregates
Oxide Content [%]

MgO Al2O3 SiO2 CaO TiO2 Cr2O3 MnO FeO

L 2.50 1.00 3.34 52.71 – – – 0.39
S 3.65 9.30 13.02 29.60 0.35 4.03 5.09 32.84

Mastics (bitumen + filler with size < 0.075 mm) and fine mortars (bitumen + filler + fine
aggregates with size up to 0.18 mm) were prepared combining the different components in
order to comply with the previous mix designs [25]; in particular, a single mastic (coded
MAS-L) was prepared with the 50/70 pen bitumen and the L filler using a bitumen to filler
ratio of 100:130 by weight. Steel slag mastic was not produced because only limestone filler
was used in the original study.

Then, two different fine mortars (characterized by aggregate size < 0.18 mm) were
prepared blending the bitumen, the L filler and the L or S fine fraction (i.e., fine aggregates
having particle size between 0.075 and 0.18 mm); such fine mortars were coded as MOR-L
(bitumen, L filler and L fine fraction with a ratio of 100:130:95 by weight, respectively)
and MOR-S (bitumen, L filler, and S fine fraction with a ratio 100:130:132 by weight,
respectively); taking into account the different particle density of the different aggregates,
the two mortars were characterized by the same volumetric proportions of constituents.

3.2. Samples Preparation

Bitumen BITplain was initially subjected to a laboratory short-term aging (through
RTFO test) to reproduce the real service conditions with the highest rutting potential. For
the sake of brevity, the short-term aged bitumen is coded as BIT.

In the case of MAS-L, the short-term aged bitumen was blended at 160 ◦C with
the L filler through an automatic stirring equipment (30 min stirring to ensure adequate
homogeneity) according to the dosage mentioned above.

A similar procedure was followed to prepare the mortars (MOR-L or MOR-S); here,
the BIT was mixed with the selected fillers (particle size < 0.075 mm) and fine sand fractions
L or S (0.075 mm < size < 0.18 mm) using the same stirring procedure.

Then, cylindrical samples for binder testing were produced, pouring the hot bitu-
minous blends in specific silicon molds (8-mm diameter 2-mm thick, or 25-mm diameter
1-mm tick). After production, specimens were stored at room temperature for at least one
day before testing.

3.3. Testing Methods

Bitumen BIT (in RTFO-aged condition) was studied by performing different tests with
the DSR (EN 14770) in order to assess the rheological response of the binder within the
typical in-service temperature range.

First, oscillatory Amplitude Sweep (AS) tests were carried out with a parallel plate
geometry to identify the LVE domain, i.e., the strain domain where the response is linear
with respect to the stress/strain level applied [28]. Using the 8 mm diameter BIT samples
(with testing gap of 2 mm), three test replicates were executed, increasing the shear strain γ
from 0.01 to 100% (through logarithmic ramps) at a test frequency f of 20 Hz. Tests were
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carried out at a temperature T of 10 ◦C (a pre-conditioning time of 15 min was established
to ensure the thermal homogeneity on samples). At such testing conditions, the lowest
LVE limit was found and then applied for all the following rheological tests carried out at
higher temperatures and/or lower frequencies [29]. The complex shear modulus G* and
the related phase angle δ (i.e., the delay of the response due to the visco-elastic nature of
the binder/blends) were measured, allowing calculation of G′ (storage modulus) and G′′

(loss modulus). According to wide literature, LVE limits were identified as the strain level
corresponding to a G* decreased to 95% of its initial value [30].

Frequency Sweep (FS) oscillatory tests were then carried out in parallel plate geometry
using a strain level within the LVE domain; a test frequency varying from 0.1 to 20 Hz
was selected. Such frequency sweeps were carried out at temperatures ranging from 10 to
80 ◦C, with step of 10 ◦C using a pre-conditioning time of 15 min at each T; 8 mm diameter
samples (with testing gap of 2 mm) or 25 mm diameter samples (with gap of 1 mm) were
tested; the geometric test configuration was selected based on expected stiffness of the
tested sample (two replicates for each test). Experimental data were first represented in
Black diagrams (phase angle δ vs. norm of complex modulus G*) to check the alignment of
the experimental data series in a unique curve (this happens for thermorheological simple
materials), and thus to verify the consistency of the well-known Williams–Landel–Ferry
equation [31] and the related time–temperature superposition principle. Based on FS results
for BIT, preliminary basic information about its rutting potential were evinced; this was
accomplished by calculating the G*/sinδ parameter at 10 rad/s (1.59 Hz) as suggested by
the Performance Grade (PG) classification approach [32].

Then, the responses of the binder were finally evaluated in terms of rutting potential
considering the high in-service temperatures to which the bitumen will be subjected. This
was accomplished through Multiple Stress Creep Recovery (MSCR) tests (EN 16659) on
25 mm diameter samples (parallel plate DSR geometry—testing gap 1 mm). Three test
replicates for each material and four test temperatures (50, 60, 70, and 80 ◦C) were analyzed.
A pre-conditioning time of 15 min at the testing temperature was again selected. For BIT,
the test protocol consisted of the application of consecutive creep-recovery cycles under
different stress levels τ (0.1 and 3.2 kPa); in particular, 10 cycles constituted by 1.0 s of
creep loading and 9.0 s of rest period were repeated for each of the two stress levels on
the same sample. Binder performance was assessed by averaging the results of the three
test replicates. At a generic nth cycle, εn

0 is the deformation at the beginning of creep load
application, εn

1 is the strain after the creep phase of 1.0 s, and εn
10 is the final strain at the

end of the given cycle. Then, the R%
τ parameter was used to express the average recovery

aptitude of the material for the selected stress level τ (average of 10 cycles) according
to Equation (1):

10

∑
n = 1

R%
τ= 100 (εn

1 − εn
0)/εn

1 (1)

The non-recoverable creep compliance Jnr
τ can be calculated as reported in Equation (2):

10

∑
n = 1

Jnr
τ = εn

10/τ (2)

Analogously, the Jnr/Jtot
τ ratio illustrated in Equation (3) represent the ratio between

the compliance referring to the non-recoverable strain at the end of the cycle and the
compliance referring to the maximum strain measured ate the end of the creep phase:

10

∑
n = 1

Jnr/Jtot
τ= [( εn

r − εn
0)/τ]/[( εn

c − εn
0)/τ] = (εn

r − εn
0)/(εn

c − εn
0) (3)

where, εn
r is the absolute strain value at the end of the cycle and εn

c is the absolute strain
value at the end of the creep phase.
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As far as the mastic scale (binder + filler) and the mortar scale (binder + filler + fine sand)
are concerned, MAS-L, MOR-L, and MOR-S were tested with the same AS, FS, and MSCR
test protocols to identify their LVE properties and rutting potential, which will sensibly
vary as a consequence of the stiffening effect due to the aggregates [33]. LVE strain limit
resulting from AS was again used to carry out FS tests. In this case, MSCR tests were
carried out at three consecutive stress levels τ (i.e., 0.1, 3.2, and 10 kPa) in order to achieve a
more representative picture of the blends’ performance testing stiffer materials with respect
to bitumen.

3.4. MSCR Data Modelling

To better understand rutting potential at binder-, mastic-, and fine-mortar scales, a
further elaboration of high-temperature experimental data collected through MSCR tests
was then carried out. This allowed achievement of a more detailed description of the
visco-elastic deformations exhibited by blends during each test cycle, thus differentiating
eventual different behaviors of materials finally characterized by similar creep-recovery
summary results (i.e., strain recoveries and compliances). To accomplish this objective, each
cycle was modelled using an analytical approach able to model the whole creep-recovery
curve of tested materials at each loading cycle [34]. The use and validation of such a model,
originally validated for polymer- and rubber-modified asphalt binders at the mastics- and
fine-mortar scale, for testing unconventional materials such as the steel-slag fine aggregates
used for the solar collector asphalt layers is rather innovative.

Based on the abovementioned modelling approach, fractional calculus was used
to fit the experimental results based on the rheological model schematized in Figure 3.
In analogy with the work of Sapora et al. [34], a springpot and dashpot in series were
considered to model the visco-elastic measured response. The first element (spring-
pot) is obtained, replacing the first-order derivatives of generalized rheological models
(e.g., Maxwell, Kelvin-Voigt models) with derivatives of order α [35]. Its constitutive re-
lation is represented in Equation (4), where α ranges from 0 and 1. For α = 0, the element
turns in a spring, whereas a conventional dashpot is considered when α = 1. Based on
this hypothesis, parameter b1 assumes a different physical meaning depending on α value
(it stands for the element stiffness when α = 0 or the viscosity when α = 1). The second
element (dashpot) was introduced to attain a residual permanent strain at the end of each
test cycle (b2 indicated its viscosity).

σ(t)= b1
dαε(t)

dtα (4)
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Under the proposed assumptions, the overall constitutive law of the model is given
in Equation (5):

ε(t) =
{[

tα

b1Γ(1 + α)
+

t
b2

]
U(t) −

[
(t− t∗)α

b1Γ(1 + α)
+

(t − t∗)
b2

]
U(t − t ∗

)}
σ0 (5)

where, α, b1, and b2 are the already described parameters; σ0 indicates the stress level
applied to cycle, and t* expresses the time at which unloading starts (1 s); Γ is the Euler-
Gamma function; U is the unit step Heaviside function. Adopting such a mathematical
approach, the use of complex power-laws commonly associated to the creep-loading
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loading configuration of traditional rheological models was prevented, involving the
fractional model with non-integer order derivatives. Additional details about the proposed
model can be found elsewhere [34–36].

4. Experimental Results

First, the experimental results of preliminary AS tests (10 ◦C, 20 Hz) on binder-, mastic-
, and fine-mortar are depicted in Figure 4a, and allow identification of the LVE limits used
for FS analysis. Such LVE limits (calculated as average of the three test replicates) were
equal to 0.40%, 0.20%, 0.08%, and 0.07% for BIT, MAS-L, MOR-L, and MOR-S, respectively.
The results measured for BIT were in accordance with those commonly found for a non-
polymer-modified bitumen for road applications. As expected, the progressive inclusion
of lithic fractions (passing from binder to mastic and fine mortars) led to a clear stiffening
effect that determined progressively reduced LVE domains. Comparing limestone- and
steel-slag-based samples, no substantial differences in LVE limits were detected at this scale
of analysis, notwithstanding an expected higher stiffness for MOR-S.
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Frequency sweep test results, achieved within the identified LVE domain, are pre-
sented in terms of phase angle and complex shear modulus in the Black space (Figure 4b).
Again, the above-mentioned stiffening effect due to the addition of the mineral particles
was clear. Higher stiffness of mastic- and fine-mortar samples was even more marked
in the central part of the curves which refer to the intermediate and high in-service test
temperatures (approximately between 30 and 60 ◦C). At higher temperatures (where rutting
potential is higher), such a stiffening effect was still significant. Within the whole investi-
gated domain, MOR-S showed higher stiffness with respect to the corresponding reference
MOR-L. Moreover, this higher stiffness generally corresponded to a slightly lower elasticity
of the material (higher phase angles δ). This suggested that the addition of manufactured
steel-slag fine aggregates to the binder, rather than conventional limestone, can affect the
bitumen-aggregate interaction, and thus the overall rheological response of the blends.
Furthermore, the alignment of the data series in the Black space demonstrates the validity
of the time–temperature superposition principle also at this scale. With respect to the
G*/sinδ parameter, the average values (three replicates) resulting from RTFO-aged bitumen
analysis (Table 4) suggest a Performance Grade upper limit likely equal to 52 ◦C, which can
be considered acceptable for a 50/70 penetration grade plain bitumen.
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Table 4. RTFO-aged BIT G*/sinδ values for PG upper temperature classification (1.59 Hz).

Temperature [◦C]

15 20 25 30 35 40 45 50 55 60 75 80

G* [kPa] 10,573 3610 1092 300 79.83 23.30 7.46 3.10 1.22 0.68 0.30 0.12
∆ [deg] 51.37 59.18 66.33 72.20 76.46 79.80 82.43 84.51 86.02 87.00 88.24 88.50
G*/sinδ
[kPa] *

13,535 4204 1192 315 82.11 23.67 7.53 3.11 1.23 0.68 0.30 0.12

* SHRP requirement for upper PG temperature [32]: G*/sinδ > 2.20 kPa.

As far as MSCR test results are concerned, the experimental findings in terms of
percentage recovery R%, non-recoverable creep compliance Jnr, and non-recoverable creep
compliance to total creep compliance Jnr/Jtot are depicted in Figure 5. For the sake of
brevity, only the results obtained for the more critical applied stress levels τ (3.2 and
10 kPa) are plotted. As expected, the above-mentioned stiffness characteristics, hierarchi-
cally greater for MOR-S, MOR-L, and MAS-L, clearly reflect a gradually-increasing aptitude
to recover deformations, even if at the higher tested temperatures (70 and 80 ◦C) such a
strain-recovery ability significantly decreased.

Similar considerations can be drawn based on Jnr experimental findings. Overall, mastic
and fine mortars showed a behavior not dependent on test temperature and stress level
up to 70 ◦C. As far as the influence of steel slag (MOR-S) on the non-recoverable creep
compliance is concerned, a higher anti-rutting effect with respect to the reference case
(MOR-L) was clearly observed (lower strain accumulation). According to specific litera-
ture [37], such results are likely related to the higher stiffness in the case of steel slag blends
with respect to the corresponding traditional limestone-based material. Thus, the correspond-
ing steel-slag-based asphalt mixture can be supposed to be characterized by an overall reduced
rutting potential, which is of crucial importance for preventing excessive permanent strain
accumulation for the investigated solar collector at high in-service temperatures.

A more representative picture of the permanent deformation resistance of the studied
blends is given by the Jnr/Jtot ratios. In this sense, it is worth noting that such parameters
can vary from 0% (elastic material completely recovering the accumulated strain) to 100%
(viscous material not recovering any accumulated strain). As expected, decreased Jnr/Jtot
when temperature and stress level increased were observed. Jnr/Jtot approaching 100%
were measured at temperatures higher than 70 ◦C, regardless of the stress level. However,
this ratio was lower for MOR-S with respect to corresponding MOR-L, highlighting again
the reduced rutting potential due to the adoption of steel slag aggregates. In this regard,
it is worth noting that such behavior could be likely due to the superior characteristics
of the manufactured aggregate (angularity, roughness, toughness, etc.) rather than to
a different chemical interaction with the bitumen [38]. At any rate, such experimental
findings cannot be ascribed to different constituent proportions, since the blends were
designed to attain exactly the same volumetric proportion among the constituents, properly
taking into account the different particle densities of the aggregates.

As anticipated, a complete description of the evolutive visco-elastic behavior dur-
ing MSCR tests was attained through the application of the described fractional model.
The three model parameters (α, b1, b2) introduced in Equation (5) were determined by a
mathematical fitting procedure (i.e., the bisquare trust-region Matlab algorithm) of the
creep-recovery curves over the different testing cycles. The fifth cycle for each τ-T combi-
nation and material was analyzed as a representative case, since negligible variations over
the 10 cycles were recorded at the same τ-T.

Figure 6 presents an example of graphical model fitting for the recovery phases of
the different materials at 60 ◦C and 0.1 kPa (experimental data and fitted model are given
in the main y-axis, while residuals r are plotted in the secondary y-axis). All the model
coefficients are then presented in the following Table 5, along with the fitting reliability
(expressed as R-square—sum squared error—SSE); it can be noted that, overall, a very high
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goodness of fit was also obtained (Table 5) in the case of unconventional mastic and fine
mortar tested materials.
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Figure 6. Fractional model (recovery phase): BIT (a), MAS-L (b), MOR-L (c) and MOR-S (d) at 60 ◦C,
0.1 kPa.

Table 5. Fractional model fitting coefficient for all materials and test conditions.

BIT

T [◦C] 50 50 50 60 60 60 70 70 70 80 80 80
τ [kPa] 0.1 3.2 10 0.1 3.2 10 0.1 3.2 10 0.1 3.2 10
α [-] 0.498 0.471 - 0.387 0.0001 - 0.984 0.945 - 0.999 n.a. * -
b1 [-] 215.2 271.2 - 104.8 0.0006 - 3.145 343.1 - 0.062 n.a. * -
b2 [-] 5.056 4.688 - 0.748 0.666 - 0.187 0.154 - 0.205 n.a. * -
SSE R2 0.999 0.998 - 0.994 0.977 - 0.990 0.826 - 0.986 n.a. * -

MAS-L

T [◦C] 50 50 50 60 60 60 70 70 70 80 80 80
τ [kPa] 0.1 3.2 10 0.1 3.2 10 0.1 3.2 10 0.1 3.2 10
α [-] 0.784 0.536 0.414 0.688 0.203 0.188 0.951 0.617 0.0001 0.991 0.990 n.a. *
b1 [-] 460.1 1398 2468 311.8 1026 2691 38.55 1252 0.048 4.941 70.25 n.a. *
b2 [-] 26.68 24.73 15.96 3.768 3.748 2.285 1.005 0.9043 0.548 0.332 0.265 n.a. *
SSE R2 0.999 0.998 0.994 0.997 0.997 0.993 0.991 0.970 0.767 0.994 0.922 n.a. *

MOR-L

T [◦C] 50 50 50 60 60 60 70 70 70 80 80 80
τ [kPa] 0.1 3.2 10 0.1 3.2 10 0.1 3.2 10 0.1 3.2 10
α [-] 0.876 0.571 0.544 0.920 0.653 0.709 0.942 0.918 0.912 0.943 0.986 n.a. *
b1 [-] 361.3 2715 5180 120.6 2278 4971 58.34 488.5 452.3 21.29 49.11 n.a. *
b2 [-] 63.88 57.42 42.41 9.692 11.17 7.184 2.466 2.726 0.512 0.848 0.782 n.a. *
SSE R2 0.999 0.999 0.998 0.997 0.995 0.995 0.996 0.989 0.991 0.993 0.879 n.a. *

MOR-S

T [◦C] 50 50 50 60 60 60 70 70 70 80 80 80
τ [kPa] 0.1 3.2 10 0.1 3.2 10 0.1 3.2 10 0.1 3.2 10
α [-] 0.914 0.621 0.623 0.942 0.824 0.897 0.991 0.998 0.999 0.934 0.999 0.999
b1 [-] 385.9 3114 6363 101.7 2771 5459 68.59 13.41 12.37 28.79 4.655 9.455
b2 [-] 110.5 76.92 61.16 14.55 17.76 12.39 5.853 7.445 3.744 1.310 1.895 0.761
SSE R2 0.994 0.999 0.999 0.995 0.995 0.993 0.988 0.990 0.984 0.969 0.996 0.879

* n.a.: not available for fitting inconsistency.
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In general, a progressive increase of α parameters should be expected when the
viscosity started to prevail (e.g., at higher test temperatures). Similarly, at fixed temperature
and stress level, stiffer materials should present lower α values. In reality, such hypothetical
behaviors were not clearly observed; in this regard, as reported by other researchers [36], a
combined evaluation of all parameters (α, b1, b2) could explain this experimental finding
(elasticity/viscosity predominance is affected by α but also by b1 and b2). In particular, the
relative contribution given by the springpot to the overall deformation seemed higher than
that of the dashpot. Otherwise, it is worth noting that b1 and b2 were sensibly reduced
when increasing T, and this indicated the general weakening of material performance
(i.e., higher strain accumulation as already observed by lower R% and greater Jnr). The
stress dependency was then assessed considering the coefficients of each material at fixed
temperature: in this case, the decrease of α and b2, together with the increase of b1, illustrate
behaviors reversed towards the spring case. Otherwise, it must be considered that, at high
stress levels (at least higher than 0.1 kPa), secondary non-linear effects could influence the
global visco-elastic response of materials [38]. Comparing MOR-S with MOR-L (reference),
the inclusion of harder steel slag mainly influenced b1 parameter related to stiffness.

Given the mathematical complexity of the proposed model, a further analysis of MSCR
experimental data was performed with the objective of describing the creep-recovery phase.
To this aim, two physical parameters were considered, studying the evolutive behavior of
the strain during each test cycle. For the initial creep phases (1 s duration), quasi-linear
time–strain relationships were identified. Therefore, for a given material, temperature, and
stress, a unique average creep-slope (s) was calculated as the average of the creep slopes
of each of the ten cycles. Similarly, a univocal parameter was calculated averaging the
ten recovery phases (9 s duration): this was referred to as the delay (d) related to the time
needed to develop an established amount of deformation within the cycle. Parameter d
was thus identified as time passing from the load removal (1 s) to the beginning of a linear
time-strain relationship (Figure 7). This linear recovery phase was determined by checking
the gradient of punctual creep slopes below a fixed tolerance value of 0.0005 %/s. Under
these assumptions, d parameter was assumed to clarify the recovery aptitude because the
recovered strain was almost achieved during the delay time; after the delay time, recovered
deformation was quasi-negligible. The following Figure 7 helps to clarify the physical
meaning of the parameters introduced.
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Figure 7. Physical meaning of s and d parameters for a generic creep-recovery cycle.

The calculated s and d are plotted in Figure 8 as a function of stress and temperature.
Then, power and linear laws for s and d were used to reliably fit their trends over time
according to Equations (6) and (7), respectively;

s(T) = A · TB (6)

where, A is related to the curve position and B indicates its slope (power law coefficients).

d(T) = m·T + q (7)
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where, m is the slope and q is the intercept of the regression line.
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Figure 8. Physical parameters describing creep-recovery strain evolution: s (a) and d (b) at 0.1 kPa;
s (c) and d (d) at 3.2 kPa; s (e) and d (f) at 10 kPa.

Table 6 reports the fitting parameter obtained for s and d evolution over time, at the dif-
ferent experimental temperatures and stress levels (the fitting reliability was demonstrated
by high coefficients of determination R2).
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Table 6. Physical parameters describing creep-recovery strain evolution.

Material τ [kPa]
s d

A B R2 m q R2

BIT
0.1 0.0035 0.1461 0.9875 −0.1937 16.586 0.9775
3.2 0.0943 0.1496 0.9869 −0.3225 23.863 0.9776

MAS-L
0.1 0.0009 0.1411 0.9886 −0.0365 6.675 0.9553
3.2 0.0155 0.1509 0.9907 −0.092 9.6559 0.8854
10 0.0383 0.1560 0.9910 −0.0601 6.7586 0.8569

MOR-L
0.1 0.0006 0.1324 0.9898 −0.0177 6.338 0.9524
3.2 0.0069 0.1469 0.9973 −0.0947 11.213 0.9149
10 0.0077 0.1651 0.9979 −0.1058 11.217 0.9675

MOR-S
0.1 0.0008 0.1224 0.9885 −0.0183 6.6292 0.8581
3.2 0.0058 0.1413 0.9995 −0.0816 10.759 0.9529
10 0.0055 0.1619 0.9994 −0.1087 11.698 0.9966

Generally, quasi-negligible fluctuations of 10-cycle data among the mean values were
detected (see error bars in Figure 8). As far as s is concerned, A parameter (curve position)
seemed to be inversely related to the material stiffness; as expected, lower creep slopes
were found for the stiffer material; this means that the stiffer MOR-S accumulate lower
creep deformation at a given T and τ with respect to other materials (lower creep slope
at the fixed duration time of 1 s). On the other hand, B coefficient (curve slope) was quite
similar for each material and stress level, suggesting a quite similar thermal and stress
dependency of the creep slope. As far as the delay d, the slope m (linear interpolation) was
quite different depending on material and stress level. In general, the thermal dependency
was reduced (lower m) when the material stiffness increased; on the contrary, the increase
of stress led to amplified m.

It is worth noting that such an approach referring to s and d parameters allowed for
discriminating among the selected materials, and was generally in accordance with the
main findings from the “traditional” analysis. Moreover, it provided reasonable physical
meaning in describing the high-temperature material’s performance. Overall outcomes
clearly indicated that an increased stiffness leads to a delayed development of the strain
recovery (higher d), which can be in turn associated with a lower non-recoverable final
strain; analogously, at lower test temperatures (i.e., when a predominant elastic behavior is
expected), d was higher; then, fewer thermal-dependent behaviors were found for mastic
and mortars due to the presence of aggregates that are not thermal-dependent. Finally, the
stress level also decreased the materials’ thermal dependency and generally reduced the
time required to develop the main part of deformation recovery.

Overall, such a comprehensive and innovative analysis of the rutting potential of
fine mortars proved the suitability of steel slag in enhancing the anti-rutting properties of
asphalt mixtures.

5. Conclusions

The present experimental investigation aimed at evaluating the rutting potential
of different asphalt materials, which were designed based on thermal considerations
only during a previous study on asphalt solar collectors. A comprehensive rheological
characterization through DSR tests at the unconventional fine-mortar scale, along with an
innovative modeling of the experimental data, were performed to this aim. Based on this
approach, the following main findings can be summarized:

- with respect to the selected binder (plain 50/70 pen grade non-modified bitumen), the
G*/sinδ parameter indicated a PG upper limit almost equal to 52 ◦C, which can be
considered acceptable for such a bitumen;

- the progressive inclusion of lithic fractions, passing from binder to mastic (bitumen +
filler with size < 0.075 mm) and fine mortars (bitumen + filler + fine aggregates with size
up to 0.18 mm), led to a clear stiffening effect and reduced rutting potential;
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- the use of steel-slag fine aggregates at the fine-mortar scale led to an even higher
stiffening effect with respect to conventional limestone fine sand, thus suggesting an
enhanced rutting resistance;

- slag-based mortar was characterized by a reduced accumulation of high-temperature
permanent strains with respect to conventional limestone-based materials, regardless of
the testing conditions. Therefore, it can be asserted that the effective use of steel slags
should be promoted to achieve environmental, economical, and mechanical benefits;

- the R%, Jnr, and Jnr/Jtot parameters calculated from MSCR test results were not sufficient
to fully understand the rutting potential of materials, since the creep-recovery responses
could be characterized by different evolutive recoverable strains after load removals;

- a fractional model, constituted by a springpot and a dashpot in series, reliably fitted
the evolution of the permanent deformation not only at binder scale, but also at mastic
and fine-mortar scale;

- the creep-recovery mechanisms could be also accounted for with simple physical
parameters: in particular, the delay in time of the visco-elastic recovery could be a
reliable index of the rutting issues, and could be also linked to the material stiffness
(the higher the delay, the higher the stiffness and the related rutting resistance).

Based on the above considerations, at this research stage it can be supposed that
there are no significant rutting issues for the investigated materials. Indeed, the research
contributed to advancing the knowledge about the creep-recovery rheological analysis,
since DSR testing can be effectively used for mastic and fine mortar characterization, even
dealing with unconventional materials such as steel slag. The same concerns could be
addressed regarding the fractional calculus and the analytical study of the creep-recovery
phases for approximating the physical responses of such asphaltic materials.

Further studies are currently in progress to assess the rutting performance at the mix-
ture scale, with particular attention to the role of the aggregate matrix in the development
of the rutting phenomena.
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