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Abstract: In domains that have complex data characteristics and/or noisy data, any single supervised
learning algorithm tends to suffer from overfitting. One way to mitigate this problem is to combine
unsupervised learning component as a front end of the main supervised learner. In this paper, we
propose a hierarchical combination of fuzzy C-means clustering component and fuzzy max–min
neural network supervised learner for that purpose. The proposed method is evaluated in a noisy
domain (Pima Indian Diabetes open database). The proposed combination showed superior result
to standalone fuzzy max–min and backpropagation-based neural network. The proposed method
also showed better performance than any single supervised learner tested in the same domain in
the literature with high accuracy (80.96%) and was at least competitive in other measures such as
sensitivity, specificity, and F1 measure.

Keywords: fuzzy max–min neural network; fuzzy c-means; diabetes; supervised learning; unsuper-
vised learning

1. Introduction

Ensemble learning method is designed to compensate the weakness of traditional
machine learning algorithms in dealing with complex data [1]. Typically, two or more
independent classifiers, either homogeneous or heterogeneous, are executed in parallel
and the learning result of each classifier over the same input is combined by some voting
mechanisms. Ensemble learning is better than its single best base learning algorithm espe-
cially in dealing with high-dimensional, imbalanced, noisy data. Such better generalization
power of ensemble may come from the information insufficiency of the training data for
single best learner and/or imperfect search process of a single learner [2].

There is another approach to overcome the limitation of a single supervised machine
learning algorithm. In general, supervised learning algorithm shows better accuracy than
unsupervised learning algorithms since it has a reliable known label (class) in training
phase that will guide efficient search process. However, it is also well known that the
supervised learner may have more serious overfitting problem that refers to the incident
that the supervised learner performs perfectly on training set, only to fail on the testing
set or unseen data [3]. One of the main sources of such overfitting is the imperfectness
of given features and too strong bias of feature information provided to the input of the
supervised learner.

There have been good approaches to combine unsupervised learner and supervised
learner to solve such problem. In most cases, the unsupervised learner (component)
finds the cluster relations of input data and provide such information to the supervised
component that learns the desired patterns between clusters and classes. Such hierarchical
combination of unsupervised and supervised learner provides better chance of incremental
learning and overlapped clustering result in unsupervised learning phase [4].
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For example, in human activity recognition problem, Predict and Cluster method [5]
applies clustering algorithm to gather similar activities into the same cluster and different
activities into separate clusters. Then, a method based on an encoder/decoder recurrent
neural network, can effectively learn distinct actions. It outperforms other single supervised
methods in this domain. Recently, for the same domain, a system utilizes K-means first and
generate a hyper label that becomes the input set for supervised learner Spatial-Temporal
Graph Convolutional Network (ST-GCN) [6]. This approach obtained 9% better result in
accuracy than the base supervised algorithm ST-GCN [7] and gives robustness when facing
with a new activity by unsupervised component since it can only retain the cluster to which
the activity is assigned.

Similar efforts to combine unsupervised learning result with supervised learning
component shows plausible result in facies prediction problem [8,9], malware detection [10],
land price prediction [11], credit risk assessment [12], miRNA target prediction [13], text
summarization tasks [14,15] and image segmentation task [16]. For those systems, usually
there is no restrictions on unsupervised algorithm component, that is, any clustering
algorithm can be applied and Support Vector Machine (SVM) [17] is frequently used for
supervised learning component [8–10,12,13] but standard neural network [11] and decision
tree [16] can be applied as well.

Considering that the role of unsupervised learning component is to provide more
informative/independent features to the input of the supervised classification component
in this hierarchical combination, we can extend the relationship between the input data
and output clusters of the unsupervised learning component. If we apply fuzzy clustering
algorithms to the unsupervised learning component, that fuzzy clusters maintain the
relationship between the cluster and all input with its membership function so that the
entire system can maintain more stable and robust relationship between the input data
and the final output of the supervised learner. That is, fuzzy clusters maintain multiple
associations with input data and the output of unsupervised learning component has
overlapped concept from the input data. If such fuzzy clustering component is well
combined with the supervised classifier, the entire system might be more flexible, stable,
and robust than the standalone supervised learner.

There exist only a few studies on that direction. In [18], the SVM classifier generates a
spectral-based classification map, whereas Fuzzy C-Means (FCM) is adopted to provide an
ensemble of segmentation maps. In traffic flow prediction problem [19,20], type-2 FCM
model classifies the historical data into different traffic flow patterns, and its result becomes
the input of the neural network back propagation principle. It is found that the original
21 detectors on the highway have significant correlation among them and FCM based
unsupervised learning component extends the mutual independence of the input of neural
network (fuzzy clusters) so that the final prediction performance is revealed as better than
any type of single neural network classifiers (neural network, recurrent neural network
(RNN), and long short-term memory (LSTM)).

In this paper, we propose a hierarchical combination method between fuzzy super-
vised and fuzzy unsupervised learning algorithm. For unsupervised learning component,
we choose most popular standard FCM as other approaches, but we adopt fuzzy max–min
neural network (FMM) [21] as the supervised classifier. FMM constructs an N-dimensional
hyperbox defined by its Max and Min point. In classification, hyperbox fuzzy sets are
aggregated to form a single fuzzy set class. Learning in FMM consists of creating and
expanding/contracting hyperboxes in a pattern space. If well-designed, FMM has online
learning ability in one-pass through the data samples, and can overcome overlapped classes,
and having nonlinear separability [22].

To demonstrate the effect of such hierarchical combination of FCM and FMM, we
chose the diabetes prediction problem, which has multiple open databases. Diabetes is a
chronic metabolic disease due to a high level of sugar in the blood over a lengthy period.
Although it has severe complications, early detection of the disease can reduce the risk
factor and severity of the disease. However, the robust and accurate prediction of diabetes
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is challenging since there are significant outliers/missing values in the diabetes datasets
with limited number of known labeled data [23].

2. Materials and Methods

The proposed method for combining fuzzy unsupervised and fuzzy supervised learn-
ing algorithm can be demonstrated as Figure 1.
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Figure 1. Structure of Proposed Method.

The core input (diabetes patient information) is given to the unsupervised learner
FCM. For n data and c fuzzy clusters (c < n), FCM allows each value to belong to one or
more clusters depending on the degree of membership to each cluster.

After FCM process, only non-zero membership clusters act as the input of fuzzy
supervised learner (FMM) thus the middle layer and the output layer may not be fully
connected as shown in cluster 1 of Figure 1.

The FCM algorithm used in this paper is as Algorithm 1 below.

Algorithm 1. Fuzzy c-means process.

Step 1. Initialize the number of cluster c (2 ≤ c < n), exponential weight m = 2 (1 ≤ m < ∞), and
stopping condition ε = 0.0001

Step 2. Compute the distance between the i-th cluster centroid vi and k-th data xk as Equation (1).

dik =

√
(xk − vi)

2
m−1 (1)

Step 3. Compute the membership degree of k-th data and i-th cluster as Equation (2).

uik = 1

∑c
j=1

(
dik
djk

) 2
m−1

(2)

Step 4. Compute centroid of each cluster by Equation (3).

vi =
∑n

k=1(uik)
2xk

∑n
k=1(uik)

2
(3)

Step 5. Stop the process if the difference between the centroid position by Equation (3) and
previous centroid is less than ε, otherwise, go to Step 2 and repeat the process.

The FMM learning process shown in Algorithm 2 consists of Initialization, Expansion,
Overlap Test, and Contraction [21]. It selects an input pattern and find the closest hyperbox
to that pattern and expand. If a hyperbox cannot satisfy the expansion criteria, a new
hyperbox is formed and added to the system. Hyperbox overlap may cause undesirable
ambiguity; therefore, a contraction process is used to eliminate any undesired hyperbox
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overlaps. In classification learning, the overlap is eliminated only for hyperboxes that
represent different classes.

Algorithm 2. Fuzzy max–min neural network learning process.

whg: weight, θh: bias term, p: number of patterns, α: learning rate,
η: momentum, xg: input pattern, th: target value, yh: output

Step 1. Set input xg (where g = 1, . . . , d) and target value th (where h = 1, . . . , z).

Step 2. Initialize whg and θh.

Step 3. Compute FMM NET as Equation (4).

NET = ∨z
h=1

{
∧d

g=1

{
xg, whg

}}
(4)

where ∨ is fuzzy OR operator and ∧ is fuzzy AND operator.

Step 4. Compute the output yj as Equation (5).

yh = NET∨ θh (5)

Step 5. Compute error term TSS as Equation (6).

TSS = 1
2

l
∑

p=1

z
∑

h=1

(
tp

h − yp
h

)2
. (6)

where p denotes the number of patterns.

Step 6. Update weight whg and bias θh as Equation (7).

∆whg(r + 1) = ∆whg(r) +
∂yh

∂whg
(th − yh)

∆θh(r + 1) = ∆θh(r) +
∂yh
∂θh

(th − yh)

∂yh
∂whg

=

{
1, yh = whg

0, otherwise.

∂yh
∂θh

=

{
1, yh = `h

0, otherwise.

whg(r + 1) = whg(r) + α∆whg(r + 1) + η∆whg(r)

θh(r + 1) = θh(r) + α∆θh(r) + ηθh(r)

(7)

Step 7. UStop if TSS is less than predefined threshold.
Otherwise, go to Step 2.

Figure 2 on the next page shows a flow diagram of the proposed FCM–FMM combina-
tion process.
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3. Results

The proposed method is implemented using Visual Studio 2019 C# with AMD Ryzen
3 3300X 4-Core Processor, 3.79 GHz and 16 GB RAM PC.

3.1. Dataset

We used open database https://www.kaggle.com/datasets/mathchi/diabetes-data-
set (“Diabetes Dataset”, Kaggle, last modified 2020, accessed on 1 July 2022) in this paper.
This Pima Indian Diabetes (PID) dataset, containing 768 female diabetic patients’ informa-
tion who are at least 21 years old of Pima Indian heritage. is originally from the National
Institute of Diabetes and Digestive and Kidney Diseases [24] and only 268 patients (34.9%)
are classified into “having diabetes” among them.

This dataset has eight attributes and one binary class attribute (class value 1 is “dia-
betes”) with significant number of missing values in several attributes. We use “fill-in-the-

https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
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average” strategy for missing value treatment, and all attributes are normalized since all
attributes are real values. Attributes and number of missing values for each attribute are
summarized in Table 1.

Table 1. PID dataset configuration.

Attributes Missing

Number of times pregnant 0
Plasma glucose concentration 5

Diastolic blood pressure 35
Triceps skin fold thickness 221

2-hour serum insulin 375
Body mass index 11

Diabetes pedigree function 0
Age 0

Class (0 or 1) 0

Diabetes Pedigree Function (DPF) is defined to provide a synthesis of the diabetes
mellitus history in relatives and the genetic relationship of those relatives to the subject [24].

3.2. Performance Evaluation

We use random stratified sampled hold-out to setup the training set and the test set as
70% of the dataset is used in the training phase. The experiment is repeated 30 times and
the dataset is randomly sampled at each hold-out cycle. The performance result reported
here is the average of these 30 times hold-out experiments.

The effect of the proposed method is measured with sensitivity, specificity, accuracy,
and F1 score in comparison with the backpropagation neural network (BPNN) with the
unipolar sigmoid function and stand-alone FMM. All performance measures are based on
the quantity of TP (True positive), TN (True Negative), FP (False Positive), and FN (False
Negative) as shown in Table 2.

Table 2. Performance evaluation metrics.

Accuracy (TP + TN)
(TP + TN + FP + FN)

Sensitivity TP
TP + FN

Specificity TN
TN + FP

Precision TP
TP + FP

F1 Score 2
(

Precision ∗ Sensitivity
Precision + Sensitivity

)

The effect of combining fuzzy unsupervised learner and fuzzy supervised learner
is summarized in Table 3. A simple fast supervised learner FMM is extremely good in
sensitivity but extremely poor in specificity in this experiment. That means FMM alone
produces too many FPs. By combining FCM and FMM, the proposed method shows
more stable and robust result with highest F1 score and accuracy. Standard BPNN is not
remarkable in all measures.

Table 3. Performance summary.

Algorithm Sensitivity Specificity Accuracy F1 Score

FCM–FMM 78.79 70.27 80.96 74.16
FMM 94.67 49.88 64.91 65.29
BPNN 60.88 65.23 74.96 62.78
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To verify the performance of three tested algorithms statistically, we use one-way
ANOVA (Analysis of Variance) test and subsequent Tukey test to see if there exist any
statistically significant group mean differences for each performance metric. We use open
web site for statistical computation (http://vassarstats.net/ (accessed on 4 November
2022)) for this computation and the test results are summarized as shown in Tables 4–7 as
follows: In Tables 4–7, HSD is the absolute [unsigned] difference between any two-sample
means required for significance at the designated level (HSD [0.05] for the 0.05 level), M1 is
the proposed FCM-FMM, M2 is Standalone FMM, and M3 is BPNN.

Table 4. ANOVA and Tukey Test for Sensitivity.

Source SS df MS F p

Treatment 1.7149 2 0.8575 389.06 <0.0001

Error 0.1917 89 0.0022

Total 1.9066 91

HSD [0.05] = 0.03; HSD [0.01] = 0.04

M1 vs. M2 p < 0.01, M1 vs. M3 p < 0.01, M2 vs. M3 p < 0.01

Table 5. ANOVA and Tukey Test for Specificity.

Source SS df MS F p

Treatment 0.6764 2 0.3382 298.39 <0.0001

Error 0.0986 89

Total 0.775 91

HSD [0.05] = 0.02; HSD [0.01] = 0.03

M1 vs. M2 p < 0.01, M1 vs. M3 p < 0.01, M2 vs. M3 p < 0.01

Table 6. ANOVA and Tukey Test for Accuracy.

Source SS df MS F p

Treatment 0.5223 2 0.261148 49.53 <0.0001

Error 0.464 89 0.005272

Total 0.9863 91

HSD [0.05] = 0.04; HSD [0.01] = 0.06

M1 vs. M2 p < 0.01, M1 vs. M3 p < 0.05, M2 vs. M3 p < 0.01

Table 7. ANOVA and Tukey Test for F1 Score.

Source SS df MS F p

Treatment 0.3042 2 0.1521 15.52 <0.0001

Error 0.8723 89 0.0098

Total 1.1765 91

HSD [0.05] = 0.06; HSD [0.01] = 0.08

M1 vs. M2 p < 0.01, M1 vs. M3 p < 0.01, M2 vs. M3 nonsignificant

All four metrics have significant (p < 0.0001) in ANOVA test and all three compared
algorithms showed significant mean difference for all measures, but FMM and BPNN have
no significant difference in F1 score metric (Table 7).

http://vassarstats.net/
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The PID Dataset is used in many other machine learning algorithms and their perfor-
mance is reported in the literature. However, Hasan et al.’s approach [23] applied outlier
rejection preprocessing so that the number of actual instances learned is different and
Alarm et al. approach [25] is designed to find optimum number of hidden layers in neural
network model thus the purpose is different and only the accuracy (75.7%) is comparable to
our result.

Two previous works reported the same measurement as ours and no specific prepro-
cessing is treated. Thus, we report the comparison of our proposed method with other
single supervised learning algorithms from the literature in Table 8.

Table 8. Performance comparison summary from the literature.

Algorithm Sensitivity Specificity Accuracy F1 Score

Naïve Bayes [26] 75.9 76.3 76.3 76.0
SVM [26] 42.4 65.1 65.1 51.3
Decision Tree [26] 73.5 73.8 73.8 73.6
Soft Voting [27] 70.0 73.1 79.1 71.6
FCM–FMM 78.8 70.3 81.0 74.2

With the same experimental condition, our proposed method is the best in sensitivity
and the accuracy and the second in F1 score. Thus, at least, this hierarchical combination
of rather simple fuzzy unsupervised and supervised learner is competitive in this highly
vague and complex domain. Naive Bayes [28] is the best for other two measures (specificity
and F1 score) among five compared algorithms in Table 8.

4. Discussion

In supervised learning, model overfitting is a hurdle to make the learner to be robust
and stable over unseen data. Over-fitted supervised learners tend to memorize more than
necessary including noise on the training set, instead of learning the discipline hidden
behind the data [3]. Statistically, overfitting occurs when we use a model that is more flexible
than it needs to be, or the model includes irrelevant components [29]. Noise, missing values,
insufficient information representation of the input, and unnecessary input parameter
correlation can be the cause of such undesirable phenomenon in supervised learning.

Combining unsupervised learning components as a preprocessing unit of the super-
vised learning component may mitigate such model overfitting problem since the result
of unsupervised learning (clusters) can represent an intermediate concept or noise filter-
ing scheme for the supervised learner. Such attempts have shown encouraging result in
many complex machine learning problems that have high uncertainty and noisy data in
engineering and management [5–16].

In this paper, we propose a hierarchical combination of fuzzy unsupervised learning
component (FCM) and supervised learning component (FMM: Fuzzy Max–min Neural
Network) in diabetes diagnosis that is known as a highly noisy domain since it has not
much labelled data and has many missing values in the dataset. We expect that clusters
produced by the FCM would give more mutually independent input to the supervised
learning component (FMM) so that the performance of the proposed approach can be more
robust than the standalone supervised learner.

In experiment using the 30-fold 7:3 random stratified holdout procedure, we report
that the proposed FCM–FMM combination is better than standard back propagation-based
neural network and standalone FMM as expected in all measures except the sensitivity.
FMM that shows high sensitivity is extremely poor in specificity in that it generates too
many false positives.

The performance of our proposed FCM–FMM combination is compared with various
supervised algorithms using the same PID database and the same measures (sensitivity,
specificity, accuracy, F1 score) reported in other studies. FCM–FMM is the best in sensitivity
and the accuracy and the second in F1 score and Naive Bayes is the best in other two mea-
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sures among five algorithms thus we can conclude that this fuzzy hierarchical combination
is at least competitive in the highly noisy problem domain such as Diabetes diagnosis.

However, the limitation of this work should be noted that the performance of the
proposed algorithm is tested on the single open dataset (PID database). Although the PID
dataset chosen in this paper is a good example of testing the robustness of the learning
algorithms under fuzzy insufficient input information with many missing values, any
direct generalization of this experiment result may not be appropriate to judge the overall
performance of tested algorithms. The proposed method should be tested for many other
noisy datasets to prove its efficacy in the future. Additionally, in model validation, we used
repeated hold-out for simplicity with the expense of pessimistic bias of the performance
partly because two studies we compared in Table 8 took different policies (10-fold cross
validation in [26] and repeated holdout in [27]). No further resampling technique is applied
to our method to refine the performance metric to maintain fair comparison in Table 8.

Further study is also necessary for achieving better accuracy and robustness in this
combination such as outlier rejection, kernel FCM, or applying other variants of FMM
summarized in [22].
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