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Abstract: Diagnostic technologies using X-rays and/or acoustic emissions for concrete infrastructures
containing internal pores, defects, and cracks have attracted considerable interest. However, com-
puterized tomography (CT) for concrete is challenging due to its radiation shielding characteristics.
Electrical impedance tomography (EIT), initially developed for medical use, has recently shown
a potential for developing a macro-CT technique for concrete structures. This study derived EIT
analytical solutions for rectangular cement-based samples and validated them with experimental
data obtained from cubic mortar samples. The experimental validation of the three mathematical
functions (Dirac delta, Heaviside step, and Gaussian) used as current injection models, the Gaussian
function produced the lowest relative absolute error (4.02%). This study also explored appropriate
experimental setups for cement-based materials, such as Shunt model, current flow paths, and
potential distribution.

Keywords: cement mortar; electrical impedance tomography (EIT); analytical solution; computerized
tomography (CT); validation

1. Introduction

Cement-based materials have been widely used in the construction industry. Thus,
many infrastructures consist of concrete. Early detection of internal damage to concrete
structure is essential for structural longevity. However, since defects and damage inside
concrete structures cannot be seen with the naked eye, it is difficult to detect them. To solve
these problems, numerous studies have explored techniques for detecting the conditions
inside concrete, such as half-cell and linear polarization resistance measurements, X-ray
attenuation measurements, and acoustic emission sensors [1–3]. However, macro-scale to-
mography is essential for comprehensively visualizing the condition of concrete structures.
Recent studies have explored electrical impedance tomography (EIT), a computerized
tomography (CT) technology, for visualizing the internal conditions of concrete structures.

CT generates a two-dimensional (2D) image of the distribution of specific variables
inside an object using data measured at the object’s boundary [4]. Medical CT has generally
used X-rays as an incident source. However, due to the radiation-shielding characteristics
of concrete, X-rays are not an ideal incident source for concrete structures. As another CT
technique, EIT utilizes electric sources instead of X-rays. For medical purposes, EIT offers
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fast imaging with fewer side effect than X-ray-based CT [5]. Zhang et al. [6] demonstrated
that the advantages of EIT over conventional CT in medical field. As such, EIT was initially
developed for medical use.

Several studies have been conducted to obtain images of cement-based materials
using EIT [7–9]. Because the electrical properties of concrete with cracks, moisture, or ion
ingress differ from those of intact concrete, EIT can detect its defects and damage based
on changes in these parameters [7,10,11]. However, the quality of reconstructions has not
been sufficiently high for practical applications. This is because inverse ill-posed problems
are extremely sensitive even to relatively small experimental and theoretical errors [7].
Such errors and uncertainties are mainly related to the object’s geometry and electrical
boundary conditions. Thus, determining the effects of geometry and boundary conditions
on the electric potential is key to improving the quality of EIT image reconstructions for
concrete applications.

For medical applications, EIT analytical solutions of the disk (circular section) [12] and
rectangular cross section using the Dirac delta function as a current injection model [13]
have been investigated. On the other hand, the EIT boundary conditions and analytical
solutions for cement-based materials and their representative geometry have not been
systematically explored. Instead, the mathematical theories developed for medical use
have been applied to cement-based materials. Therefore, fundamental research is necessary
to explore analytical solutions for rectangular geometry, which is frequently used for
concrete elements, and boundary conditions appropriate for cement-based materials.

In this study, analytical solutions were mathematically derived for the domain of
the rectangular section frequently used in concrete structural elements. A main objective
was to determine the appropriate boundary conditions using mathematical models that
describe current injection: the Dirac delta function, the Heaviside step function, and the
Gaussian function. To validate the analytical solutions and boundary conditions, voltages
were measured using EIT and compared to theoretical voltages obtained from various
boundary conditions and analytical solutions. A good match between EIT measurements
and calculations indicates that the theoretical calculations accurately evaluate the electrical
conductivity of cementitious materials. From these comparisons, this study presents
appropriate experimental setups for cement-based materials and necessary values for the
analytical solutions.

2. Theoretical Solutions
2.1. Shunt Model for the Boundary Conditions of Cement-Based Samples

The complete electrode model includes both the shunting effect and the contact
impedance between the measuring electrodes and samples. Here, the shunting effect
means that the electric potential on the electrodes is constant. Therefore, the intersectional
governing equations and boundary conditions of the shunt and complete electrode models
are as follows [14]:

0 = ∇ · (σ∇u) (1)∫
el

σ
∂u
∂n

dS = Il , x ∈ el (2)

∂u
∂n

= 0, x ∈ ∂Ω and /∈ el (3)

where, Il is the current injected into the lth electrode, σ is the electrical conductivity of
concrete, u is the electric potential, el is the location of the lth electrode, n is the normal
vector, and S is the boundary area of domain Ω. The difference between the two models is
as follows:

Complete electrode model : u + z · σ ∂u
∂n = Ul x ∈ el

Shunt model : u = Ul x ∈ el
(4)
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here, z is the contact impedance between the electrodes and sample, and Ul is the measured
potential on the lth electrode.

Considering a one-dimensional (1-D) problem of the complete electrode model, a
typical electric potential is shown in Figure 1. The electrode distribution is similar to the
temperature distribution. In this case, U0 and UL are fixed potentials at x = 0 and x = L,
respectively, where they can be similarly considered fixed temperatures. The boundaries
exhibit a potential drop from u(0) to U0 and from UL to u(L) at x = 0 and x = L, respectively,
because of contact impedance (which can also be considered contact resistance). The
governing equation and its solution are as follows:

0 =
d2u
dx2 ⇒ u(x) = c1 · x + c0 (5)

σ du
dx

∣∣∣
x=0

= σ · c1 = 1
z [u(0)−U0] =

1
z [c0 −U0]

σ du
dx

∣∣∣
x=L

= σ · c1 = 1
z [UL − u(L)] = 1

z [UL − c1L− c0]
(6)Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 28 

 

 
Figure 1. Typical plot of electric potential distribution for a 1-D case of the complete electrode model. 
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= ⋅ + ⋅  

(11)

where, A, B, C, D and λ are the constant values of the general solution of the partial de-
rivative. 

2.2.1. Case 1: Current Flows in and out of the Same Boundary 
The configuration when a current is injected on and exits the same surface is illus-

trated in Figure 2a. Constant D becomes 0 by the boundary condition of Equation (12) at 
y = 0. 

Figure 1. Typical plot of electric potential distribution for a 1-D case of the complete electrode model.

Here, the two unknows, c0 and c1, can be obtained from two equations (see Equation (6)),
and current I can be expressed as follows:

I =
V
R
⇒ I = σ

du
dx

= σ · c1 =
UL −U0

L
σ + 2z

=
V

L
σ + 2z

(7)

where, V is the voltage, and R is the resistance, and thus L/σ + 2z is equal to the resistance R.
With low electrical conductivity and a long distance between the two electrodes (L/σ >> 2z),
the voltages can be measured reliably by ignoring contact impedance (2z). The low electrical
conductivity of concrete makes the influence of the surface resistivity on the electrical
potential of concrete low. Base on Equation (7), if the electrical conductivity (σ) is 0.01 S·m−1

(10 mS·m−1) and the surface resistivity is 0.1~1 S−1, the surface resistivity of concrete is
neglectable because 1/σ is 100 and 2z is 0.2~2. This simplification, which is the Shunt model,
is applicable to cement-based samples, because they have lower electrical conductivity
and generally larger size than medical objects. The Wenner probe (also known as the four-
point method) specified by AASHTO TP 95 [15] is a test for measuring electrical resistivity
that also uses the Shunt model. Therefore, this study used the Shunt model because it
is theoretically and practically appropriate for cement-based materials. However, it is
noteworthy that the electrode measurements are sensitive to very low moisture contents
and soluble salt on surface [16] so that this simplification can be applied to the cases of
moderate moisture contents on concrete surface.
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2.2. Derivation of Analytical Solutions

The governing equation for 2-D EIT problems is as follows:

0 = σ
∂2u
∂x2 + σ

∂2u
∂y2 ⇒ 0 =

∂2u
∂x2 +

∂2u
∂y2 (8)

where, u is the electric potential. The boundary conditions for the Shunt model are as follows:∫
el

σ ∂u
∂n dS = Il , (x, y) ∈ el

∂u
∂n = 0, (x, y) ∈ ∂Ω and /∈ el

u = Ul (x, y) ∈ el

(9)

where, Il is the current injected into the lth electrode, σ is the electrical conductivity of
concrete, el is the location of the lth electrode, n is a normal vector, and S is the boundary
area of domain Ω. The following equation can be obtained from governing Equation (10):

0 = uxx + uyy = X′′ (x)Y(y) + X(x)Y′′ (y)

X′′ (x)Y(y) = −X(x)Y′′ (y)
(10)

X(x) is an independent equation for the x variable in the partial derivative, and Y(y) is
an independent expression for the y variable. By using variable separation, you can obtain
general solutions for X(x) and Y(y) as follows.

X(x) = A · cosh(λx) + B · sinh(λx)

Y(y) = C · cos(λy) + D · sin(λy)
(11)

where, A, B, C, D and λ are the constant values of the general solution of the partial derivative.

2.2.1. Case 1: Current Flows in and out of the Same Boundary

The configuration when a current is injected on and exits the same surface is illustrated
in Figure 2a. Constant D becomes 0 by the boundary condition of Equation (12) at y = 0.

0 =
∂u
∂y

∣∣∣∣
y=0
⇒ 0 = Y′(0) = −Cλ sin(λ0) + Dλ cos(λ0)⇒ D = 0 (12)
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The final solution is as follows: 
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The boundary condition at y = b derives λ using the following equation:

0 =
∂u
∂y

∣∣∣∣
y=b
⇒ 0 = Y′(b) = −Cλ sin(λb)⇒ λ = λn =

nπ

b
(13)
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Constant Bn becomes 0 by the boundary condition of Equation (14) at y = 0.

0 =
∂u
∂x

∣∣∣∣
x=0
⇒ 0 =X′(0) = Anλnsinh(λn0) + Bnλn cosh(λn0)⇒ Bn= 0 (14)

Therefore, only An remains, and u(x, y) can be expressed as follows:

u(x, y) = X(x) ·Y(y) =
∞

∑
n=1

[
An · cosh

(nπx
b

)
· cos

(nπy
b

)]
(15)

Now, the final boundary condition at x = a is applied, and An can be obtained using a
Fourier transform as follows:

f (y) = ∂u
∂x

∣∣∣
x=a

=
∞
∑

n=1

[
An
( nπ

b
)
· sinh

( nπa
b
)
· cos

( nπy
b
)]

An
( nπ

b
)
· sinh

( nπa
b
)
= 2

b

∫ b
0 f (y) · cos

( nπy
b
)
dy

(16)

The final solution is as follows:

u(x, y) =
∞
∑

n=1

[
An · cosh

( nπx
b
)
· cos

( nπy
b
)]

where, An = 2
nπsinh( nπa

b )

∫ b
0 f (y) · cos

( nπy
b
)
dy

(17)

2.2.2. Case 2: Current Flows in from one Boundary and out from the Opposite Boundary

Figure 2b illustrate a current injected through one boundary and exiting through the
opposite boundary. Equation (19) can be derived from Equations (12)–(14) and (18).

u(x, y) = X(x) ·Y(y) + a0x + b0 (18)

u(x, y) =
∞

∑
n=1

[{
An cosh

(nπx
b

)
+ Bnsinh

(nπx
b

)}
· cos

(nπy
b

)]
+ a0x + b0 (19)

The remaining boundary conditions are as follows:

f (y) =
∂u
∂x

∣∣∣∣
x=0

, g(y) =
∂u
∂x

∣∣∣∣
x=a

(20)

Using Fourier transforms, Equations (21) and (22) provide all remaining constants,
which are An, Bn, a0, and b0.[

0 nπ
b

nπ
b sinh

( nπa
b
) nπ

b cosh
( nπa

b
)] · [An

Bn

]
=

[
− 2

b

∫ b
0 f (y) · cos

( nπy
b
)
dy

2
b

∫ b
0 g(y) · cos

( nπy
b
)
dy

]
(21)

a0 = −1
b

∫ b

0
f (y)dy =

1
b

∫ b

0
g(y)dy, b0 = − a0

2
(22)

Therefore, the final solution can be obtained by substituting An, Bn, a0, and b0 in
Equation (19).

3. Experiments
3.1. Materials and Sample Preparation

The composition of the mortar matrix used in this study is summarized in Table 1.
The mortar consisted of Portland cement type 1, silica sand, silica fume, silica powder, and
fine steel slag aggregates (FSSAs). The average diameter of silica sand was 0.2 mm, while
the maximum diameter of the FSSAs was 0.39 mm. The properties of FSSAs are listed in
Table 2. Additionally, super-plasticizer with a 30% solid content was used to ensure the
workability of the mortar mixture.
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Table 1. Composition of the cement-based samples by weight ratio (FSSA: fine steel slag aggregate,
weight ratios based on the cement weight as 1).

Cement (Type I) Silica Sand FSSAs Silica Fume Silica Power Water Super-Plasticizer

1.0 0.50 0.50 0.15 0.25 0.20 0.042

Table 2. FSSA properties.

Diameter (µm) Density (g/cm3) Electrical Conductivity (106 Sm−1)

<390 3.56 11.2

A Hobart type laboratory mixer with a capacity of 20 L was used for mixing. The
matrix components were first dry mixed for 5 min. Then, water was added to the mixture,
which was then mixed for another 5 min. The superplasticizer was then gradually added
to the mixture while mixing for another 5 min. The mixture was subsequently poured into
cubic molds. Light vibration was then applied to reduce the air bubbles in the samples.
After casting, all samples were covered with plastic sheets and placed in a laboratory at
room temperature (25 ◦C) and 60% relative humidity for two days prior to demolding.
After demolding, the samples were cured with hot water at a temperature of 90 ◦C for
3 days.

3.2. EIT Measurements

The sample size was cubic 50 × 50 × 50 mm in the form of a cube. A layer of silver
paste was applied to the surface of the hardened samples, and then copper tape electrodes
were attached to the silver paste. The silver paste was supplied by Ted Pella Inc. as Prod
No. 16031. Eight copper tapes were placed on two opposite sides (four on each side) of
the samples, as shown in Figure 3. Electrodes were mounted at 1, 2, 3, and 4 cm positions
on one side of the sample, and the other side was installed in the identical manner. The
width of the electrodes was 5 mm, and the distance between the centers of the electrodes
was 10 mm. The EIT measurements were performed using an experimental setup and
a Sciospec EIT device (Figure 4). The EIT data were obtained from the eight electrodes
(Figure 4a). The amplitude and frequency of the electrical current were 10 mA and 80 kHz,
respectively. The voltages were measured from electrode pairs in a series. The uncertainty
of the measurement is the variation in humidity of the sample and the possibility of
sample inhomogeneity.
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4. Results and Discussion
4.1. Cutoff of Infinite Series Solutions

As EIT analytical solutions have the form of an infinite series, it is necessary to
determine the number of terms required for computations. To the end, the configuration
shown in Figure 5 was chosen, and the sum of voltage V1 and V2 voltages was calculated
to determine the point where the difference in voltage did not change significantly as the
number of terms increased. As shown in Figure 6, the voltage change stabilized after adding
the 50th term of the series (n = 50). Therefore, the analytical solutions of the infinite series
were changed to a finite series that added up to the 50th term. However, it is noteworthy
that the cutoff of infinite series depends on the size and the composition of the samples.

Case 1 : u(x, y) =
∞

∑
n=1

(
An · cosh

(nπx
b

)
· cos

(nπy
b

))
'

50

∑
n=1

(
An · cosh

(nπx
b

)
· cos

(nπy
b

))
(23)

Case 2 : u(x, y) =
∞
∑

n=1

[{
An cosh

( nπ
b x
)
+ Bnsinh

( nπ
b x
)}

cos
( nπ

b y
)]

+ a0x + b0

'
50
∑

n=1

[{
An cosh

( nπ
b x
)
+ Bnsinh

( nπ
b x
)}

cos
( nπ

b y
)]

+ a0x + b0

(24)
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4.2. Experimental Validation of Current Injection Models

Current injection models indicate the functions of f (y) and g(y) in Equation (25), which
are derived from the boundary conditions on the current-injected surface. Therefore, they
describe how current inflow and outflow occur.

σ
∂u
∂n

= I on ∂ΩI ⇒ ux(0, y) = g(y) and ux(a, y) = f (y) (25)

Three models were investigated: Dirac delta function, Heaviside step function, and
Gaussian function (also known as the normal distribution function). The Dirac delta
function was used in a previous study [13]. However, since the electrodes where the current
goes in and out have a certain width, the Heaviside step function might better represent
the current inflow and outflow than the Dirac delta function. Nevertheless, the Gaussian
function might better describe the current density than the Heaviside step function. This
is because it can better describe common physical phenomena, such as stress density and
heat density, even though the ideal density for calculations is the Heaviside step function.

4.2.1. Dirac Delta Function
Case 1: Current Flows in and out of the Same Boundary

As shown in Figure 7, if current I is injected from the right boundary point (x = a, y = y1)
of the rectangular object to point x = a, y = y2, the function of the boundary condition at
x = a can be expressed by the Dirac delta function.

The Dirac delta function is written as δ(y − yk), which is δ(y − yk) = ∞ at y = yk and
δ(y − yk) = 0 otherwise. Using the Dirac delta function, Equation (25) becomes g(y) = 0 and
f (y) = (I/σ)·{δ(y − y1) − δ(y − y2)}, and An in Equation (17) is calculated as follows:

An = 2·(I/σ)

nπsinh( nπa
b )
·
(∫ b

0 (δ(y− y1)− δ(y− y2)) · cos
( nπy

b
)
dy
)

= 2·(I/σ)

nπsinh( nπa
b )
·
(
cos
( nπy1

b
)
− cos

( nπy2
b
)) (26)

where, I is the injected current, σ is the electrical conductivity of concrete, and a and b are
the lengths of the concrete sample along the x- and y-axes, respectively. As An is applied
to Equation (27), the electric potential u(x, y) can be calculated, and thus the potential
difference between two electrodes corresponds to the measured voltages.
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u(x, y) =
50

∑
n=1

(
An · cosh

(nπx
b

)
· cos

(nπy
b

))
(27)

Using nonlinear regression [17], the voltages calculated by Equation (27) are fitted to
the measured voltages. Table 3 shows the nonlinear regression results. The fitted electrical
conductivity was 16.077 mS·m−1, the rate of relative absolute error (RAE) was 22.009%:

Rate of Relative Absolute Error (RAE rate) = ∑|Residuals|
∑|Caculation| (28)
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Table 3. Comparisons between the measured and calculated voltages using the Dirac delta function
for Case 1 (unit: 10−3 Volt).

Experimental Configuration Measured Calculated Residual (Mea.-Cal.) |Res.|/Cal. (%)

Set #1

V1
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As shown in Table 3, V1 and V3 resulted in higher residuals between the calculated
and measured voltages than V2 in all experimental sets (Sets #1–#4). Regardless of the path
of electric current flow, the inner areas of the cement-based samples provided more stable
measurements than the corner areas. This was likely due to the higher volatility of the
electric potential in the corner areas. To better understand the residuals, a histogram and
Q-Q (quantile-quantile) plot were drawn. The histogram shown in Figure 8a was similar
to a normal distribution, except for its tail bounds induced from V1 and V3 in the corner
areas. Nevertheless, the Q-Q plot in Figure 8b shows that the residuals closely followed the
normal distribution.
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Figure 8. Comparison between a normal distribution and residuals obtained from the Dirac delta
function for Case 1: (a) histogram of residuals and (the label of x axe: residuals (differences) between
calculations and measurements in 10−3 volt unit, the label of y axe: the number of residuals in
frequency) (b) Q-Q plot.

Electric potential maps were created based on the calculations from Equations (26) and (27).
As shown in Figure 9, when the current-injected point was located at an inner area, the
potential distribution was concentrated at that point, whereas when the point was in a
corner area, the potential was distributed over a wide area. Furthermore, a significant
variation in the potential field mostly occurred near the electrodes where the current flowed
in and out. For other boundary interfaces, the potential change was gradual, and the
potential variation was substantially smaller at the boundary interface where the voltages
were measured. This might be the reason for the high RAE (22.009%) as the sensitivity to
the measurement increased.

Case 2: Current Flows in from one Boundary and out from the Opposite Boundary

As shown in Figure 10, the current was injected at y = y1 on the left boundary (x = 0)
of the rectangular area and flowed out at y = y2 on the right boundary (x = a). Using the
Dirac delta function, the functions of boundary conditions f (y) and g(y) can be expressed
as follows:

g(y) =
I
σ
· δ(y− y1) and f (y) = − I

σ
· δ(y− y2) (29)

where, δ is the Dirac delta function, I is the current, and σ is the electrical conductivity.
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Using Equation (29), Equation (21) is converted to the following equation:[
0 nπ

b
nπ
b sinh

( nπa
b
) nπ

b cosh
( nπa

b
)] · [An

Bn

]
=

− 2
b

(
I
σ

)
cos
( nπy1

b
)

2
b

(
− I

σ

)
cos
( nπy2

b
)
 (30)

By going through the inverse matrix process, An and Bn in Equation (30) can be
expressed as follows:

An =
2( I

σ )
nπtanh( nπa

b )
cos
( nπy1

b
)
+

2(− I
σ )

nπsinh( nπa
b )

cos
( nπy2

b
)

Bn = − 2( I
σ )

nπ cos
( nπy1

b
) (31)

The part, a0·x + b0, of Equation (22) is solved as follows:

a0 = 1
b

∫ b
0 − f (y)dy = − 1

b ·
(

I
σ

)∫ b
0 δ(y− y1)dy =− 1

b ·
(

I
σ

)
b0 = − a0

2

(32)

The completed series solution of u(x, y) is as follows:

u(x, y) =
50

∑
n=1

[{
An cosh

(nπ

b
x
)
+ Bnsinh

(nπ

b
x
)}

cos
(nπ

b
y
)]

+ a0x + b0 (33)

Equation (33) was fitted to the measured voltages. The fitted electrical conductivity
was 15.907 mS·m−1 and the RAE was 4.372%. Thus, Case 2 had a considerably low RAE
than Case 1 (22.009%). In contrast to conventional medical uses, the application of EIT
to cement-based materials, which have electricity insulation characteristics, requires the
electric current to pass through the sample thoroughly. This might be because Case 2 had
higher voltage value than Case 1, reflecting a significant difference in the electric potential
field. A comparison of the calculated potential fields is presented below.

Table 4 shows the measured and calculated voltages. Large errors occurred in V1 in
Sets #5 to #8. These values were potential differences between two electrodes that had a
current-injected electrode between them. Therefore, for voltage measurements, selecting
two electrodes that have a current-injected electrode between them should be avoided
because the electric field around the current-injected electrode changes so dramatically
that the voltage measurement is considerably less accurate. Figure 11 shows the histogram
and Q-Q plot of residuals. The residuals exhibited a well-defined normal distribution,
except for two outliers toward the minus direction obtained from V1 of Sets # 6 and # 7. As
previously noted, these voltages were measured from two electrodes with a current-injected
electrode between them. The Q-Q plot also shows that the residuals followed the normal
distribution, except for a heavy tail toward the negative values. Generally, residuals that
follow a well-defined normal distribution function indicate a reliable validation between a
theoretical solution and a well-controlled measurement [15].

Figure 12 shows the electric potential field obtained from Equations (31)–(33). Com-
pared to Case 1 (Figure 9), the change in potential difference in Case 2 occurred in a wider
area. A similar phenomenon was in fact observed in Sets #3 and #4 in Case 1 (Figure 9c,d).
When the two electrodes where the current flowed in and out were sufficiently far apart, a
change in potential difference occurred over a large area of the domain. This clear potential
difference caused higher voltage values in Case 2, making it less sensitive to voltage mea-
surements. For this reason, the RAE in Case 2 was considerably lower than that in Case 1
(Tables 3 and 4).
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Table 4. Comparisons between the measured and calculated voltages using the Dirac delta function
for Case 2 (unit: 10−3 Volt).

Experimental Configuration Measured Calculated Residual
(Mea.−Cal.)

|Res.|/Cal.
(%)

Set #1 V1 17.923 17.896 0.027 0.151

V2 8.716 8.882 −0.166 1.869

Set #2 V1 16.638 16.826 −0.188 1.117

V2 7.981 7.921 0.060 0.757

Set #3 V1 15.412 15.497 −0.085 0.548

V2 7.090 6.852 0.238 3.473

Set #4 V1 14.015 14.428 −0.413 2.862

V2 6.064 6.079 −0.015 0.247

Set #5 V1 6.936 7.401 −0.464 6.269

V2 13.440 13.298 0.143 1.075

Set #6 V1 4.392 5.558 −1.167 20.997

V2 12.895 12.337 0.558 4.523

Set #7 V1 1.386 3.160 −1.774 56.139

V2 12.166 11.268 0.898 7.969

Set #8 V1 1.332 1.130 0.202 17.876

V2 11.050 10.495 0.555 5.288
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Figure 11. Comparison between a normal distribution and residuals obtained from the Dirac delta
function for Case 2: (a) histogram of residuals (the label of x axe: residuals (differences) between
calculations and measurements in 10−3 volt unit, the label of y axe: the number of residuals in
frequency) (b) Q-Q plot.
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where, I is the injected current, σ is the electrical conductivity of concrete, w is the electrode 
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are the lengths of the concrete sample along the x- and y-axes, respectively. 

Figure 12. Electric potential maps created based on calculation from the Dirac delta function for
Case 2: (a) Set #1, (b) Set #2, (c) Set #3, (d) Set #4, (e) Set #5, (f) Set #6, (g) Set #7, and (h) Set #8 (x and
y axes indicate 50 × 50 mm corresponding to the size of the sample; the red and blue colors mean
positive and negative voltage, respectively).
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4.2.2. Heaviside Step Function
Case 1: Current Flows in and out of the Same Boundary Surface

Figure 13 illustrates the boundary conditions of Case 1 for the model using the Heavi-
side step function. Since current I enters and exits through electrodes of a certain width
w, the height of the Heaviside step function becomes I/w. Therefore, the integral function
containing f (y) is as follows:∫ b

0
f (y) · cos

(nπy
b

)
dy =

∫ y1+w/2

y1−w/2

1
σ
· I

w
· cos

(nπy
b

)
dy−

∫ y2+w/2

y2−w/2

1
σ
· I

w
· cos

(nπy
b

)
dy (34)

where, I is the injected current, σ is the electrical conductivity of concrete, w is the electrode
width, y1 and y2 are the electrode positions where current flows in and out, and a and b are
the lengths of the concrete sample along the x- and y-axes, respectively.
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The coefficients of the series An for the electric potential field equation can be de-
termined by deriving Equation (35) from Equation (34). Here, An of Equation (27) is
calculated by Equation (35), so that u(x, y) contains the injected current flow described by
the Heaviside step function.

An = 2
nπsinh( nπa

b )
·
(∫ b

0 f (y) · cos
( nπy

b
)
dy
)

2·(I/σ)

nπsinh( nπa
b )
·
(∫ y1+w/2

y1−w/2
1
w · cos

( nπy
b
)
dy−

∫ y2+w/2
y2−w/2

1
w · cos

( nπy
b
)
dy
) (35)

Table 5 shows a comparison of the measured and calculated voltages. The fitted
electrical conductivity was 16.010 mS·m−1, and the RAE rate was 21.987%. Compared to
the Dirac delta function, the Heaviside step function marginally reduced the RAE. This
reduction came from V1 and V3 of Sets #1 and #2, which had high residuals. Since the
results obtained from the Dirac delta and the Heaviside step functions were similar, their
histograms and Q-Q plots were also similar.

Case 2: Current Flows in from one Boundary and out from the Opposite Boundary

Assuming that an equally distributed current flows in and out through electrodes of
width w, the configuration can be expressed as shown in Figure 14. If the current is injected
into the electrode of width w at y = y1 on the left boundary of the rectangular area and
flows to another electrode at y = y2 on the right boundary, g(y) and f (y) of the boundary
condition can be expressed as follows:
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g(y) =

{ 1
σ ·

I
w , y1 −

w
2 ≤ y ≤ y1 +

w
2

0, otherwise

f (y) =

{
− 1

σ ·
I
w , y2 −

w
2 ≤ y ≤ y2 +

w
2

0, otherwise

(36)

where, I is the injected current, σ is the electrical conductivity of concrete, w is the electrode
width, and y1 and y2 are the electrode positions where the current flows in and out,
respectively. Functions f (y) and g(y) are applied to obtain An and Bn as follows:[

0 nπ
b

nπ
b sinh

( nπa
b
) nπ

b cosh
( nπa

b
)] · [An

Bn

]
=

− 2
b

∫ y1+
w
2

y1− w
2

1
σ ·

I
w cos

( nπy
b
)
dy

2
b

∫ y2+
w
2

y2− w
2
− 1

σ ·
I
w cos

( nπy
b
)
dy

 (37)

Table 5. Comparisons between the measured and calculated voltages using the Heaviside step
function for Case 1 (unit: 10−3 Volt).

Experimental Configuration Measured Calculated Residuals
(Mea.−Cal.)

|Res.|/Cal.
(%)

Set #1 V1 0.384 0.949 −0.565 59.536

V2 0.964 1.058 −0.094 8.885

V3 0.964 0.766 0.198 25.849

Set #2 V1 1.269 2.007 −0.738 36.771

V2 2.433 2.373 0.059 2.486

V3 2.561 1.824 0.737 40.406

Set #3 V1 2.011 2.773 −0.762 27.479

V2 3.738 3.431 0.307 8.948

V3 3.127 2.773 0.354 12.766

Set #4 V1 0.872 1.058 −0.186 17.580

V2 1.367 1.315 0.052 3.954

V3 1.708 1.058 0.650 61.437
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As a result, An and Bn can be obtained as follows:

An =
2· I

(σ·w)

nπtanh( nπa
b )

∫ y1+
w
2

y1− w
2

cos
( nπy

b
)
dy +

2
(
− I

(σ·w)

)
nπsinh( nπa

b )

∫ y2+
w
2

y2− w
2

cos
( nπy

b
)
dy

Bn = −
2· I

(σ·w)

nπ

∫ y1+
w
2

y1− w
2

cos
( nπy

b
)
dy

(38)

Furthermore, a0 and b0 are calculated as follows:

a0 = 1
b

∫ b
0 − f (y)dy = − 1

b

∫ y1+
w
2

y1− w
2

(
I

σ·w

)
dy =− 1

b ·
(

I
σ

)
b0 = − a0

2

(39)

When all coefficients (An, Bn, a0, and b0) are applied to Equation (33), function u(x, y)
is the electric potential field over the rectangular domain.

Table 6 shows a comparison between the measured and calculated voltages using
the Heaviside step function. Throughout the fitted values, the electrical conductivity was
16.073 mS·m−1, and the RAE was 4.218%. Compared to the Dirac delta function, the RAE
decreased from 4.372% to 4.218%. This reduction was evenly distributed across all data.
This is clearly shown in the histogram and Q-Q plot of Figure 15. The asymmetry in the
normal distribution was lower than that in the Dirac delta function. Although a heavy tail
was also observed in the Q-Q plot of Case 2, the data were evenly distributed above and
below the reference line of the plot in the −1 to 1 interval of the standard normal quantiles.

Table 6. Comparisons between the measured and calculated voltages using the Heaviside step
function for Case 2 (unit: 10−3 Volt).

Experimental Configuration Measured Calculated Residual
(Mea.−Cal.)

|Res.|/Cal.
(%)

Set #1 V1 17.923 17.881 0.041 0.229

V2 8.716 8.816 −0.101 1.146

Set #2 V1 16.638 16.828 −0.189 1.123

V2 7.981 7.871 0.110 1.398

Set #3 V1 15.412 15.518 −0.106 0.683

V2 7.090 6.817 0.273 4.005

Set #4 V1 14.015 14.464 −0.449 3.104

V2 6.064 6.053 0.010 0.165

Set #5 V1 6.936 7.324 −0.387 5.284

V2 13.440 13.320 0.120 0.901

Set #6 V1 4.392 5.506 −1.115 20.251

V2 12.895 12.375 0.520 4.202

Set #7 V1 1.386 3.143 −1.757 55.902

V2 12.166 11.321 0.845 7.464

Set #8 V1 1.332 1.143 0.189 16.535

V2 11.050 10.558 0.492 4.660
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Figure 15. Comparison between a normal distribution and residuals obtained from the Heaviside
step function for Case 2: (a) histogram of residuals (the label of x axe: residuals (differences) between
calculations and measurements in 10−3 volt unit, the label of y axe: the number of residuals in
frequency) (b) Q-Q plot.

4.2.3. Gaussian Function
Case 1: Current Flows in and out of the Same Boundary Surface

Figure 16 illustrates the boundary conditions when the Gaussian function was applied
to the current injection model. Here, boundary condition function g(y) = 0 because the
boundary surface at x = 0 has no current flow, while f (y) can be expressed as follows:

f (y) =
(

I
σ

)
·
(

1
σs
√

2π

)[
e−0.5( y−y1

σs )
2

− e−0.5( y−y2
σs )

2
]

(40)

where, I is the injected current, σ is the electrical conductivity of concrete, σs is a standard
deviation for the Gaussian function, and y1 and y2 are the electrode positions where the
current flows in and out, respectively. Standard deviation σs is an important constant. The
electric potential field function corresponding to the Gaussian function has not yet been
derived, but constant σs will first discussed using the electric potential function, which will
be derived later.
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Figure 17 shows the plot of the RAE as a function of σs using Gaussian function in
Case 2, which had in a low RAE. In this case, the voltage data from V1 of Sets #6 to #8
were excluded as outliers because the fitting process was mainly dominated by these three
sets, whose residual values were much higher than those of the others. Figure 18 shows
histograms with various σs values. As shown in Figure 17, a σs value between 2 and 3
had the lowest RAE. Figure 18 shows that the histogram of residuals followed the normal
distribution most closely with σs = 2.5. Therefore, considering that the electrode width was
5 mm, half that width is the best selection for constant σs.
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Equation (41) provides the coefficients of series An using Equation (40). By applying
Equation (41) to Equation (27), it is possible to obtain the electric potential equation u(x, y)
for Case 1.

An = 2
nπsinh( nπa

b )
·
(∫ b

0 f (y) · cos
( nπy

b
)
dy
)

= 2·(I/σ)

nπsinh( nπa
b )
·
(

1
σs
√

2π

)∫ b
0

[
e−0.5( y−y1

σs )
2

− e−0.5( y−y2
σs )

2
]
· cos

( nπy
b
)
dy

(41)

Table 7 shows a comparison between the measured and calculated voltages. The
fitted electrical conductivity was 15.915 mS·m−1, and the RAE was 21.955%. The RAE was
marginally reduced compared to the Heaviside step function. Since the residual rates of the
Gaussian function shown in Table 7 were similar to those of the Heaviside step function,
the histograms and Q-Q plots of two functions were also strikingly similar. For this reason,
the histogram and Q-Q plot of the Gaussian function are not displayed here.
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Figure 18. Histograms of residuals at different σs values: (a) σs = 2.0, (b) σs = 2.5, (c) σs = 3.0, and
(d) σs = 3.5 (the label of x axe: residuals (differences) between calculations and measurements in 10−3

volt unit, the label of y axe: the number of residuals in frequency).

Table 7. Comparisons between the measured and calculated voltages using the Gaussian function for
Case 1 (unit: 10−3 Volt).

Experimental Configuration Measured Calculated Residual
(Mea.−Cal.)

|Res.|/Cal.
(%)

Set #1 V1 0.384 0.948 −0.564 59.494

V2 0.964 1.058 −0.094 8.885

V3 0.964 0.768 0.196 25.521

Set #2 V1 1.269 2.006 −0.737 36.740

V2 2.433 2.373 0.059 2.486

V3 2.561 1.826 0.735 40.252

Set #3 V1 2.011 2.774 −0.763 27.505

V2 3.738 3.431 0.307 8.948

V3 3.127 2.774 0.353 12.725

Set #4 V1 0.872 1.058 −0.186 17.580

V2 1.367 1.315 0.052 3.954

V3 1.708 1.058 0.650 61.437
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Case 2: Current Flows in from one Boundary and out from the Opposite Boundary

Assuming that the current in the electrode follows a normal distribution, its distribu-
tion can be illustrated as shown in Figure 19. The current flows in from the right boundary
and out from the left boundary. Therefore, g(y) and f (y), which represent the right and left
boundaries, respectively, can be expressed by Equation (42).

g(y) =
(

I
σ

)
·
(

1
σs
√

2π

)
· e−0.5( y−y1

σs )
2

f (y) = −
(

I
σ

)
·
(

1
σs
√

2π

)
· e−0.5( y−y2

σs )
2

(42)

where, I is the injected current, σ is the electrical conductivity of concrete, σs is a standard
deviation for the Gaussian function, and y1 and y2 are the electrode positions where the
current flows in and out, respectively. Using g(y) and f (y), An and Bn are obtained from a
matrix inverse of Equation (43).

[
0 nπ

b
nπ
b sinh

( nπa
b
) nπ

b cosh
( nπa

b
)] · [An

Bn

]
=

− 2
b

(
I
σ

)
·
(

1
σs
√

2π

)∫ b
0 e−0.5( y−y1

σs )
2

cos
( nπy

b
)
dy

2
b

(
I
σ

)
·
(

1
σs
√

2π

)∫ b
0 −e−0.5( y−y2

σs )
2

cos
( nπy

b
)
dy

 (43)
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Consequently, the necessary coefficients (An, Bn, a0, and b0) of Equation (33), are
derived by Equations (44) and (45).

An =
2· I

σ

σs
√

2π
·
{

1
nπtanh( nπa

b )

∫ b
0 e−0.5( y−y1

σs )
2

cos
( nπy

b
)
dy + −1

nπsinh( nπa
b )

∫ b
0 e−0.5( y−y2

σs )
2

cos
( nπy

b
)
dy
}

Bn = − 2
nπ ·

I
σ

σs
√

2π

∫ b
0 e−0.5( y−y1

σs )
2

cos
( nπy

b
)
dy

(44)

a0 = 1
b

∫ b
0 − f (y)dy = − 1

b ·
I
σ ·

1
σs
√

2π

∫ b
0 e−0.5( y−y1

σs )
2

dy =− 1
b ·
(

I
σ

)
b0 = − a0

2

(45)

The electric potential equation u(x, y) obtained from Equations (33), (44) and (45)
can be used to calculate the potential field in the rectangular domain. The fitted results
showed that the electrical conductivity was 16.337 mS·m−1 and the RAE was 4.023%. The
RAE rate was thus improved compared to the Dirac delta and Heaviside step functions.
The improvement over the Dirac delta function was 8.0%. Table 8 shows a comparison
between the measured and calculated voltages. An improvement was observed in all
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voltage data. The trend is better illustrated in the histogram of Figure 20. Except for
two data sets corresponding to the negative heavy tail of the standard normal quantiles,
the histogram shows a better-fitted normal distribution, which is more clearly shown
in the Q-Q plot of Figure 20. Furthermore, Figure 21 shows the electric potential field
using the Gaussian function. Compared to the Dirac delta function, the potential changed
more gradually around the electrodes. This gradual variation was more similar to the
real potential distribution, as revealed by the comparison between the measured and
calculated voltages.

Table 8. Comparisons between the measured and calculated voltages using the Gaussian function for
Case 2 (unit: 10−3 Volt).

Experimental Configuration Measured Calculated Residual
(Mea.−Cal.)

|Res.|/Cal.
(%)

Set #1 V1 17.923 17.857 0.066 0.370

V2 8.716 8.709 0.006 0.069

Set #2 V1 16.638 16.826 −0.188 1.117

V2 7.981 7.786 0.195 2.504

Set #3 V1 15.412 15.545 −0.133 0.856

V2 7.090 6.755 0.334 4.944

Set #4 V1 14.015 14.514 −0.499 3.438

V2 6.064 6.007 0.056 0.932

Set #5 V1 6.936 7.203 −0.267 3.707

V2 13.440 13.356 0.085 0.636

Set #6 V1 4.392 5.424 −1.033 19.045

V2 12.895 12.432 0.463 3.724

Set #7 V1 1.386 3.113 −1.727 55.477

V2 12.166 11.402 0.764 6.701

Set #8 V1 1.332 1.159 0.173 14.927

V2 11.050 10.653 0.396 3.717

Appl. Sci. 2023, 13, x FOR PEER REVIEW 25 of 28 
 

Table 8. Comparisons between the measured and calculated voltages using the Gaussian function 
for Case 2 (unit: 10−3 Volt). 

Experimental 
Configuration Measured Calculated 

Residual 
(Mea.−Cal.) 

|Res.|/Cal. 
(%) 

Set #1 V1 17.923  17.857  0.066  0.370 
 V2 8.716  8.709  0.006  0.069 

Set #2 V1 16.638  16.826  −0.188  1.117 
 V2 7.981  7.786  0.195  2.504 

Set #3 V1 15.412  15.545  −0.133  0.856 
 V2 7.090  6.755  0.334  4.944 

Set #4 V1 14.015  14.514  −0.499  3.438 
 V2 6.064  6.007  0.056  0.932 

Set #5 V1 6.936  7.203  −0.267  3.707 
 V2 13.440  13.356  0.085  0.636 

Set #6 V1 4.392  5.424  −1.033  19.045 
 V2 12.895  12.432  0.463  3.724 

Set #7 V1 1.386  3.113  −1.727  55.477 
 V2 12.166  11.402  0.764  6.701 

Set #8 V1 1.332  1.159  0.173  14.927 
 V2 11.050  10.653  0.396  3.717 

 

  
(a) (b) 

Figure 20. Comparison between a normal distribution and residuals obtained from the Gaussian 
function for Case 2: (a) histogram of residuals and (the label of x axe: residuals (differences) between 
calculations and measurements in 10−3 volt unit, the label of y axe: the number of residuals in fre-
quency) (b) Q-Q plot. 

Figure 20. Comparison between a normal distribution and residuals obtained from the Gaussian
function for Case 2: (a) histogram of residuals and (the label of x axe: residuals (differences) between
calculations and measurements in 10−3 volt unit, the label of y axe: the number of residuals in
frequency) (b) Q-Q plot.
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Figure 21. Electric potential maps created based on calculations using the Gaussian function for
Case 2: (a) Set #1, (b) Set #2, (c) Set #3, (d) Set #4, (e) Set #5, (f) Set #6, (g) Set #7, and (h) Set #8 (x and
y axes indicate 50 × 50 mm corresponding to the size of the sample; the red and blue colors mean
positive and negative voltage, respectively).



Appl. Sci. 2023, 13, 335 24 of 25

5. Conclusions

This study aimed to derive EIT analytical solutions to homogeneous problems of
rectangular cement-based materials and validate them experimentally. The following
conclusions can be drawn from the results:

1 The Shunt model can generally describe the boundary conditions of cement-based
materials, which have low electrical conductivity. This was shown by both theoretical
and experimental approaches. However, there are a few data having a significant
discrepancy between some the calculated and measured voltages. Therefore, it is
necessary to consider uncertainties such as the inhomogeneity of the sample and the
humidity of the surface electrode.

2 The analytical solutions were derived in the form of infinite series. A cutoff up to the
50th was effective in comparing the theoretical to the measured voltages.

3 For cement-based elements, the convergence between theoretical and experimental
voltages is higher when the current flows from one boundary to the opposite boundary
of a sample than in and out of the same boundary.

4 In comparisons between theoretical and experimental voltages, the Gaussian func-
tion shows the lowest RAE, which suggests that it describes current injection more
accurately than the Dirac delta and Heaviside step functions. Especially, when σs
corresponding to the necessary constant of the Gaussian function is approximately
half of the electrode width, the Gaussian function provides the lowest RAE.
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