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Abstract: Based on the dynamic reorganization mechanism of brain science and the fact that synaptic
adaptability is affected by synaptic type, synaptic number and ion concentration, a bionic dynamic
synaptic model is proposed and applied to a motif model and brain-like network model. By extracting
the phase synchronization characteristics of the neural signals of node pairs in time sequence, and
then deeply studying the regulation and control effect of synchronous discharge activities on effective
links under the action of stimulating information, the path selection strategy is designed with the
goal of maximizing the information transmission capacity between nodes. Four indicators are
proposed: (1) pathway-synchronization-facilitation; (2) pathway-activation; (3) pathway-phase-
selectivity; (4) pathway-switching-selectivity, which are used as the main basis for path selection in
the network. The results show that the in-phase and anti-phase transition of neuron nodes under the
action of time delay is an important way to form an effective link, and, in addition to the influence
of synaptic strength and the number of central nodes on synchronization characteristics, the phase
information carried by the stimulus signal also regulates the path selection. Furthermore, the paths
between the pairs of stimulus nodes in the network have different phase preferences. In the brain-like
network with twenty nodes, it is found that nearly 42% of the stimulus nodes have a strong phase
preference; that is, the path can be selected and switched through the phase information carried by
the information flow, and then the path with better representation information can be found. It also
provides a new idea for how brain-like intelligences might better represent information.

Keywords: brain networks; neuron model; dynamic synaptic model; path selection strategy

1. Introduction

The intelligent information age is quietly changing people’s way of life and the devel-
opment mode of the world. It has become an important development trend to study the
information transmission and representation of brain network in order to realize brain-like
intelligence. Taking the simulation of brain connection mechanism as the starting point
for the study of brain-like networks, in-depth study of the close relationship between
information representation and loop selection is a hot topic in the study of brain-like in-
telligence. Recent studies have shown that the information representation of brain-like
intelligent networks is mainly reflected by a variety of connection modes of the network;
memory storage, extraction and forgetting in the brain network are all related to the link
state between neurons [1,2]. Understanding the neural basis and working principle of brain
networks by constructing bionic models and exploring the potential mechanism of loop
selection and information representation in brain networks are of great significance to the
development of brain-like intelligence.

In recent years, the study of the synapse has mainly focused on the perspective around
the synapse. Ref. [3] investigates the release of synaptic vesicles as a random transfer model.
The authors proposed a statistical model which focuses on the number of neurotransmitters
released, and analyzes the plasticity of the complex signal transmission process of the
chemical synapse. Ref. [4] states that the orientation of electrical synapses and dendritic
positions and the synchronous activity between two neurons depend on electrical synapses
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at different locations, and that this asymmetry affects information transmission at synapses
and information processing by dendrites. Ref. [5] examines synapses that exhibit auto-
adaptive properties when both chemical and electrical synapses are activated together,
which can induce a transition from synchrony to desynchrony between neural circuits. In
addition, Ref. [6] shows that the extracellular matrix (ECM) is an important composite
protein to regulate brain development, brain connectivity and plasticity, and that ECM
concentration is one of the important mechanisms in regulating the number of synapses so
as to avoid excessive excitation of brain network changes. Ref. [7] explains that the dynamic
changes in acetylcholine transmitter concentration can affect synaptic efficacy. This shows
that synapse study by ECM concentration is being taken a new direction, which will be
important in the understanding of information transmission in the brain.

Moreover, related studies have shown that the organization of brain networks is
constantly optimized to achieve different tasks with a dynamic reorganization, and one
of the mechanisms of dynamic reorganization present in the network is the presence of
different neural rhythms (resonance, synchronization) in the processing of signals, while the
dynamic reorganization induced by phase synchronization can be achieved by regulating
the effective connectivity between nodes [8]. The results of [9,10] show that the basic
functions of receiving, processing and transmitting information in the brain and the higher
functions such as memory and association are directly related to the complex loops formed
by synaptic coupling, and it can be said that the neural loop modulation mechanisms allow
the brain to show different functional properties. Refs. [8,11] indicate that brain networks
can exhibit complex loop connections regardless of whether the brain is in a resting or
task state; thus, they choose different network paths to achieve functional tasks, such as
memory, association and decision making. In this paper, both dynamic synapses and
correlations assessment are mainly considered in terms of how dynamic reorganization
of the network can flexibly adapt to changes in functional coupling to external stimuli. In
this mode of synchronization, features that can be enhanced or diminished by the phase
information of stimulus signals can be used as an effective connection mechanism for
dynamic network reorganization.

The research content and main contributions of this paper are as follows: in the
Section 1, the research background and significance of the article are expounded in detail;
in the Section 2, according to the latest brain science research results, the bionic dynamic
synapses are constructed by combining the electrical synaptic model, chemical synaptic
model and synaptic number model under the influence of concentration; in the Section 3,
the bionic dynamic synapses are applied to the neural network and the effect of stimu-
lation information phase offset on path selection in the network is explored. The main
contributions of this paper are as follows: (1) we propose a bionic dynamic synaptic model
under the influence of concentration and apply it to doubly coupled nervous system and
neural networks with small world network characteristics; (2) we use the original model to
study the close relationship between phase synchronization and effective links, propose
a path selection method based on information flow disturbance and prove that there is a
moderating relationship between the path selection mechanism and the phase difference of
stimulus information in the network.

2. Materials and Methods

The synapse is not only an important part of the brain network, but also the key to the
realization of information transmission, information representation, perceptual decision-
making and other functions. The connection between neurons is made up of chemical
synapses or electrical synapses, even the coexistence of electrical synapses and chemical
synapses, and they interact with each other in the process of information transmission, to-
gether affecting the response ability of the system [12]. In addition, synaptic structures with
complex biological characteristics play an important role in regulating signal transmission
in the nervous system. With the development of brain science and observation technology,
the influencing factors of biological synapses have been deeply understood. Ref. [6] shows



Appl. Sci. 2023, 13, 296 3 of 21

that ECM is an important compound protein regulating brain development and brain
connection and plasticity, and that ECM concentration is one of the important mechanisms
for regulating the number of synapses, which can dynamically regulate synaptic efficiency
so as to avoid the over-excitation of the brain network and cause physiological diseases.
Therefore, this paper takes the effect of concentration on synapses as a new research di-
rection, which will play an important role in developing in-depth understanding of brain
information transmission [13–15].

With the in-depth study of bionic networks, it is found that information representation
is closely related to the choice of neural loop, so the study of synaptic structure plays an
important role in neural loops and even in the nervous system. In addition, there are many
forms of synapses in the neural network, and the connections of different synaptic struc-
tures will lead to different neural loops. Therefore, by exploring the complex mechanism of
synapses and constructing dynamic synapses in accordance with biological characteristics,
it is a breakthrough to realize brain-like networks. Based on the above research results,
this study deeply understands the dynamic effects of synapses on neural activity, compre-
hensively considers the synaptic quantity regulation mechanism under the influence of
synaptic type and ECM concentration, constructs a biomimetic dynamic synaptic model
and constructs a neuron system based on this model. The neuron model and dynamic
synaptic model are as follows.

2.1. Neuron Model

In order to strike a balance between biological authenticity and computational effi-
ciency, we apply the dimensionless Izhikevich neuron model, which simplifies the amount
of computation while retaining the real biological dynamic characteristics. It can be used as
the basic unit of the network model. The subthreshold dynamic equation of the membrane
potential of any neuron node i in the network follows the differential equation shown in
the Equation (1):{

dvi(t)
dt = 0.04vi

2(t) + 5vi(t) + 140− ui(t) + Ii(t) + Isyn
i (t)

dui(t)
dt = a(bvi(t)− ui(t))

if vi ≥ 30 mV

then
{

vi(t + 1)→ c
ui(t + 1)→ ui(t) + d

(1)

where vi(t), ui(t) represent the membrane potential of the neuron i and the recovery voltage
of the neuron i in the network, respectively, and Ii(t) represent the external input current
of the neuron i. Isyn

i (t) indicates that the neuron i is subjected to a dynamic postsynaptic
current. Parameters a and b represent the speed of neuronal recovery voltage and the degree
of neuronal excitability, respectively. The greater the a value, the faster the recovery speed
of the membrane voltage vi(t), and the greater the b value, the easier it is for the neuron
to excite and produce nerve impulses. The parameters c and d represent the reset values
of the membrane voltage vi(t) and the recovery voltage uk(t) after the neuron emits the
pulse. When the membrane voltage vi(t) is higher than the activation threshold 30 mV, the
membrane voltage vi(t) and recovery voltage uk(t) should be reset to ensure the biological
characteristics of the neuron model.

For Izhikevich neurons, by changing the values of parameters a, b, c and d, the model
can simulate common nerve pulses such as regular spiking, intrinsically bursting, fast
spiking and so on. The Izhikevich parameters are shown in Table 1.
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Table 1. Parameter tables of six typical Izhikevich neurons.

Izhikevich Neuronal Pulse Type a/ms−1 b/10−9Ω−1 c/mV d

Regular Spiking 0.02 0.2 −65 8

Intrinsically Bursting 0.02 0.2 −55 4

Fast Spiking 0.1 0.2 −65 2

Low-threshold Spiking 0.02 0.25 −65 2

Resonator 0.1 0.26 −65 2

Chattering 0.02 0.2 −50 2

2.2. Dynamic Synaptic Model

The synapse is an important part of the nervous system, and neurons transmit signals
through synaptic structures. In the process of information transmission, mixed synapses
have a certain effect on signal transmission, and the number of synapses between neurons
will also affect the response ability of the nervous system. Therefore, taking into account the
respective advantages of chemical synapses and electrical synapses, this section constructs
a bionic dynamic synaptic model according to the proportion of chemical synapses and
electrical synapses and the regulation of ECM concentration on the number of synapses.

(1) Electrical synaptic coupling takes into account the fast channel of ion exchange
between neurons. Isyn

i,e represents the current of the neuron after the electric synapse, as
shown in its Equation (2):

Isyn
i,e = ∑

j
gsyn

e A(i, j)
(
Vi −Vj

)
(2)

where gsyn
e is the electrical conductivity of the electrical synaptic channel, A(i, j) represents

the coupling relationship between neuron i and neuron j, Vi and Vj represent the membrane
potential of neuron i and neuron j, A(i, j) = A(j, i) = 1, indicating that there is a coupling
between the neuron i and the neuron j. A(i, j) = A(j, i) = 0 means that there is no coupling
between neurons.

(2) Chemical synaptic coupling takes into account the direction of transmission of
pre-and post-synaptic neurons and the release process of neurotransmitters. Isyn

i,c represents
the post-synaptic current of neurons i, as shown in (3):

Isyn
i,c = ∑

j
gsyn

c A(i, j)Sj
(
Vi −Vsyn

)
(3)

where gsyn
c is the coupling strength of chemical synapses, A(i, j) is expressed as the coupling

relationship between neuron i and neuron j and Vsyn is the reverse potential of neurons
which determines the type of synapse: Vsyn = 0 means excitatory postsynaptic potential
(EPSP); Vsyn = −1.2 represents inhibitory postsynaptic potential (IPSP). The release
process of chemical synaptic vesicles is measured by Sj, which is determined by the
membrane voltage Vj, as shown in (4):

dSj

dt
=

α
(
Vj
)(

1− Sj
)

ε
−

Sj

τsyn
(4)

where τsyn = 1/δ is the synaptic decay rate. When the neuron is in the resting state (Vj < 0),
Sj decreases slowly and dSj/dt = −Sj/τsyn; when Vj > 0, Sj → 1 jumps rapidly to 1.

Presynaptic neurons act on postsynaptic neurons only when Sj changes rapidly, which
is different from the rapid coupling of electrical synapses. α

(
Vj
)

is the synaptic recovery
equation, such as Equation (5):

α
(
Vj
)
=

α0

1 + e(−Vj/Vshp)
(5)
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where α
(
Vj
)

is the Heaviside equation that models the mechanism of chemical synaptic
vesicle release.

(3) According to the latest microbiological research [16,17], the number of synapses will
be affected by the concentration of ECM, thereby regulating the synaptic efficiency. There-
fore, we will build the synaptic number model N[C] under the influence of concentration.
The specific expression form is shown in Equation (6):

N[C] = N[C] + int
(

2C
)

(6)

where N[C] denotes the number of synapses under the influence of concentration and
C denotes the concentration time function after external stimulation. int(·) is the round-
ing function.

Considering the cell growth pattern, we use power functions to describe the growth
rate of the number of synapses. In addition, based on the concentration environment in
which the neuron is located [18,19], and with the concentration continuously iterated with
the external stimulus Iext, the specific expression is shown in Equation (7):

C(t) = C(t) + αIext (7)

where C(t) denotes the concentration function, which is influenced by the external stimulus
current Iext, and α denotes the amount of change after receiving the concentration.

The parameters CL and CH are used to indicate the minimum concentration threshold
and the maximum concentration threshold; when the ECM concentration is placed between
CL and CH , it indicates that the connections between neurons are in the appropriate
concentration space, and the number of synapses will grow with the concentration until it
grows to the maximum number of synapses after which the concentration starts to decrease,
ensuring the growth pattern of the organism. The concentration recovery function is shown
in Equation (8):

C(t) = C(t)− D (8)

where D denotes the coefficient of decrease in ECM concentration after saturation of
synaptic number.

When the concentration of ECM exceeds CH , it means that the concentration space
of the neuron is beyond the tolerance range, and the neuron turns on its self-protection
mechanism. Then, the ECM concentration begins to decrease, resulting in a change in the
number of synapses, which follows Equations (9) and (10):

C(t) = C(t) · exp
(
− 1

M

)
(9)

N[C] = int(βC). (10)

Equations (8) and (9) denote the ECM concentration recovery function and the synapse
number change function, respectively. M represents the concentration cooling coefficient
and β represents the effect of concentration on the number of synapses.

Based on the above studies, this paper comprehensively considers the number of
electrical synapses and chemical synapses and the number of synapses affected by concen-
tration and constructs a dynamic synaptic model. Isyn

i represents the dynamic postsynaptic
current acting on the neuron i. The expression is as shown in (11):

Isyn
i = N[C]∑

j
A(i, j)

{
gsyn

e p
(
Vi −Vj(t− τ)

)
+ gsyn

c (1− p)Sj(t− τ)
(
Vi −Vsyn

)}
(11)

where gsyn
e denotes the electrical synaptic strength, gsyn

c denotes the chemical synaptic strength,
A(i, j) denotes the synaptic coupling between neuron i and neuron j, Vi(i = 1, 2, · · · , N)
denotes the membrane voltage value of neuron, Vsyn denotes the reverse electrical potential
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present at chemical synapses, which is used to distinguish the type of synapses, and p denotes
the percentage of electrical synapses. p→ 1 indicates that the percentage of electrical synapses
between neurons gradually increases, while the percentage of chemical synapses decreases. Sj
denotes the series of biological responses of chemical synapses [20–25].

2.3. Motif Connection Model

The complexity of the brain network makes it difficult for researchers to explore and
imitate the working mechanism of the neural network. In recent years, related studies
have shown that the motif model in complex brain networks is the basic unit module
of the complex network model. The proposal of the motif model enables researchers to
start with the simple network composed of the motif model and deeply study the relevant
characteristics between the network nodes. This plays a very important role in the study of
the nature and function of the whole network. At present, the idea of research based on
the motif model is widely used in the exploration of complex networks and has achieved
important scientific research results, which is very enlightening. Therefore, in the research
of effective links between network nodes, it is necessary to explore the relationship between
effective links and node synchronization from the typical motif model [26–28].

Based on the above considerations, we construct a motif model network based on
dynamic synapses. It can be seen from Figure 1a that the coupling mode between the
two neurons is relatively fixed, but when there are three neuron nodes, the connections
between them can evolve a variety of connection states (only four types are listed in this
figure), as shown in Figure 1b. The interaction between neurons under different structural
connections makes them show rich network dynamics, which should be the characteristics
of brain-like networks. Therefore, we rely on the motif model of Figure 1 to analyze the
relationship between effective link and synchronization state in order to prepare for the
follow-up exploration of the path selection mechanism in multi-node networks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 22 
 

electrical potential present at chemical synapses, which is used to distinguish the type of 
synapses, and 𝑝 denotes the percentage of electrical synapses. 𝑝 → 1 indicates that the 
percentage of electrical synapses between neurons gradually increases, while the percent-
age of chemical synapses decreases. 𝑆௝ denotes the series of biological responses of chem-
ical synapses [20-25]. 

2.3. Motif Connection Model 
The complexity of the brain network makes it difficult for researchers to explore and 

imitate the working mechanism of the neural network. In recent years, related studies 
have shown that the motif model in complex brain networks is the basic unit module of 
the complex network model. The proposal of the motif model enables researchers to start 
with the simple network composed of the motif model and deeply study the relevant 
characteristics between the network nodes. This plays a very important role in the study 
of the nature and function of the whole network. At present, the idea of research based on 
the motif model is widely used in the exploration of complex networks and has achieved 
important scientific research results, which is very enlightening. Therefore, in the research 
of effective links between network nodes, it is necessary to explore the relationship be-
tween effective links and node synchronization from the typical motif model [26-28]. 

Based on the above considerations, we construct a motif model network based on 
dynamic synapses. It can be seen from Figure 1a that the coupling mode between the two 
neurons is relatively fixed, but when there are three neuron nodes, the connections be-
tween them can evolve a variety of connection states (only four types are listed in this 
figure), as shown in Figure 1b. The interaction between neurons under different structural 
connections makes them show rich network dynamics, which should be the characteristics 
of brain-like networks. Therefore, we rely on the motif model of Figure 1 to analyze the 
relationship between effective link and synchronization state in order to prepare for the 
follow-up exploration of the path selection mechanism in multi-node networks. 

 
Figure 1. Schematic diagram of motif model connection (a-1: Unidirectional coupling of neurons A 
and B. a-2: Dual coupling of neurons A and B. b-1: Unidirectional coupling of neurons A and B, 
Unidirectional coupling of neurons A and C. b-2: Dual coupling of neurons A and B, Unidirec-
tional coupling of neurons A and C. b-3: Dual coupling of neurons A and B, Dual coupling of neu-
rons A and C. b-4: Dual coupling of neurons A and B, Unidirectional coupling of neurons A and 
C, Dual coupling of neurons B and C.).  

Phase synchronization is common in oscillatory systems, especially in the study of 
brain networks in recent years, and electroencephalogram recording and magnetoenceph-
alogram experiments have proved that synchronization plays an important role in infor-
mation transmission and the representation of brain networks. This is because we use 
phase synchronization to study the indicators of effective transmission. Taking the motif 

Figure 1. Schematic diagram of motif model connection ((a-1): Unidirectional coupling of neurons A
and B. (a-2): Dual coupling of neurons A and B. (b-1): Unidirectional coupling of neurons A and B,
Unidirectional coupling of neurons A and C. (b-2): Dual coupling of neurons A and B, Unidirectional
coupling of neurons A and C. (b-3): Dual coupling of neurons A and B, Dual coupling of neurons A
and C. (b-4): Dual coupling of neurons A and B, Unidirectional coupling of neurons A and C, Dual
coupling of neurons B and C.).

Phase synchronization is common in oscillatory systems, especially in the study of
brain networks in recent years, and electroencephalogram recording and magnetoen-
cephalogram experiments have proved that synchronization plays an important role in
information transmission and the representation of brain networks. This is because we use
phase synchronization to study the indicators of effective transmission. Taking the motif
model of two neurons in Figure 1a as an example, the phase synchronization analysis is
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evaluated by the pulse discharge sequence of the neuron, i.e., ϕ(t) = |φA(t)− φB(t)| ≤ Z
where φA(t) and φB(t) are the instantaneous phases of the neural node A and the neural
node B at time t, and Z is a constant. The analysis of phase synchronization is mainly
divided into two steps:

(1) Extract the instantaneous phase from the signal.
There are many methods of phase locking [29], we use the classical Hilbert transform

to obtain the instantaneous phase of the signal. The resolved signal ε(t) is a complex
function of the continuous time variable x(t) in the form of Equation (12):

ε(t) = x(t) + ixh(t) = aε(t)ei∆φ(t) (12)

where ε(t) and φ(t) are the instantaneous amplitude and phase of the signal x(t) resolution
signal, and the instantaneous phase for the neuron A is obtained from the signal x(t) of the
input neuron A. xh(t) is attained through the signal x(t) Hilbert transform [30–32].

(2) Phase locked quantization.
For an independent time-series x(t), the distribution of relative phases is uniform

within a given time window T. There are various schemes for the detection of phase
locking which can quantify the degree of uneven relative phase distribution. We use phase
coherence to measure the synchronous state (phase coherence, PC) as the quantitative index
of the phase of two neurons over a period of time, the specific expression is (13):

PC
(
ni, nj, ∆ϕ

)
=

1
T

T

∑
t=1

ei∆ϕ(t) (13)

where T denotes the size of the time window function and ∆ϕ(t) denotes the phase offset
of a pair of stimulus nodes ni and nj at the time of t. When the stimulus nodes ni and
nj are in the fully synchronized phase, PC takes the value of 1; when they are not fully
synchronized, PC takes the value of 0, i.e., PC ∈ [0, 1]. For each neuron node, the PC value
can be calculated, and the resulting PC is the average phase coherence over multiple time
windows PC. This allows the quantification of the PC values of all nodes in the entire
network, which in turn measures the ability and effective links of information transmission
between nodes.

Equation (13) represents the synchronization index of information transmission be-
tween stimulating node pairs, but the transmission delay between nodes will also affect
the synchronization state of nodes. Therefore, we give the pathway-synchronization-
facilitation index (PSF). This measures the change range of PSF between node pairs under
the action of phase offset of stimulus information, which plays an important role in ex-
ploring the path selection mechanism scientifically in this study. PSF

(
ni, nj

)
denotes the

pathway-synchronization-facilitation index of node ni and node nj. The specific expression
is (14):

PSF
(
ni, nj

)
= max[0,2π]

(
PC
(
ni, nj, ∆ϕ

))
−min[0,2π]

(
PC
(
ni, nj, ∆ϕ

))
(14)

where PC
(
ni, nj, ∆ϕ

)
is denoted as the coherence value of node ni and node nj under the

condition that the stimulated phase offset is ∆ϕ. PSF
(
ni, nj

)
quantifies the fluctuation

range of the coherence values under the interaction between two nodes ni and nj under a
fixed phase offset condition.

PSF
(
ni, nj

)
is used to measure whether the change in synchronization strength be-

tween node pairs is correlated with the phase information carried by the external stimulus.
After theoretical analysis, if the PC values between node pairs

(
ni, nj

)
vary widely under

different phase conditions, it indicates that the PSF of this pair is more active, i.e., PSF
is higher, and that it is more sensitive to the phase information carried by the stimulus
information and is more easily affected by the phase.

To sum up, this paper utilizes Izhikevich neurons to form the motif model in Figure 1. The
connection between any two neurons uses dynamic synapses, and Ik(t) = asin(2π f (t+ ∆ϕ))
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is applied to each neuron node as the input signal of external disturbance. ∆ϕ represents
the phase carried by the input information, and its value range is [0, 2π]. On this basis, the
influence of the phase information carried by the stimulus information in the brain network
on the synchronization characteristics and effective links in the network are investigated in
this work.

3. Results

This section mainly elucidates that, when neurons are connected to each other to form
the motif model of Figure 1, and when a pair of neuronal nodes are driven by external
stimuli, the synchronization state under discharge activity is studied. Different types of
motif models will be analyzed below.

3.1. Two Motif Models

By constructing the motif model of two neurons based on dynamic synapse, the
synchronization phenomenon and effective link in the network are studied. The neuron
node is driven by external stimulus and its amplitude intensity is a = 1. The signal
frequency is f = 11 Hz. The discharge sequence between two neurons in different coupling
connection states and the statistical distribution of two neurons in the connection state are
shown in Figures 2 and 3, respectively.
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Figure 2 shows the discharge sequence between two neurons with different coupling
connections. Figure 2a shows that, in the unidirectional coupling state, such as the structure
of Figure 1(a-1), discharge sequence between neurons demonstrates a lack of consistency,
and the synchronization activity between neuron A and neuron B is weak. This is because
there is only one-way action between neurons and there is no feedback link. When the
neurons are in the state of two-way coupling connection (i.e., feedback link exists), as
shown in Figure 1(a-2) structure and the discharge sequence shown in Figure 2b, it can
be seen that the discharge sequences between neurons are highly consistent and the pulse
sequences coincide at a fixed time. This phenomenon is called isochronous synchronization.

Figure 3 is a box-line plot that quantitatively portrays the values of the PSF taken
under different coupling connections. The upper and lower limits of the bins each indicate
the upper and lower quartiles, the entire box indicates the dispersion of the PSF and the line
in the middle indicates the median of the dataset. Through running the experimental data
100 times, Figure 3 quantitatively describe the values under different coupling connections.
For the dual coupled motif model, the PSF exponent is higher, i.e., it shows that it is more
sensitive to the phase information carried by the input information. For the single coupling
model, the PSF value is around 0.28. The smaller PSF value indicates that the phase carried
by the input information has less impact on it under this structure, i.e., the synchronization
of the nodes is less affected when the stimulus information changes the carried phase,
which, in turn, cannot regulate the effective links in the network.

In the brain network, the PSF is affected not only by the phase shift of the stimulus,
but also by the time delay. Therefore, this study considers the transmission delay between
transmission paths and describes the effect of delay on the PSF. The simulation is shown
in Figure 4.
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Figure 4 represents the PSF effect under the time delay scale of [0, 200]. From Figure 4,
it is seen that the PSF value under single coupling fluctuates around 0.43 and does not
change significantly with the increase in time delay, indicating that the phase information
carried by the stimulus phase has less ability to regulate under the single coupling structure
under the influence of time delay, and its coherence value PC is more stable. In bidirectional
coupling, the PSF value has a strong fluctuation between [0.1, 0.52]. With the increase
in time delay, the PSF value appears to show a trend of in-phase and inverse-to-phase
changes, which shows that the synchronization of neural nodes can be regulated in-phase
or inverse-to by means of time delay [17–19]. Therefore, exploring the effect of time delay
on PSF between coupled nodes is important to investigating the relationship between
stimulus information phase shift and the selection mechanism of network paths.
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3.2. Three Motif Models

In the previous section, the synchronization status of different structural links under
the two motif models is analyzed, and it is concluded that the connection structure and
transmission delay have influence on the synchronization characteristics. Because the
structure of the three motif models is changeable, but their essence is the extension of the
two motif models, the analysis of the three motif models in Figure 1b mainly considers the
synchronization state between the links of the motif model and the effective links when the
structural links are missing. Therefore, we next focus on the motif model of Figure 1(b-2,b-3)
in order to analyze the synchronization state and effective link under this link.

Figure 1(b-2) structure is a connection model in which neuron C is inserted between
doubly coupled neurons A and B. From the physical structure neuron C is directly regulated
by neuron A and indirectly regulated by neuron B. Its discharge sequence and the PSF
distribution are shown in Figures 5 and 6.
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Figure 5 is a discharge sequence for three motif models. Its analysis method is similar
to that of two motif models. However, in Figure 5, the discharge sequence diagrams
of neurons with structural links (neuron A and neuron B) and without structural links
(neuron B and neuron C) are simulated, respectively. It can be seen from Figure 5 that there
is a certain difference in the pulse sequence between neuron A and neuron B, but their
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discharge activities are regular and consistent. Although there is no structural link between
neuron B and neuron C, there is a phase synchronization state in the discharge sequence,
which is consistent with the theoretical analysis. This shows that the synchronization state
between neurons is an important means of neural information transmission. Therefore, it
can be shown from Figure 5 that there is an effective transmission between neuron B and
neuron C in the process of information transmission; synchronization characteristics can
build dynamic effective links between neurons and these effective links do not necessarily
correspond to structural links one by one, which may be the main reason for flexible path
switching in brain networks.

Figure 6 is a boxplot of the three Motif models. It also conducted 100 simulation
experiments, and the statistical analysis concluded that the PSF values between neurons
C → A→ B→ C are relatively stable. The PSF value is maintained between [0.3, 0.4].
Under this structure, the phase information of the stimulus signal has a certain promoting
effect on the synchronous state, thus resulting in a “new” connected pathway BC. The
simulation results show that there is an effective pathway between the neuronal nodes, that
the synchronization between the neural nodes can be regulated by the phase offset of the
stimulus signal and that the degree of regulation depends on the size of the PSF value.

Under the model structure of Figure 1(b-2), it also considers the effect of time delay
on PSF. The simulation results are shown in Figure 7. The value range of delay is [0, 160].
Through the analysis of the simulation results, it is found that, compared with the two
neuron structure links, the PSF of Figure 1(b-2) model is lower. It is maintained between
[0.28, 0.36] and there is a weak fluctuation phenomenon with the increase in time delay,
indicating that the time delay also has a certain effect under this structure. In addition, the
reason for the small change trend of PSF is that the increase in the number of central nodes
affects the transmission of nerve impulses in the whole link, and the signal is annihilated in
the bottom noise of the nervous system in the process of transmission due to the increase
in the number of nodes. Therefore, the future multi-node in-depth study will consider the
impact of the number of central nodes on PSF.
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In order to more comprehensively study the synchronization and effective link be-
tween the three motif models, we next simulate and analyze the motif model of Figure 1(b-3).
Figure 1(b-3) is based on Figure 1(b-2); a structural link is added between neuron A and
C to form a double coupling between neuron A and C (with feedback link). The dis-
charge sequence and PSF statistical diagrams of the structure of Figure 1b-3 are shown in
Figures 8 and 9, respectively.
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Figures 8 and 9 show discharge sequences and PSF statistical diagrams of the motif
model of Figure 1(b-3), respectively. According to the consistency of the discharge se-
quence between neurons in Figure 8, no matter whether there is a structural link between
neurons—for example, there is a structural link between neurons A and B, and there is no
structural link between neurons B and C—neurons achieve isochronous synchronization
in the firing process; that is, an effective link is formed between any two neuron nodes.
In addition, it can be seen that the PSF data distribution in the box diagram of Figure 9
is more stable than that of Figure 6, but the fluctuation of the PSF value of neuron C is
more obvious from the box diagram, indicating that it is more easily regulated by the phase
information of stimulus signal. Therefore, it is found that the synchronization between
neural nodes is an important index to form an effective link, and the synchronization
between neurons is regulated by many factors.

The relationship between the PSF and the transmission delay of motif model 1(b-3) is
shown in Figure 10. It can be seen that the value of PSF changes obviously with the increase
in delay, and that its value fluctuates greatly in the range of [0.22, 0.38]. This indicates that
the stimulus node is more vulnerable to in-phase or out-of-phase stimulation; that is, it
is more sensitive to the phase information of external stimulus signal. In addition, it can
be seen that when the delay is in the range of [0, 160], the PSF value changes periodically
with the change of delay, which reflects that the information transmission between nodes
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is related to phase locking. In this structure, PSF will dynamically adjust the intensity
of synchronization with the size of the time delay, so that the synchronization between
nodes has a dynamic change, and then affect the connection state of effective links in the
network. This indicates that the brain network can reorganize nodes in different time
dimensions with synchronous state, and then achieve a variety of effective links to facilitate
task efficiency.
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3.3. Regulation of Path Selection by Different Phases of Stimulus Signal

For the study of the motif model, it can be found that in the motif model with two or
three nodes connected to each other, the synchronization between nodes shows a complex
dependence on the phase offset and transmission delay of the stimulus signal. Therefore,
in order to extend the analysis to the more complex network model, we next construct
a network model with 20 delay nodes to simulate the brain, and each network node is a
neuron group of a small-world network with 100 neuron nodes. In addition, there is a
double coupling state between the nodes.

Figure 11 shows the schematic diagram of the relationship between the PSF values of
some nodes and the central nodes. It can be seen that the PSF values of the stimulus node
pairs (X, Y) are different between the paths passing through one central node and those
passing through two nodes, which indicates that there is a certain relationship between
the path choice between the stimulus information pairs and the number of central nodes.
Therefore, the box diagram of Figure 12 is used to describe the influence of the number of
central nodes on the PSF index between node pairs. As can be observed from the boxplot,
when and only when there is one pivot node, its PSF value is distributed in [0.03, 0.08].
As the number of pivot nodes increases, the value of PSF and the distribution interval
increases; when the number of pivot nodes is four, the value of PSF is distributed between
[0.05, 0.13], indicating that the data of PSF fluctuates more, but when the number of pivot
nodes is five or the number of pivot nodes is greater than five, the value of PSF decreases
and the fluctuation range becomes smaller. From the perspective of the significance of PSF,
when the number of hub nodes increases to a certain number, the PSF values between
nodes in the network can be regulated by the phase shift of the stimulus information. This
shows that the path selection strategy in the network is affected not only by the phase of
stimulus information, but also by the number of central nodes. Therefore, in the complex
link structure composed of twenty nodes, limiting the maximum number of central nodes
to five, which means that the path of up to six nodes is mainly searched in the path search,
and 95% confidence interval is used for evaluation.
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In addition to the number of central nodes, the synaptic strength gsyn of node pairs
also plays an important role in synchronization characteristics. By obtaining the PSF values
at different synaptic strengths gsyn, it can be found that there is a close relationship between
the effective link between stimulated nodes and the synaptic strength. By fitting the data,
there is a high degree of coherence between the PSF values (PC = −0.72, p < 0.003) at
different strengths and different nodes. In addition, it can be seen by the simulation results
in Figure 13 that as the synaptic strength gsyn increases, PSF value becomes smaller and
smaller, which indicates that when the coupling strength between the nodes gradually
increases, resulting in a strong structural link between the nodes, it is more difficult to
regulate the synchronization between the nodes using the phase information of the stimulus
information. This indicates that there should be a general weak coupling phenomenon
between the nodes of the brain network.

In order to evaluate the path transmission capability between a pair of excited nodes in
the network, the model gives the proposed metric of the degree of activation of an effective
path and the degree of interaction between pairs of information transmission nodes at
a given stimulus phase offset ∆ϕ, given the physical link determination. It is assumed
that P1,n(i = 1, 2, · · · , n) is denoted as the set of all paths between node pairs (n1, nn), thus
setting the maximum activation state (pathway activation, PA) of a path through ∆ϕ pivot
nodes at a stimulus phase offset of n− 1. PA(n1 . . . nn, ∆ϕ) denotes the coherence of a path
between a pair of stimulus node pairs (n1, nn) after passing through different pivot nodes,
which measures the transmission capability of the whole path or the degree of effective
path activation and is defined as Equation (15):

PA(n1 . . . nn, ∆ϕ) = ∏
i=1,...,n−1

(PC(ni, ni+1, ∆ϕ)). (15)
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The mechanism of information transmission between network nodes must have a
success or failure state. In Equation (15), PC(ni, ni+1, ∆ϕ) is used to measure the success
rate of information transmission between node pairs, where ∆ϕ denotes the coherence
value of the phase deviation of the stimulus information passed between node pairs

(
ni, nj

)
,

and to retain the link selection characteristics that the short path is better than the long path
in the study process.

In addition, to determine the relationship between the information transmission path
between a particular node pair Pi,j and the offset phase ∆ϕ of the stimulus information,
here, we give the preference selection index (pathway-phase-selectivity, PPS) of a specific
pathway when the stimulus information carries different phase information, as defined in
Equation (16):

PPS(pm) = max∆ϕ(PA(pm, ∆ϕ))−min∆ϕ(PA(pm, ∆ϕ)) (16)

where PPS(pm) is determined by the activation state index PA of a path between node
pairs. The PPS is used to measure the activation capability and transmission capability
of a path given any path pm between node pairs Pi,j in the network with different phase
information, i.e., Pi,j =

{
pm
∣∣Pi,j, m ∈ N∗, i, j ∈ [0, n]

}
.

In addition, the selection strategy of the path with the largest transmission capacity
between nodes is measured by using the phase information of the excitation signal, giving
the quantitative index of the path selection mechanism (pathway-switching-selectivity,
PSS), which is expressed in the form of (17):

PSS = maxPi,j(PA(p1, ∆ϕc)− PA(p2, ∆ϕc)) (17)

where the PSS metric measures the stimulus phase difference at ∆ϕc and selects the path
with optimal transmission capability in the path set Pi,j between node pairs

(
ni, nj

)
. Pi,j

represents the path set between a pair of stimulus nodes ni and nj. It is assumed that p1
represents the path with the strongest activation index in the path concentration PA, and p2
represents the path of the second strongest activation index PA in the path concentration.
In addition, when PSS > 0, it means that the p1 path is more active in phase under the ∆ϕc
condition, and when PSS < 0, it means that the p2 path is more active.

In the process of analyzing the path activation index PA, all the paths between the
five delay nodes are selected for evaluation, i.e., Pij, i, j ∈ [0, 5]. The phase information
carried by the stimulus information is used to modulate these node pairs, and then PA
values under different phase offsets are calculated. Due to the existence of obvious or
obscure phase relations, the simulation results are presented in polar coordinates. The
radius in the figure indicates the magnitude of the PA value and the angle indicates the
offset between different stimulus phases. The analysis is also performed for any of the
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pathways in (n1, n5) for a given node, and the path selectivity index PPS is given to explore
the phase dependence properties under a specific pathway.

The blue curve in Figure 14 indicates the path with the strongest PA between two
node pairs, and the orange color indicates the second strongest path. For Figure 14a, the
results show that both the strongest path PA value and the second strongest path PA value
between a pair of nodes P15 are relatively stable and do not change significantly with the
phase shift of the stimulus information. Figure 14b indicates that the strongest path PA
value between node pair PA changes with the stimulus phase offset, indicating that the
phase information carried by the stimulus information will have some influence on the
PA value; that is, the phase information can be used to modulate the network and thus
find the optimal path. Figure 14c shows that the strongest path and the second strongest
path PA values between the nodes to P15 change almost together, i.e., it shows that the
PA values will be modulated by the role of phase information, and the selection of the
path by the information flow can be either of the two paths, indicating that both paths can
characterize the information. Figure 14d shows that the phase information carried by the
stimulus information in the node pair P15 has obvious modulation on the PA values of
the strongest path and the second strongest path (blue in the figure indicates ∆ϕ ≈ 1.5π,
orange indicates ∆ϕ ≈ 0.5π), which mainly shows that the strongest path and the second
strongest path have a preferential choice of phase between them under different phase
offsets, i.e., under different phase offsets of the stimulus information.
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Figure 14. Path activation index PA under different phase shifts of stimulus information (a) Both the
strongest and the second strongest paths are insensitive to phase. (b) Only the strongest path is phase
sensitive. (c) The strongest and second strongest paths are sensitive to the same phase offset. (d) The
strongest and second strongest paths are sensitive to different phase offsets.

When studying the path activation index PA, Figure 14 analyzes the relationship
between the strongest path and the second strong path with respect to the stimulus phase
in the node (n1, n5) path set P15. Based on this, it adopts the PPS to analyze any pathway in
the path set P15, and then explore the phase dependence of the specific pathway. Through
the statistics of the data results, the PPS values of all node pairs in the network composed
of five nodes are drawn, and the phase selectivity histogram is shown in Figure 15.
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Figure 15. The Statistical Diagram of PPS of 180 nodes (A, B, C and D respectively corresponds to the
four conditions in Figure 14.).

Figure 15 analyzes all paths between node pairs P15. Statistical analysis of the data
results is performed to plot the values of all node pairs between P15. The results displayed
are consistent with the conclusions of the theoretical analysis; that is, the larger value of PPS
indicates that the path activation index is unstable and vulnerable to the modulation and
influence of the phase information of the stimulus information. Figure 15 shows that the
value of PPS is between 0 and 1, and the larger the value of PPS, the more the path between
nodes are affected by the phase shift of the stimulus information. After counting the path
values between 180 node pairs, A, B, C and D correspond to the subplots in Figure 14.
It can be seen that when the change of PA value is small, the value of PPS is closer to 0,
and when the change of PA value is larger, the value of PPS converges to 1. Through the
statistical analysis, there exists a large number of paths between the network node pairs
that all have the PPS effect, i.e., in a specific path state, they will have a certain preference
depending on the phase information of the stimulus information, so this simulation shows
that the phase information carried by the stimulus information can be used to determine
the path based on the phase preference.

Theoretical analysis shows that in the information transmission, there should be nodes
in the network to control the phase offset of the stimulated information so that they can
preferentially choose a path as the main path of the network information flow transmission.
i.e., as the optimal path to represent the information.

Therefore, this study gives the conditions under which the information flow will
choose the path with the optimal information representation path (ORP) under the condi-
tion that the phase offset of the stimulus information is determined:

ORP = max
{

PSS
(

Pi,j, ∆ϕc
)∣∣Pi,j, i, j ∈ [0, n]

}
(18)

where ORP denotes the strategy for selecting the optimal path between node pairs when
the stimulus information phase ∆ϕc is perturbing the network. Its physical meaning
indicates that in the path set of a pair of network node pairs, there must exist one or more
optimal paths to enable them to have optimal transmission capability and more accurate
characterization capability.

By analyzing the PPS values of the strongest path PA and the sub-strong path PA,
it can be found that a large number of paths between the nodes have phase preference.
Therefore, we next count the phase preference of the strongest path p1 and the sub-strong
path p2. The statistical histogram is shown in polar coordinates. The angle represents the
phase shift of the stimulus information and the radius represents the frequency of path
selection. The result is shown in Figure 16.
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Figure 16a shows the phase preference exhibited by the strongest path between a
pair of nodes with phase shift, χ2(20, 350) = 103.51, p < 0.001, which is significantly
different from the uniform distribution. It indicates that there is a significant peak at
∆ϕ = 0, showing that the strongest path has a strong dependence on the phase information.
Figure 16b shows the preference exhibited by the phase shift under the next strongest
path, which is χ2(20, 350) = 22.43, p = 0.035 with some differences from the uniform
distribution. Therefore, it can be found that the path with the strongest path activation
index PA has a similar preference to the coherence PC between a pair of stimulated nodes,
which indicates that using the phase information of the stimulus signal as a path selection
switch for the information flow in the network is a feasible way. In addition, the present
findings show that the phase offset of the stimulus information selects the path with the
maximum transmission capacity (path activation index PA is maximum) when choosing
the path, finding the optimal information representation loop. In other words, in brain-
like intelligent networks, the functional loop can be switched by modulating the phase
information carried by the stimulus information to achieve different functional tasks.

The phase preference between the strongest path and the second strongest path
between any pair of nodes is analyzed in Figure 16. On this basis, we continue to count
the PSS values of 180 node pairs (indifference filtering) under the disturbance of stimulus
information with different phase differences in order to obtain the normalized path selection
histogram between the strongest path and the second strongest path. By normalizing the
square root of the PSS value, the simulation results in Figure 17 are obtained.

Figure 17 measures the modulation effect of phase information on the node-to-node
paths by calculating the standard deviation of PSS. A, B, C and D in Figure 17 correspond to
the subplots in Figure 14; when the value of PSS is positive, it means that the path switching
index is low and the strongest path p1 is more active, indicating that there is no need to
choose other paths; when the value of PSS is negative, it means that the path switching
index is high, and the optimal path can be switched by stimulus phase modulation.

In this study, through the analysis of all node pairs in a network of twenty nodes, it
can be found that a significant portion of the paths between node pairs (about 42%) can
be switched between the strongest path and the second strongest path by phase shifting
of stimulus information. The simulation results indicate that such switching is one of the
means of achieving structural robustness in the network and that a similar mechanism can
be used in brain-like networks to accomplish the switching of functional loops and thus
achieve optimal representation of information.
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4. Conclusions

In conclusion, this paper constructs dynamic bionic synapses based on ECM concen-
tration and applies them to the motif model. It then studies the close relationship between
phase synchronization and effective links in brain networks, the regulation mechanism of
dynamic path switching is explored scientifically, and the corresponding path evaluation
index is given. In addition, based on the effects of transmission delay, synaptic strength and
the number of central nodes on synchronization characteristics, a path selection method
based on information flow disturbance is proposed and verified by statistical knowledge
analysis; thus, it is proved that there is a regulatory relationship between the path selection
mechanism and the phase difference of stimulus information in the network. The potential
mechanism of efficient task-based brain networks is discussed based on the synchronization
characteristics. This is of great significance to the realization of brain-like intelligence.

The development of brain-like intelligence is needed by the times, and the in-depth
exploration of brain-like intelligence amounts to very meaningful work. This paper com-
bines the latest research results of brain science to improve the construction of synaptic
models. Synchronous state is used to study the potential mechanism of path selection in
the network and verified by statistical analysis. However, there are still some shortcomings
which need to be improved and perfected in future work. First of all, when studying
the path selection mechanism, we develop an in-depth study from the phase information
carried by the stimulus information, but the competitive relationship between the input
signals is not taken into account. Secondly, in the network, with the regulation of stimulus
information, brain-like networks will switch different paths. These paths can represent
relevant information, but in the implementation of advanced activities, how to extract more
accurate surface sign information is a question worth exploring in depth.
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