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Abstract: Visual-based target tracking is one of the critical methodologies for the control problem of
multi-robot systems. In dynamic mobile environments, it is common to lose the tracking targets due
to partial visual occlusion. Technologies based on deep learning (DL) provide a natural solution to
this problem. DL-based methods require less human intervention and fine-tuning. The framework
has flexibility to be retrained with customized data sets. It can handle massive amounts of available
video data in the target tracking system. This paper discusses the challenges of robot tracking under
partial occlusion and compares the system performance of recent DL models used for tracking,
namely you-only-look-once (YOLO-v5), Faster region proposal network (R-CNN) and single shot
multibox detector (SSD). A series of experiments are committed to helping solve specific industrial
problems. Four data sets are that cover various occlusion statuses are generated. Performance metrics
of F1 score, precision, recall, and training time are analyzed under different application scenarios
and parameter settings. Based on the metrics mentioned above, a comparative metric P is devised
to further compare the overall performance of the three DL models. The SSD model obtained the
highest P score, which was 13.34 times that of the Faster RCNN model and was 3.39 times that of the
YOLOv5 model with the designed testing data set 1. The SSD model obtained the highest P scores,
which was 11.77 times that of the Faster RCNN model and was 2.43 times that of the YOLOv5 model
with the designed testing data set 2. The analysis reveals different characteristics of the three DL
models. Recommendations are made to help future researchers to select the most suitable DL model
and apply it properly in a system design.

Keywords: deep learning (DL); computer vision; robot tracking

1. Introduction

With the development of modern manufacturing, the industrial environment is becom-
ing more dynamic and complex. The deployment of mobile robots in different industrial
areas emphasizes the tracking of robot targets as one of the important functions for mon-
itoring and coordination in an unknown environment. Different techniques have been
proposed for robot tracking.

Camera lens distortion correction, non-uniform light compensation techniques, a
modified non-linear state estimator and an improved Matrox Meteor Frame-grabber were
proposed around the year 2000 in the field of mobile robot tracking [1–3]. Monitoring
objects against the cluttered moving background and dynamic objects/intrusions moving
through the scene are huge challenges in partial occlusion. Hongxin Wang’s team [4]
proposed a novel visual system model (STMD+) for small target motion detection to
discriminate small targets from small target-like background features (named fake features).
A novel technique for background subtraction based on the dynamic autoregressive moving
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average (ARMA) model was raised by Jian Li’s team [5]. A motion-planning framework
for urban autonomous driving at uncontrolled intersections was presented by Jeong and
Yi [6]. However, processing speed and anti-blocking properties of these deep learning (DL)
methods have not been paid enough attention in the mobile robot tracking area.

To solve the underlying optimization problems, neural network (NN) based models,
especially convolutional neural network (CNN) models, recurrent neural network (RNN)
and graph neural network (GNN) models, can be adopted [7]. Most of the research
approaches with NN-based methodologies in target tracking problems have focused on
solving filtering in target tracking, target drift and target loss and improving the tracking
precision, especially in low-quality videos [8–10]. In a dynamic scenario, we only have
initially knowledge of the robot we want to track. The data set of the target robot in the
indoor and outdoor environment may be collected for training. The robot will then be
deployed in an unknown environment. However, during the maneuver of the robots, fast
target motion and unknown interference items present in the scene might cause severe
occlusion of the robot target. This imposes the major challenge in NN-based target tracking.

Various solutions have been proposed to resolve the occlusion problem. Wang and
Yuille [11] designed an end-to-end deep occlusion network (DOC) for estimating occlu-
sion relations which enable better training and testing of deep networks for occlusion
estimation. Ren et al. [12] developed a computational model for figure/ground assign-
ment in a complex natural scene. The model provided a feasible approach to bottom-up
figure/ground assignment in natural images. Hoiem et al. [13] raised an approach to
recover the occlusion boundaries and depth ordering of free-standing structures in the
scene. The research pointed out a research direction for single-image occlusion reasoning
and the broader 3D scene understanding problem. Kotsia et al. [14] addressed the effect
of partial occlusion on facial expression recognition. They analyzed the way in which
partial occlusion affects the recognition of facial expressions by human observers. Weiwei
Zhang et al. [15] developed a novel vehicle detection based on vehicle part-based proposals
generation and Part Affinity Fields (PAFs)-based combination algorithm to solve the visual
detection problem of occlusion in complex backgrounds. The designed algorithm improves
the performance of accuracy, especially when vehicles are heavily occluded. Yuille and
Liu [16] provided a review of the strengths and weaknesses of Deep Nets for vision from
2018 to 2020. It was proven that even though real-world image sets are infinitely large and
any data set (no matter how big) is hardly representative of real-world complexity, using
a DL model for visual problems can solve specific visual tasks and has the potential for
practical applications.

In view of the previous research, the following research questions are addressed in
this paper: (1) whether the deep learning model tracking methods, Faster RCNN, SSD and
YOLOv5, can adapt to various occlusion conditions and (2) to what extent occlusion could
be handled in a specific environment. To address these issues, a training data set of the
robot target under designated mobility and occlusion conditions needs to be constructed
in our research. Different testing data sets are also created. We then focus on three recent
versions of DL models, You Only Look Once (YOLO) model—YOLOv5, Faster Region
Proposal Convolutional Neural Network (R-CNN) and Single Shot MultiBox Detector
(SSD), and compare the performance of the three DL models in the robot target tracking.
A Random Erasing method is proposed to generate some testing data to mimic random
interference items that block the view of the target. Different dynamic occlusion variation
situations have also been tested where part of the targets is out of range. The missing
portion is about 10% to 30% of the target. The environment contains indoor and outdoor
environments with different backgrounds.

The contributions of the article are summed up as follows: (1) We build three evalua-
tion data sets for training and algorithm verification under single target tracking scenarios.
(2) We construct three recent object detection models, which are Faster RCNN, SSD and
YOLOv5. Comprehensive experiments are conducted to evaluate the detection perfor-
mance with our data sets. (3) We design a Random Erasing method to create a new testing
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data set with various partial occlusions to verify the system performance. (4) We use image
views from different angles, distances and surrounding environments to test the model
performance. (5) We numerically analyze the adaptivity of the models against different
degrees of occlusions through experiments.

The paper is organized as follows. In Section 2, the background of deep learning
technologies used in the research is introduced. Comprehensive literature review has been
carried out to demonstrate why the three DL models were chosen. In Section 3, the Random
Erasing method is presented. Three occlusion scenarios are also classified. In Section 4,
experimental settings, experimental results and discussions are presented. The conclusion
and future work are included in Section 5.

2. Literature Review

The main DL algorithms for target detection are CNN-based models and can be
classified according to the number of stages: one or two stages. The two-stage approach
contains the R-CNN algorithm, and the one-stage approach refers to YOLO or SSD. For
the two-stage method, training data need to be generated in advance to obtain sparse data.
These training candidate data are then well-tuned with classification and regression. The
advantage of the two-stage method is its high accuracy. The one-stage method involves
conducting dense sampling uniformly at different positions of the picture. Convolutional
Neural Network (CNN) is a mathematical or computational model that mimics the structure
and function of biological neural networks [17]. In object detection, the image needs to be
divided into multiple regions to detect objects in this area. Therefore, CNN is introduced
to select regions. Region proposals Convolutional Neural Network (RCNN) is a model
that uses CNN to improve the effect of target detection. The Faster RCNN is a single,
unified network for object detection composed of two modules. One is a deep, fully
convolutional neural network that generates candidate boxes. The other is the Faster
RCNN detector based on the proposed regions. Both the SSD model and YOLOv5 model
are deep learning models for target detection based on CNN [18–20]. Different scales and
aspect ratios can be used for sampling. After that, CNN can be used to extract features
and directly carry out classification and regression. The whole process only needs one step.
Therefore, the advantage of the one-stage method is the fast spread. However, an important
disadvantage of uniform dense sampling is that it is difficult to train. This section describes
the background of deep learning technologies used in this research.

The Faster RCNN model, SSD and YOLOv5 models are selected because they are the
most recognized and novel deep learning models which can be applied to visual tracking.
In 2015, the Faster RCNN model won many first-place prizes in ILSVRV and COCO
competitions. The algorithm was initially based on a Faster RCNN and proposes a region
proposal network (RPN) candidate box generation algorithm which greatly improves
the speed of target detection. The algorithm proposed by Girshick [18,21] improves the
comprehensive performance drastically, especially in terms of detection speed. The SSD
model has the advantage in processing speed because the object classification and prediction
anchor regression are done simultaneously. It utilizes CNN to extract features and densely
and uniformly samples the feature map at different locations with different scales. In 2020,
the Ultralytics released YOLOv5 [20,22–25]. YOLO redefines object detection as a regression
problem and applies a single convolutional neural network (CNN) to the entire image.
Images are divided into grids, and the class probabilities and bounding anchors of each
grid are predicted. Different from the previous version—YOLOv3 and YOLOv4—YOLOv5
can predict across layers, and is still being updated by Ultralytics.

2.1. Faster RCNN

The Faster RCNN is a single, unified network for object detection. It is composed of
two modules. One is a deep fully convolutional neural network that generates candidate
boxes. The other is the Faster RCNN detector based on the proposed regions [18,21].
Mai et al. [26] presented a novel Faster RCNN model with classifier fusion to automatically
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detect small fruits. Nsaif et al. [27] applied a cascading Faster RCNN with a Gabor filter and
a naïve Bayes model to increase the precision of eye detection under conditions of reflection
from glasses or occlusion. In addition, Kim et al. [28] combined Faster RCNN with other
models and achieved better performance for the detection of vehicles and pedestrians than
conventional vision-based methods. The division of labor between the two stages of the
Faster RCNN is clear, which brings about the improvement of accuracy, but the speed is
relatively slow.

In our implementation, for an arbitrary size image, a reshaping to the size of
600 × 600 has been performed and imported into the web work. Resnet-50, a CNN
model, includes convolution, batch norm, ReLU, max pooling and average pooling layers.
It can extract features from the images and output feature maps. The feature maps are
shared by the Region Proposal Network (RPN) network and fully-connected network.
The RPN network generates proposed anchors directly, which increases the speed of the
generation of proposed anchors significantly. After three convolutions of the feature map,
anchors are classified into the foreground (positive) and background (negative) by the
softmax classifier. Anchors that have over 0.7 Intersection over Union (IoU) overlap with
truth ground anchors are assigned to a positive label while anchors that have less than
0.3 IoU overlap with truth ground anchors are assigned to a negative label. In the other
branch, the offset values of anchors from the ground truth anchors are calculated to
get an accurate proposal. In the final proposal layer, positive anchors and offset values
are combined to achieve the function of object location. The multi-task loss function is
as follows.

L({pi}, {ti}) =
1

Ncls
∑iLcls(pi, p∗i ) + λ

1
Nreg

∑i p
∗
i Lreg(ti, t∗i ) (1)

where i is the index of an anchor in a batch, pi is the predicted probability of anchor i
including an object, ti is a vector representing coordinates of the predicted bounding box,
t∗i is a vector representing coordinates of the bounding box, Lcls is the classification loss
over background and foreground, Lreg is the regression loss for positive anchors and λ is a
constant which is set to 10 in the simulation [27].

The classification stage of the algorithm outputs the probability vector from the feature
map through the fully-connected layer and softmax classifier. More accurate target detection
anchors from region proposals are then generated at the regression stage. During the
training, we calculated the IoU between all proposed anchors and the real grounding box
followed by filtering. If the IoU is larger than 0.5, the proposed box is regarded as a positive
sample. Otherwise, it is taken as a negative sample.

The training operation is divided into freeze and unfreeze training. To make use of the
GPU memory, the batch size of freeze training is three. In unfreeze training, the backbone
network is unfrozen, and all parameters are trained simultaneously. The batch size is
set to one.

2.2. SSD

The SSD model detects objects from the images using a single deep neural network [28].
SSD has been emphasized by many researchers [22–24,29]. The development procedure
will be explained briefly. Wang et al. proposed SSD300 and SSD512 and demonstrated their
superiority in image detection [29]. Miao et al. [22] applied SSD to implement the automatic
feature learning process on the aerial image set. They pointed out that the model trained
by SSD can extract high-level features and improve the detection speed. Yang et al. [23]
implemented SSD as the CNN detector with the Kalman filter. The Lightweight Feature
Fusion Single Shot Multibox Detector (L-SSD) algorithm was proposed to improve the
detection performance in a manual garbage sorting environment [24]. The basic size and
shape of the priority anchor in the SSD model cannot be obtained directly through learning,
but need to be set manually which may lead to human error.

SSD has the advantage from the viewpoint of detection speed because the object
classification and prediction anchor regression are implemented simultaneously. SSD
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utilizes VGG16 to extract features and samples the feature map at different locations
with different scales densely and evenly. The weight parameters of VGG16 are trained in
advance, so they can be loaded to the network directly. The input image is reshaped to a
size of 300 × 300 pixels before being imported into the network. Six feature map layers are
extracted and default anchors with different scales are constructed on every point of the
feature maps. The feature maps of low layers have smaller receptive fields which can detect
small objects. The feature maps of high layers are vice versa. The goal of the procedure is
to detect objects with multiple scales. The principles of choosing scales and aspects for the
default anchor are critical in implementation.

For the detection of the mobile robot, the size of the anchor is set to be
Sk = [30, 60, 111, 162, 213, 264, 315] and k ∈ [1, 7]. The unit of the anchor size is one
pixel. K is the number of convolution layers. The feature maps of Conv4_3, Conv7,
Conv8_2, Conv9_2, Conv10_2 and Conv11_2 layers are extracted and six default anchors
with different scales are constructed on every point of the feature maps. The feature maps
of lower layers have smaller receptive fields which can detect small objects, while feature
maps of higher layers have larger receptive fields that can detect large objects. The goal of
the procedure is to detect objects with multiple scales. The principles of choosing scales
and aspects for default anchors are important. Six feature maps have a different number
of anchors on every point. For feature maps from Conv4_3, Conv10_2 and Conv11_2
layers, every point has four anchors. If the feature map k has four anchors, aspect ratios are
denoted as ar ∈ {1, 2, 1/2}, r ∈ [1, 3].

We can compute the width and height of the four anchors as:

Wr
k = Sk

√
ar (2)

hr
k =

Sk√
ar

(3)

For ar = 1, another square anchor is added whose size length is
√

SkSk+1. If feature
map k has six ar anchors, aspect ratios are denoted as ar ∈ {1, 2, 1/2, 3, 1/3}, r ∈ [1, 5].
In training, the target object, the overall objective loss function is used [19]. The overall
objective loss function is a weighted sum of the localization loss of positive samples, the
confidence loss of positive samples and the confidence loss of negative samples:

Ltotal =
1
N

(
Lpos_con f + Lpos_loc + Lneg_con f

)
(4)

N is the number of matched default anchors, Ltotal is the overall objective loss function,
Lpos_con f is the confidence loss of positive samples, Lpos_loc is the localization loss of positive
samples and Lneg_con f is the confidence loss of negative samples [19]. The possibility of
each anchor which does not include objects and is not part of the background is calculated.
Anchors that have the three highest possibilities are selected to be the negative samples
because the three anchors are the most difficult to be classified.

2.3. YOLO v5

The YOLO model was proposed by Redmon et al. [24] in 2015 for object detection.
Later, the Ultralytics proposed YOLOv5 as the modified version, and it is still being
updated by them [20,20,25,30,31]. The YOLOv5 target detection network has four versions,
which are the YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x models. In our experiment,
YOLOv5s with the smallest depths and widths in the YOLOv5 series are adopted to consider
the restriction by hardware for the IoT application scenarios. The network structure of
YOLOv5 is built according to the one-stage structure. It can be divided into four sections:
Input, Backbone, Neck and Prediction. YOLOv5 takes advantage of the Mosaic method to
realize data enhancement, which meets the image’s arbitrary scaling, clipping and layout
requirements from the bottom of the view. The adaptive anchor frame calculation is the
initial length and width of various database anchor frames. The YOLO model has a low
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generalization rate in terms of the aspect ratio of objects which means it is unable to locate
objects of unusual proportions. Meanwhile, the YOLO model’s inaccurate positioning is
also a significant problem.

The parameter settings of YOLOv5 focus on two yaml files which are voc_car.yaml
and YOLOv5s car.yaml in our experiment. The voc_car.yaml file’s function is mainly to
declare the type to be recognized and decide the location of the name, training data set
and testing data set. The YOLOv5s car.yaml file contains depth_multiple, width_multiple,
anchor and head. Depth_multiple controls the number of submodules. Width_multiple
controls the number of convolution kernels. The anchor size is set to 640 × 640. The size
of the anchor frame under the image size realizes that large targets can be detected on
the small feature map and small targets can also be detected on the large feature map.
Heads in YOLOv5 include the two parts neck and detect_Head. The neck adopts the PANet
mechanism. The structure of detecting is the same as that head in YOLOv3. Bottleneckcsp
is set to false, which indicates that the residual structure is not used. It uses Conv in
the backbone.

In the process of model training, the network completes the output of the prediction
framework according to the parameters of the initial anchor framework. The data of the
predicted frame is extracted and compared with the real frame to reverse the data update
cycle. During the process, the network parameters are iterated and optimized continuously.
The adaptive picture zooming is an improved section of YOLOv5, which reduces the effect
of black padding due to image scaling on model training. At the input of the experiment,
the parameter of the size is 610 × 610.

From the view of the Backbone, focus structure and CSP structure are equipped and
cooperate with each other to coordinate the processing of images. With the assistance of
Focus, the image is sliced to construct the corresponding feature map. Meanwhile, the CSP
structure particularly points to the CSP1_X structure. For the structure of Neck, YOLOv5
adopts FPN and PAN architecture, which improves the basic convolutional operation on
the one hand and strengthens the ability of network feature fusion on the other hand. It is
worth mentioning that CSP_X is equipped and used in this section.

As discussed in [32], the three models of Faster RCNN, SSD and YOLO are popular
for industrial applications. There was no perfect algorithm or model for all the applications.
Careful model selection should be made to fit a typical application [31].

This paper focuses on comparing these latest deep learning models for target tracking
with interference and partial occlusion. We use a unified operating hardware environment
to avoid errors caused by the hardware. The data set is diversified to cover different
environmental and motion settings.

3. Method

In this paper, we provide clear implementation procedures to verify the anti-occlusion
performance of the three models for single target detection. Specific data sets are generated
to facilitate the algorithm evaluation. The format of the data set is Visual Object Class (VOC)
type. The images for training are imported to “labeling”—a deep learning annotation tool
embedded in Anaconda 3. The ground truth anchors, including the classes and coordinates,
are drawn manually. All images are collected from the different distances and angles of the
target robot. Some images are obtained under unclear lighting and noisy conditions.

A computer program is designed to read the information of the ground truth anchors
from “XML” files and generate two “txt” files for training and validation. An example
can be seen in Figure 1: Manual annotation of the object in Labeling. The graphical user
interface contains three key areas which are tool bar, labeling and file list. A toolbar is
located at the edge of the screen, and the image waiting to be labelled is displayed in the
center of the interface. There is a file list at the low right corner edge. It illustrates the file
information of the selected images.
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The main parameters for the performance evaluation in the three deep learning meth-
ods include confidence, nms_iou and anchors_size. The confidence is set to 50% to balance
the tradeoff and the nms_iou is set to 0.7. The setting of the anchor size is based on the
traditional average value in similar cases.

Three categories of occlusion simulations are tested. One is a simulation based on data
augmentation. In the second simulation, test data set two was created. The image in test
data set two does not belong to the images in the target robot data set and test data set one.
The targets in these images come from different angles and distances. At the same time,
some targets are out of range. The occlusion is about 10% to 30% of the target. In the third
simulation, we test whether these models can adapt to the change of occlusion.

3.1. Experimental Setting

The target robot data set is first created. Each image has a dimension of 4160 × 3120 pixels.
All images are collected from different distances and angles of the target robot. For example,
we take photos at a certain distance from the robot, and then move around to ensure that
photos from different angles of the robot are collected. The distance between the robot
and the camera varies under mobility. The photos are taken accordingly. The images
also contain the ones taken under bad lighting conditions or noisy conditions. When the
distance or angle changes, the background of the image may change as well.

The operating workspace environment includes Windows 10, CUDA 11.4, cuDNN
7.6.5, and Visual Studio 2022. The hardware used in the experiment is an NVIDIA GeForce
GTX 1650 with 4096 MiB (Santa Clara, CA, USA).

The Faster RCNN, SSD and YOLOv5 models are all fast deep learning methods. To
make the comparison between them as fair as possible, much attention was paid to the
settings of these three models.

For the Faster RCNN model, we adopt non-maximum suppression (NMS) on the
proposal regions in the RPN network and set the IoU threshold for NMS as 0.7. In the
Region of Interest (ROI) pooling layer, both the numbers of the positive and negative
samples are balanced to 128. Due to the different sizes of the proposed anchors, the ROI
pooling obtains the output of a fixed size via the method of mapping and max pooling. For
YOLOv5, there are three main steps to set up the model. First, the file train.py is called.
Then in the voc_ball.yaml file, there is only one target in our experiment. The target name
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is called robot. The training data set and the verification data set are in the local location.
Finally, settings in the yolov5s_ball.yaml file are responsible for most of the parameters. It
contains a number of categories of objects in the data set, the coefficient controlling network
depth, the coefficient controlling network width and the batch size. All these parameters
are separately well set based on the specific experiments. For the SSD model, the steps of
the matching strategy are as follows: each default anchor should be sorted according to
the confidence score. The confidence threshold is set to be 0.5, which means that default
anchors that have scores higher than 0.5 will be retained. After that, one object may have
several default anchors, and box position and score for non-maximal suppression are used
to filter anchors. The IoU for non-maximal suppression is set to 0.7. The training is divided
into freeze training and unfreeze training. In freezing training, the network backbone is
frozen, and more resources are used to train the posterior network parameters. For more
efficient use of the GPU memory, the batch size of freeze training is 16. In the unfreeze
training, the backbone network is unfrozen, and all parameters are trained at the same time.
The batch size of the part is set to 4.

3.2. Data Sets

Several data sets are created. Images are collected by an 8-megapixel camera (Leica,
Wetzlar, Germany) with F/2.0 aperture and a fixed focal length. All images in our data sets
are collected in two environments, an indoor environment and an outdoor environment.
We designed the following data sets:

(1) A training data set. A data set containing 2993 images is created. The images are
4160 × 3120 pixels. All images have been carefully annotated and used as the training set.
There is a whole target in the image. The target is captured from different distances, different
angles and different circumstances. (2) Testing data set one. It contains 1718 images which
are different from the training data set. All images have the same pixel as the training
data set. (3) Testing data set two. The second testing data set with 661 images is also
created. Images in testing data set two are chosen from the images which are not put in
the target robot data set and testing data set one. The targets in these images are seen with
different angles and are from different distances. Meanwhile, part of these targets is out
of range. The target is missing about 10% to 30% of itself; some examples can be seen in
Figure 2: Examples of testing data set two. (4) Testing data set three. A testing data set with
599 images is created by a random erasing method.

There are some advantages to our designed data sets. First, the environments of the
created data sets are different. To ensure the diversity of the environments, we take a
series of actions which contain the exposure of the picture, use a random erasing method
and so on. In addition, the target is captured from different distances, different angles
Furthermore, some occlusion condition testing data sets are created. However, there exist
some limitations of our designed data sets which should be improved in further studies.
Second, the environments of the created data sets are not complicated enough. Moreover,
the created data sets are relatively small. Besides, the images of the data sets keep the target
from a bot close distance from the camera.
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3.3. Data Augmentation

The designed program first acquires the length and width of the collected images in
the data set. It then obtains the pixel points of each coordinate of the picture to facilitate
the combination of pixel points. Based on the information mentioned above, the program
can rearrange the pixels to create flipped images. The key point of random erasing is to
select a rectangular region in an image and erase its pixels with random values [7]. The
RGB value of −3,947,833 representing grey is used for erasing. The coverage area is set as
the threshold size, which can be selected according to the specific experimental needs. The
test data set simulates the occlusion effect by randomly erasing the target features. It also
improves the generalization ability of the model. The random erasing enables the model
to recognize the target through local features in the training process. It also enhances the
model cognition of the local features of the target and weakens the model’s dependence on
all the features of the target. The model trained by these data is more robust to noise and
occlusion. All deep learning models perform well, the random erasure method is used to
create test data sets to judge the ability of these models.

A testing data set with 599 images is constructed by a random erasing method. This
set is called testing data set one and is shown in Figure 3: Screenshot of the erased data
set. These images are selected from images that have never been placed in the target robot
data set. This data set depicts targets in the test set undergoing different degrees of random
erasure in different environments. The data set is composed of car images in indoor and
outdoor environments. These images are covered so that the light and shade change to a
certain extent. Random numbers are added to enrich the data set based on the coordinate
parameters selected by the label box and data enhancement operations such as erasing. We
specifically designed a program to generate the test data set using this random erasure
method. The area erased by the program is in accordance with the size of the target in the
image. According to the label marked in the image, the program can ensure that an area of
the target is identified. A starting point is then randomly created in this area. A random
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erasure area, which is smaller than the target area and has a random size, is generated.
Therefore, all erasure areas can erase some target areas with different sizes, so as to ensure
that the test data set has sufficient generalization ability.
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3.4. Different Environments

The second test data set containing 661 images is created and defined as test dataset
two. The images in test data set two have never been selected from the images in the target
robot data set and test data set one. The targets in these images are captured from different
angles and distances to simulate different mobilities. Practical occlusion is simulated for
out-of-range scenarios. The images of the data set also contain images taken under harsh
lighting or noisy conditions. The practical occlusion is about 10% to 30% of the target.

Furthermore, the deep learning models have different performances in detecting
the object at different light intensities which can be seen in Table 1: Testing results for
deep learning models’ brightness. One image was selected from our testing data set.
Then we change the exposure of the image from −5 to 5. The Faster RCNN and the SSD
models can detect the object in the darkest and lightest environment. However, the Faster
RCNN model produces multiple detection results for the same target. The YOLOv5 model
can detect the object in the lightest environment, but it cannot detect the object in the
darkest environment.

Table 1. Testing results for deep learning models’ brightness.

Name Brightness Multiple Detection Error

Faster RCNN −5–5 Error

SSD −5–5 No error

YOLOv5 −4–5 No error

3.5. Occlusions Variation

To make a judgement on whether the SSD model, the Faster RCNN model and the
YOLOv5 model are adaptive to different degrees of occlusion, we identified an image as
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the testing sample. The size of the image is 4160 × 3120. The upper-left and lower-left
corners of the target are (1,991,811) and (2752 × 1730) respectively. We then cut the image
step by step to ensure that varying occlusion of the target can be measured. The precision
is controlled to the range of 1%. The experiments demonstrate that the Faster RCNN and
the SSD models can handle occlusion of up to 95% under a relatively simple background.
The YOLOv5 model works under up to 96% occlusion. The experiments demonstrate that
the Faster RCNN can handle an occlusion of 91%. The SSD models can handle occlusion of
about 80%. The YOLOv5 model works under 82.5% occlusion.

It is worth noting that the Faster RCNN model has a problematic result in the ex-
periments. It usually marks the local features with multiple anchors on the same object
during our experiments because the model is based on the candidate box extracting. This
can be seen in Figure 4: Duplicate detection in Faster R-CCN. Local features make target
detection a problem for multi-scale and small targets. Multi-scale problems means that
the problem studied involves multiple orders of magnitude. The feature maps extracted
by Faster RCNN are all monolayers, so it is not suitable with this problem. In addition,
in order to avoid re-detection, the method used by the Faster RCNN model is unfriendly
to the occluded target. If the threshold is set too large, the model will result in missed
detection. If the threshold is set too small, the model will re-detect. When the target only
shows local features, the model will not miss detection because only a small part of the field
of vision is the target. However, within this small local feature, the model will continue
to subdivide, causing re-detection. For example, our data set detects one target, and the
color feature is relatively simple. After the lower left corner is identified as a target, similar
features inside the target will also be detected to cause re-detection for the target as shown
in Figure 4.
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All three models can generally adapt well to the practical occlusion. The detection
methods of these deep learning models are based on the local features of the target. There-
fore, it also leads to some limitations. For example, if the training data set is not large
enough, the model cannot distinguish objects of similar features from the target. How-
ever, if the training data set can provide enough possible interference and possible similar
objects, the deep learning model can be more adaptive to occlusion. More details on the
experiments and discussions are provided in Section 4.

4. Results and Discussion

In this section, more numerical experimental results are presented to demonstrate
the anti-occlusion performance of the deep learning models with the generated data set.
YOLOv5, Faster RCNN and SSD are chosen as the benchmarks. Labeling was used to label
images in the data set. The target object is the robot vehicle. After labeling the images, the
model is fine-turned according to the training data set. Training time, F1 Score, Precision
and Recall are adopted as evaluation metrics. Score_threshold is the threshold of confidence.
Prediction results greater than this value are retained.
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The training times of the three models are also tested. The test data set is created
using the images and videos of the target robot at different angles indoors and outdoors.
Initially, the random erasure method is not applied. The three models all provide perfect
results with 100% accuracy and recall. When more challenging situations are simulated,
i.e., when the random erasure method is adopted, the PR curves of the three models for
testing data set one and testing data set two are shown in Figures 5 and 6, respectively. As
shown in Figure 5, the Faster RCNN model has a PR curve most close to the upper right
corner. The YOLOv5 has the best performance for test data two, as shown in Figure 6. The
values of precision and recall are also different under different confidence levels. The data
in this project use the specified value when the confidence is set to 0.5. We need to use
other testing parameters to further judge which model has the best performance.
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According to Figures 5 and 6, it is observed that the SSD model is the most stable
one. For example, the Faster RCNN model reaches 0.85 recall in Figure 5 and 0.92 recall
in Figure 6 when the precision is 0. The YOLOv5 model reaches 0.7 recall in Figure 5 and
1 recall in Figure 6 when the precision is 0. The SSD model maintains about 0.8 recall in
Figures 5 and 6 when the precision is 0. Therefore, the SSD model is the most stable model
when dealing with different testing data sets. The reason is that the size and position of
the prior frame of SSD are set in advance, which makes it simple and is less affected by
the environment.
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The configuration files of the models are also modified to train the data set. Accuracy
quantifies the correlation of detection targets. Recall refers to the ratio of detected targets
to all existing targets. The F1 score is an index used to measure the accuracy of the
binary classification model in statistics. It takes into account the accuracy and recall of the
classification model. The training time of these models is also tested.

As shown in Table 2: Testing Results for testing data set one, Faster RCNN and SSD
have a comparable performance of 0.87 and 0.89 respectively in the F1 score, which is much
better than 0.54 with the YOLOv5 model. The SSD model achieves the highest F1 score.
The precision of Faster RCNN, SSD and YOLOv5 are 93.38%, 97.72% and 97.69%. The SSD
model achieves the highest precision value. The recall values of Faster RCNN, SSD and
YOLOv5 are 77.62%, 81.16% and 63.66%, respectively. Again, the SSD model achieves the
highest value. As shown in Table 3: Testing Results for testing data set two, the F1 score
for three models are 0.89, 0.81 and 0.98. The Faster RCNN model achieves the highest F1
score. The precision of Faster RCNN, SSD and YOLOv5 is 91.55%, 76.96% and 98.18%. The
YOLOv5 model achieves the highest precision value. YOLOv5 also achieves a high score of
98.18% for the recall, which is better than the recall scores of 87.54% and 81.99% for Faster
RCNN and SSD, respectively. Meanwhile, the Faster RCNN model spends about 48.25 h
on training. The SSD model spends the least training time, about 15.16 h. The YOLOv5
model spends about 20.25 h on training. The detection speed of Faster RCNN is about
1.6 frames per second. For SSD and YOLOv5 models, the detection speeds are about
6.6 and 3 frames per second, respectively.

Table 2. Testing Results for testing data set one.

Name Training Time F1 Score Precision Recall Detection
Speed

Faster RCNN 48.25 h 0.87 93.38% 77.62% 1.6 f/s

SSD 15.16 h 0.89 97.72% 81.16% 6.6 f/s

YOLOv5 20.25 h 0.77 97.69% 63.66% 3 f/s

Table 3. Testing Results for testing data set two.

Name Training Time F1 Score Precision Recall Detection
Speed

Faster RCNN 48.25 h 0.89 91.55% 87.54% 1.6 f/s

SSD 15.16 h 0.81 76.96% 81.99% 6.6 f/s

YOLOv5 20.25 h 0.98 98.18% 98.18% 3 f/s

According to the values in Table 2: Testing Results for testing data set one and Table 3:
Testing Results for testing data set two, it is difficult to decide which model has the best
overall performance. In order to further judge the performance of these models, we
defined a variable called P which stands for the performance of the model in the designed
experiments. The F1 score is regarded as an index to measure the accuracy of the binary
classification model in statistics. It takes into account both the accuracy and recall of the
classification model. F1 score can be regarded as the weighted average of model accuracy
and recall rate. Its maximum value is 1 and its minimum value is 0. In general, the larger
the F1 score is, the better the model’s performance. The training time is the time spent by
the model to train the data set. The detection speed is how many frames the model can
detect per second. As the values of the F1 score and the detection speed should be as high as
possible and the value of the training time should be as low as possible, the performance of
the model can be determined accordingly. The function of P can be formulated as follows:

P =
F1score×DetectSpeed

TrainingTime
(5)
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The higher the value of P, the better the model performance will be. Based on Table 2, it
can be calculated that Pssd = 0.387, Pfaster−rcnn = 0.029 and PYolo = 0.114. Based on Table 3,
the three values can be derived as Pssd = 0.353, Pfaster−rcnn = 0.030 and PYolo = 0.145.
According to the results, it can be concluded that the SSD model has the best performance.

For further analysis of whether classic deep learning model tracking methods can
adapt to various occlusion conditions and to what extent occlusion could be handled in a
specific environment, a video containing our target and two similar objects was created to
test the performance of the Faster RCNN model, SDD model and YOLOv5 model. This is
a thirty-nine second-long video with thirty frames per second. An example of the video
can be seen in Figure 7: Screenshot of the testing video. At first, the target is located on the
screen as shown in Figure 7a,b. Then, a similar object is placed in the screen as shown in
Figure 7c,d. After that, a third similar object is placed on the screen, as shown in Figure 7e.
While filming the target, the photographer constantly changes the angles and keeps a
relatively close distance to the target which can be seen in Figure 7f–h.
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Figure 7. Screenshot of the testing video. (a,b) An example of the target in the screen. (c,d) An
example of one similar object and the target in the screen. (e) An example of two similar objects
and the target in the screen. (f–h) An example of two similar objects and the target in the screen in
different angles.

The testing results can be seen in Figure 8: Three models’ testing results in the
same frame.

In Figure 8, the object in the lower right corner is the target. The other two objects
are interferents. Figure 8 shows that in the same frame, the Faster RCNN model detected
the target, but also incorrectly identified the similar objects. The SSD model successfully
detected the target and ignored the similar objects. The YOLOv5 model detected the target,
but incorrectly identified the similar objects and gave one of the similar objects a higher
possibility than the true target.

Based on the results, it can be concluded that the SSD model has the best performance
in the designed experiments. The SSD model has the lowest training time, the highest F1
score, the highest precision, the highest recall and the fastest detection speed. The SSD
model achieves the highest performance score in two testing data sets. Such experiments
and dataset design methods can be applied to other specific circumstances. However, the
some limitations still exist in the experiments. First, the environments of the created data
sets are not complicated enough. Second, the created data sets are relatively small. Third,
the images of the data sets keep the target from a bot with a close distance from the camera.
Those limitations should be improved in further research.
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5. Conclusions

This paper provided a comparative study of Faster RCNN, SSD and YOLOv5 for
mobile robot tracking. All three deep learning models are adaptive to partial occlusion of
different degrees as analyzed. We apply these models to specific experiments including
erased situations, darkest environment, brightest environment, clear environment, complex
environment and variation of occlusions. The performance of the models was demonstrated
in terms of F1 score, precision, recall, floating points of operations and training time. A
variable P was created to compare the performance of the models. Four high-quality data
sets were generated to facilitate the performance evaluation. The random erasing method
and occlusion from different angles were applied to augment the data sets covering various
scenarios of partial occlusion.

Experimental results showed that the SSD model has the best performance and is most
promising for the addressed application. The P score of the SSD model achieved 0.387
in the first testing experiment which is higher than the Faster RCNN method by about
14 times. The P score of SSD was higher than the YOLO model by about four-fold in the
first testing experiment. In the second testing experiment, the P score of SSD also had a
consistent performance. It achieved a score of 0.353, which is higher than the Faster RCNN
by about 12 times. It was also higher than the YOLOv5 model by about threefold.

The analysis revealed different features of the implementation of the three models.
The performance of the models differs in terms of the anti-interference ability, detection
speed and the ability to determine the object according to the detection of local features.
The analysis results may serve as a reference for the model selection to meet specific design
metrics. There is also much room for improvement with the current algorithm design and
performance evaluation. For example, the images of the current robot data set contain a
single robot target. Further tests can be carried out to include more robots in the scene.
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In the future work, we will improve our data sets. The size of current data sets is
small and the diversity of the backgrounds should be expanded. The performance of the
current deep learning algorithms is not satisfactory in the detection of small objects. To
address the issue, the deeper layers and shallower layers can be concatenated to enrich the
semantic information of the shallower layers. In addition, some deep learning models have
the structure of a single stage. They can be developed into a multi-stage solution which can
increase the precision of detection and localization of small objects.
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