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Abstract: Advancements in deep learning and vision-based activity recognition development have
significantly improved the safety, continuous monitoring, productivity, and cost of the earthwork site.
The construction industry has adopted the CNN and RNN models to classify the different activities of
construction equipment and automate the construction operations. However, the currently available
methods in the industry classify the activities based on the visual information of current frames. To
date, the adjacent visual information of current frames has not been simultaneously examined to
recognize the activity in the construction industry. This paper proposes a novel methodology to
classify the activities of the excavator by processing the visual information of video frames adjacent
to the current frame. This paper follows the CNN-BiLSTM standard deep learning pipeline for
excavator activity recognition. First, the pre-trained CNN model extracted the sequential pattern
of visual features from the video frames. Then BiLSTM classified the different activities of the
excavator by analyzing the output of the pre-trained convolutional neural network. The forward and
backward LSTM layers stacked on help the algorithm compute the output by considering previous
and upcoming frames’ visual information. Experimental results have shown the average precision
and recall to be 87.5% and 88.52%, respectively.

Keywords: computer vision; activity recognition; convolution neural network (CNN); long short-term
memory (LSTM); Googlenet; visual features

1. Introduction

There are a lot of factors affecting the working efficiency of construction projects, such
as human factors, equipment maintenance, weather conditions, variable route plans and
road conditions [1]. The site manager has to decide the key parameters affecting the working
efficiency of a construction project. For that, they are required to have accurate, efficient,
and cost-effective methods to meet the requirements of the construction project [2,3]. The
site manager analyzes the working efficiency, productivity, optimum cost, and time required
for an earthwork operation based on the information on construction equipment [4,5]. The
completion time of an earthwork project depends upon the cycle time of the excavation,
transportation time, and the amount of the soil needed to be transferred [6]. Understanding
the construction equipment’s working status and the effect of different environmental
conditions on the construction process helps the manager minimize the idle time and
non-value-added works to enhance the productivity of the construction process [7]. The
complexity of the working schedule, the number of input variables, and the risk of decision
variables increase with the increase in the size of a construction project [8]. Irrespective of
the size of a construction project, the excavator remains the most commonly used equipment
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to carry out multiple sorts of operations in varying conditions [9]. It is very important to
continuously monitor and recognize the excavator’s different activities such as dumping,
hauling, swinging, moving, or stopping. However, these tasks cannot be achieved by
traditional ways of monitoring and analyzing the construction cycles because they are a
time-consuming and labor-intensive process, and prone to error [10]. Vision-based methods
provide ease in the remote, accurate and continuous monitoring of construction equipment
in real-time [11].

Cheap and high-resolution cameras, extensive data storage capacity, and the availabil-
ity of the internet render the applicability of vision-based methods easy for the monitoring
of construction sites continuously [10]. Vision-based artificial neural networks have been
used for the detection of objects such as Histograms of oriented gradients (HOG)- classifier-
based equipment detection, faster R-CNN-based detection of non-hardhat-using workers
in construction sites [12], and Faster R-CNN with enhanced VGG-16 for object detection
in optical remote sensing images [13]. CNN-based LSTM has been used for the detection
of unsafe behavior of construction workers [14]. Additionally, computer vision has been
used for pose estimation in construction sites [9], using a Cascaded Pyramid Network [15],
a Stacked Hourglass Network and a method based on the integration of both for the pose
estimation of construction equipment [16].

Similarly, the following vision-based algorithms have been reported for activity recog-
nition in the construction industry such as histograms of oriented gradients (HOG) inte-
grated with multi-class Support Vector Machines (SVM) [10], Bag-of-Video-Feature-Words
integrated with the Bayesian learning model [17], 3D ResNet [11], and convolutional neu-
ral networks (CNN) [18]. A CNN is designed to exploit “spatial correlation” in data,
whereas long short-term memory (LSTM) is designed to process and make predictions
given sequences of data. Furthermore, a CNN model can be integrated with LSTM by
providing spatial correlation of input data as sequenced data to the LSTM model. Long-
term Recurrent Convolutional Network (LRCN) on the UCF101 dataset, [19], CNN-based
LSTM model for unsafe human actions [14], and CNN-based double-layer long short-term
memory (CNN-DLSTM) for the excavator [6] have been applied for the activity classifi-
cation. These studies have not considered the pre-and post-frame while categorizing the
individual frame of the scene. It is important to understand the scene with a context; a
frame can be interpreted as both a return to a digging area and non-value-added swinging
unless the context of the task performed is given. To better understand the scene it is thus
necessary to consider multiple frames. The BiLSTM provides an opportunity to categorize
the input information at any time t considering the information at time t − 1 and t + 1.
CNN-based deep bidirectional long short-term memory (CNN-DBLSTM) was used for
human action recognition on UCF-101, YouTube 11 Actions, and HMDB51 [20]. Based
on the above literature, a pre-trained CNN model “Googlenet” and bidirectional long
short-term memory (BiLSTM) were not used for the activity recognition of construction
equipment. Therefore, the authors have investigated the integrated method based on a
pre-trained CNN, Googlenet and a bidirectional long short-term memory (BiLSTM) for the
activity classification of the excavator.

This study implemented a pre-trained convolutional neural network “Googlenet” with
the recurrent neural network “LSTM” for classification based on the sequential pattern
of video frames. The goal of this study is to practically demonstrate the applicability of
Googlenet for feature extraction in the field of the construction industry. Additionally,
the application of BiLSTM for the different activities of the excavator and its response is
observed. This research’s main objective is to evaluate the effectiveness of a pre-trained
CNN-based bidirectional long short-term memory (CNN-BiLSTM) for the activity recogni-
tion of an excavator in a construction site. Excavators are the most common equipment for
earthwork and construction sites with a cycle of activities: excavation, hauling, dumping,
and swinging. The surveillance videos of the excavator are used as input to a pre-trained
convolutional neural network to learn the sequential pattern of video frames. Based on the
findings of the pre-trained model, BiLSTM classifies the different activities of the excavator.
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The rest of this paper is organized as follows. The first section of this paper will identify the
key information relevant to the vision-based activity classification and provide an overview
of the existing studies on vision-based activity recognition in the next section. The next
section will then elaborate on the architecture of the proposed research following by the
training of the model with the video input of the earthwork site in successive sections. The
model is trained with the video input of the construction site to validate the effectiveness
of the framework. The experimental results will be analyzed in the second-to-last section,
and finally, the last section will provide the conclusion and the research contribution with
the future direction.

Related Works

Many efforts have been made to recognize the activities of construction equipment
with the help of vision-based techniques. Recently, different vision-based techniques have
been utilized to investigate the productivity, safety, cost and automation of the construction
process. Surveillance cameras have been installed to record the activities at construction
sites [21]. Cameras should be placed at a high and appropriate locations so that the
occlusion may be minimal [22]. Visual data collected from these surveillance cameras is
used for the activity recognition and safety of the workers and construction equipment
such as excavators, dump trucks and dozers.

There are numerous vision-based methods available for the detection of objects, hu-
mans or construction equipment. SURF is a local feature detector and descriptor of the
interesting points used to construct the feature vector. Additionally, SVM classifies different
classes by constructing hyperplanes in a multidimensional space. A technique based on the
Speeded-up Robust Features (SURF) and Support Vector Machine (SVM) was presented
for facial recognition on Yalefaces and the UMIST dataset with an accuracy of 97.78% and
97.87%, respectively [23]. A part-based object recognition model was presented to detect
the excavator at different poses using a discriminately trained HOG classifier [9]. A convo-
lution neural network IFaster R-CNN method, consisting of a Region Proposal Network
(RPN) and an R-CNN, was presented to detect workers and excavators in real-time [24].
The accuracy of the IFaster R-CNN model to detect the workers and the excavator was
91% and 95%, respectively. A deep learning method, Faster R-CNN, was used to detect
non-hardhat-use at construction sites by surveillance videos [12]. The precision and recall
for the test dataset were 95.7% and 94.9%, respectively.

To date, various methods have been developed and introduced to detect construction
equipment and recognize the activities of excavators in earthwork sites. Motion-feature-
based activity recognition methods extract the features from the consecutive frames of the
video and convert the spatial and temporal information of the features into feature vectors.
A computer-vision-based algorithm, Support vector machine (SVM), was presented to
classify the single action of the excavator using spatiotemporal visual features [10]. The
average accuracy of action recognition for the excavator and dump truck was 86.33% and
98.33%, respectively. Similar work was presented by 3D-Haris and local histograms to
extract the features, and a Bayesian network was used to classify the excavator activities
(relocating, excavating, swinging) instead of a Support vector machine (SVM) [17].

Computer vision and modern pattern recognition algorithms have outperformed the
traditional approaches (support vector machines, linear regression, and Bayesian networks)
in the field of image classification [25], Object detection [26], and action recognition [5,18].
The complex relationship of input and output classes of dynamic processes is solvable
with sophisticated neural networks such as a CNN and recurrent neural network (RNN).
CNN-based methods were found to be the best method for detecting the knife among the
Bag of Words (BOWs), Hog-SVMs, pre-trained Alexnet and SVMs, and CNNs for safety
purposes [26]. It was also found that Alexnet with an SVM provides the best accuracy
and the time for training the algorithm was much higher for the CNN; however, the
predicted time is higher for Alexnet than the CNN. In another study, a pre-trained CNN
network VGG-16 was used to integrate the RGB, optical flow, and grey stream input
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data collected from 12 different construction sites in Wuhan city to automatically identify
the activities (walking, transporting, and steel bending) of the worker accurately, with a
precision of 91%, 92%, and 100%, respectively [18]. For the fine-tuning of the RGB input
data in this study, the dropout ratio was set at 0.9 to avoid overfitting. The overall accuracy
and recall were 85% and 100%, respectively, to detect and classify the worker’s activity.
Furthermore, a framework (R-CNN, SORT, 3D ResNet) was presented to recognize the
activities automatically (digging, loading, and swinging) and estimate the productivity of
the excavator [11]. The average accuracy of activity recognition for the input data collected
from the 21 construction sites was 87.6%, and the precision and recall for the digging,
loading and swinging was 95% and 86%, 86% and 93%, and 84% and 80%, respectively.
The accuracy of the productivity calculation was 83%. CNN has been used widely for the
detection of objects and the classification of activities based on this literature. Pre-trained
CNNs have also been reported for feature extraction, such as Alexnet, VGG-16, and 3D
ResNet. However, the application of Googlenet has not been reported yet in the field of
the construction industry, providing a potential application of Googlenet for the extraction
of features.

Recurrent neural networks (RNNs) are well considered for time series classification
problems, especially when assisted with convolutional neural networks (CNNs)/pre-
trained CNNs. Spatial correlations of visual features extracted by CNNs are provided to
the RNN models, and, hence, an integrated system of CNN and RNN can provide better
performance. LSTM is one of the RNN models and has been reportedly used for time series
classification problems. A comparison of the behavioral analysis between the LSTM and
BiLSTM was conducted to evaluate their structural differences, effect on accuracy, and
time required to reach equilibrium [27]. It was noted that the accuracy of the BiLSTM has
increased and reduced errors by 37.78%. However, the time required to reach equilibrium
was more for the BiLSTM. Furthermore, various studies have investigated the effect of
BilSTM in other fields. A CNN- and Recurrent neural network (RNN)-based algorithm was
presented to classify the emotion of the Word2vec database [28]. In the mentioned study, a
hybrid model based on CNNs and BiLSTM was compared with standalone CNNs, LSTM,
and BiLSTM. CNN-BILSTM models performed better than all standalone models with a pre-
cision, recall, and accuracy of 94.3%, 94.6%, and 94.2%, respectively. A bidirectional dilated
LSTM (BiDLSTM)-based emotion classification method was presented for two datasets of
tweets: WASSA Implicit Emotion Shared Tasks (IEST) and a new dataset Ekman’s Emotion
keyword (EEK). Both methods’ accuracy was 72.83% and 80.79%, respectively [29]. A
BiLSTM-based model was presented for sentiment classifications of a SemEval 2013 and
IMDB movie review dataset with an accuracy of 85.02% and 95%, respectively [30].

A vision-based action recognition framework based on R-CNN and DLSTM was
presented to classify actions based on the sequential pattern of earthmoving excavators [6].
In this study, R-CNN extracted the visual features and provided them to the first layer of
LSTM to analyze the sequential pattern. The interim results of the first LSTM layer were
analyzed again in the second layer to classify the activities of the excavator. The average
precision and recall for all 3 classes, CNN, CNN_LSTM, and CNN-DLSTM, were 77.5% and
71.6%, 87.3.5% and 86.1%, and 90.9% and 89.2%, respectively. Additionally, the accuracy
of these classes was 79.8%, 90.9% and 93.8%. The benefit of using BiLSTM over LSTM
was the long-term bidirectional dependencies. It considered pre-and post-frames for the
categorization of the frame. A convolution neural network (CNN) and deep bidirectional
long short-term memory (DB-LSTM)-based method was presented to classify different
actions on the UCF-101, HMDB51, and YouTube action video datasets [20]. Convolution
neural networks extracted the features and the sequenced features were fed into the long
short-term memory (LSTM). The average accuracy for the classification of the UCF-101,
HMDB51, and YouTube action video datasets was 91.21%, 87.64%, and 92.84%, respectively.
The different algorithms and techniques used in previous studies have been summarized
briefly in Table 1.
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Table 1. Summary of techniques used in the excavator detection and activity recognitions.

Author Year Accuracy Classifier Goal

Gong et al. [17] 2011 79 3D-Harris feature + Bayesian
learning classifier

Classifying actions of construction workers
and equipment

Golparvar et al. [10] 2013 86.33 3D HOG feature + SVM
classifier

Activities of excavator and dump truck status
98.33

Yang et al. [31] 2016 57 HOG, HOE, MBH features +
SVM classifier Action recognition of construction worker

Luo et al. [32] 2018 80.5 Faster R-CNN detector +
Relevance network Recognizing diverse construction activities

Ding et al. [13] 2018 Faster R-CNN Reduce the test time and memory
requirements, enhanced VGG-16 net precision

Fang et al. [12] 2018 P = 95.7, R = 94.9 Faster R-CNN Detect non-hardhat-use

Amin Ullah [20] 2017

91.21

CNN-BDLSTM
Novel CNN-BDLSTM method for activity

recognition (human activities)92.84

87.64

Zhou et al. [33] 2019 up to 99.88 SVM, ANN, Decision tree Detecting excavator anomalies

Kim et al. [6] 2019

79.8 CNN Excavator detector

90.9 CNN-LSTM Excavator tracking

93.8 CNN-DLSTM Excavator activity recognition

Quan Liu et al. [34] 2019 up to 98 Different pre-trained CNN
model and Transfer learning

Classification of full/empty-load trucks in
earthmoving operations

Chen et al. [11] 2020 87.6 Faster R-CNN + Deep SORT
tracker + 3.D ResNet classifier

Excavator detection

Tracking, activity recognition of excavators

Bhokare et al. [35] 2021 78 YOLOV3 Activity detection and classification

Cheng et al. [36] 2022 99.7 YOWO Vision-based autonomous excavator
productivity

Chen et al. [37] 2022 86 Zero-shot learning method
CLIP Productivity analysis in earthmoving

Several studies have demonstrated the use of bidirectional LSTM for speech, tweet,
and human action recognition. However, there has been no attempt to examine the impact
of bidirectional LSTM to automate earthwork operations. Furthermore, the application
of Googlenet, standalone or integrated with other RNNs, was also not reported well
in the construction industry. The goal of this study is to practically demonstrate the
application of Googlenet for feature extraction in the field of the construction industry.
Additionally, the application of BiLSTM for different activities of excavators and its response
is observed. Thirdly, the integrated model of Googlenet and BiLSTM have yet to be adopted
for the activity recognition of excavators in the earthworking field. Therefore, this paper
considers the potential implications of the integrated CNN-based bidirectional long short-
term memory (CNN-BiLSTM) model for the activity recognition of the excavator.

2. Research Framework/Methodology

Excavators are used for performing four basic activities: excavation, hauling, dumping,
and returning, usually. These activities are defined as filling the bucket with dirt/rock,
moving the filled bucket to the dump point, emptying the bucket into the truck/dump
point, and moving back to the excavation point with an empty bucket, respectively. The
excavator usually shows two types of sequential patterns. The first type of sequential
pattern is one in which the excavator shows its sequential visual features pattern during
a single activity. For example, when the excavator is lifting-up during the digging and
hauling while the bucket is moving downward. Similarly, for the hauling and swinging,
the main body of the excavator rotates, keeping the bucket and arm at a specific speed and
position. The other sequential pattern is the operation cycle of the excavator, in which the
excavator starts a specific activity and then works in a loop. In most cases, the first activity
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of an earthwork operation is “digging” which is followed by the “hauling”, “dumping”,
and “swing”. Therefore, most probably, the last activity of the excavator would be the
“dumping”. The general views of the four activities are shown in Figure 1.
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This study classifies the basic activities of excavators based on the sequential pattern
of video frames. The pre-trained CNN used in this research is “Googlenet”, the winner of
the ILSVRC (ImageNet Large Scale Visual recognition Competition) 2014 [38]. Video clips
of each activity are fed into a pre-trained CNN to extract the features from video frames.
The sequenced feature vectors are the input for the bidirectional long short-term memory
(BiLSTM) to classify the activities. The BiLSTM have multiple LSTM layers processing
the data in both forward and backward directions simultaneously. The overall research
framework is shown in Figure 2.
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2.1. Convolutional Neural Network (CNN)

The CNN is a multi-layer architecture that automatically extracts features and facili-
tates the classifier by mapping the feature vectors [14]. It employs a convolution operation
and activation function in the forward propagation phase on the output of the previous
layer, as shown in Equation (1), where f is the activation function, bk is the bias for this
feature map, and Wk is the kernel value connected to the kth feature map.

Hk
ij = f

((
Wk∗x

)
ij
+ bk

)
(1)

The process to recognize the activity type of an excavator by the sequential pattern
starts with the extraction of features from the video frames. Video frames are the input
for the hybrid CNN-BiLSTM model, and a pre-trained CNN “Googlenet” is used for the
extraction of features. The architecture of the “Googlenet” is shown in Figure 3. It consists
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of 148 layers. The layers consisted of the convolution layers, max-pooling layers, and
inception layers. The CNN network consists of 22 layers of deep architecture which also
contain 2 auxiliary layers connected to the output of Inception(4a) and inception(4d) layers.
The architecture of 2 auxiliary classifiers consists of a 1 × 1 convolution of 128 filters,
fully connected layers with 1025 outputs with Rectified Linear Units (ReLU) activation, a
stride of 3, a dropout ratio of 0.7, and an average polling of filter size 5 × 5 and SoftMax
classifier. The pre-trained model extracts the sequential patterns of key features from the
video frames. The key features of the sequential pattern extracted from the video frames
are fed into the BiLSTM model for the sequential analysis.
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2.2. Long Short-Term Memory (LSTM)

Recurrent neural networks (RNNS) are the building blocks of neurons that connect
the inputs, hidden layers, and outputs and process the selective parts of sequence data by
an activation function at a time t. It processes the sequenced data by getting the previously
hidden state ht-1 and new input data xt, and multiplying it with the weights of inputs,
adding up the biases as a feed for the activation function [20]. The architecture of an LSTM
model consists of an input gate, output gate, memory gate, and a forget gate, as shown
in Figure 4. These gates update the information flow through each block of LSTM. These
gates include the activation functions such as the sigmoid function and tanh function,
and operations such as addition and multiplication. The forget gate decides how much
information needs to be kept or discarded. The memory gate decides the amount of
information needed to be stored in the cell state, and the input gate updates the previous
information as an input to analyze for the output. The output gate provides the output for
the current block by analyzing the cell state. The LSTM model decides which information
to keep or discard with the help of these gates. Hence, keeping the information of the
previous cell/ frame can overcome the problem of the gradient descent.
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For a time t, the updated cell state can be calculated from Equations (2) to (7) [14]. In
these equations, δ is the activation function sigmoid (defined as δ(x) = (1 + e−x)−1), ⊗ is the
pointwise multiplication operation, it, ft, ot, gt, and ct are the input gate, forget gate, output
gate, and cell state, respectively, and Ws and Vs are the coefficient matrixes.

it = δ(Wxixt + Vhiht−1 + bi) (2)

ft = δ(Wxfxt + Vhfht−1 + bf) (3)

ot = δ(Wxoxt + Vhoht−1 + bo) (4)

gt = tan h (Wxcxt + Vhcht−1 + bc) (5)

ct = ft ⊗ ct−1 + it ⊗ gt (6)

ht = ot ⊗ tan h(ct) (7)

In general, the input is fed into a single layer LSTM model for the activation and
processing of the output. The multi-layer LSTM models are used to boost the process and
get better performance for time series problems. In this way, the layers of LSTM are stacked
on each other, and each layer received the hidden state of the previous as an input and
processed the frame in the same direction [14]. While in bidirectional LSTM (BiLSTM), the
output of the current cell depends upon the previous frames as well as the upcoming frame.
In BiLSTM, there are two single LSTM stacked on each other with the reverse direction of
information exchange. LSTM and bidirectional LSTM (BiLSTM) layers learn unidirectional
and bidirectional long-term dependencies, respectively, between time steps in time series
and sequence data. The overview of the CNN-BiLSTM structure is shown in Figure 5. The
cell’s output is computed based on the hidden state of both forward and backward LSTM
layers. The output of a frame at a time t is computed from the two consecutive frames,
t − 1 and t + 1 [28].

2.3. Hybrid (CNN-BiLSTM) Network

LSTM layers learns the key information of time-series data and long-term dependen-
cies between the input frames’ time steps and sequence data. The hybrid model of CNNs
and LSTM is used to recognize the activities of the excavator where the CNN interprets
sequences of input to provide sequence data to the LSTM model to analyze the data using
the sequences of the features.
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The sequence input layer provides sequence inputs or time-series data. This data
has been converted into batches of image sequences in the sequence-folding layer, then
convolution operations on the time steps of image sequences are performed on these batches
independently. After the convolution, a sequence-unfolding layer restores the sequence
structure of the input data. This data is flattened to collapse the spatial dimensions of the
input into the channel (one dimensional) dimension. From this layer, the data is fed into
the bidirectional LSTM layer and fully connected layers. After that, a SoftMax function is
applied for the classification of the activities. The overall pattern of information flow in
CNN-BiLSTM is shown in Figure 6.
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2.4. Standard Deep Learning Pipeline

The authors have followed the standard deep learning model pipeline for n-epochs
for the model’s training and tuning. The first step of every standard deep learning model
pipeline is to fetch the raw data. The raw data in the current study is the YouTube videos
of the excavator during earthwork activity at a construction site or earthwork site. The
raw data is analyzed for the key parameters and then converted into the required form
for data to run in the deep learning model. The input data is sorted into three categories:
training, validation, and a testing dataset. The pre-processing of the data is performed very
carefully because the availability of noise or outliers will affect the training of the model.
The important thing is to check of the features and whether the key features are available
in the processed data or not. This study has used the pre-trained CNN model “Googlenet”
for the feature extraction. The sorted data is provided to the deep learning network to form
a trained model.

The mini-batch is a subset of the input data, processed through all the neurons from
the first to the last layer to predict the values at a time in the forward pass. In comparison,
the backward pass calculates errors in the predicted and ground truth values to get the
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best-fit hyperparameters and minimum loss function. The loss function is then utilized to
update the weight of the input using the gradient descent approach in backpropagation.
Backpropagation includes forward and backward passes to optimize the hyperparameters
to minimize the error. Gradient-based optimization algorithms of the neural network
decide how much to change the weight and the network’s learning rate to reduce the loss.
The learning rate, which is 0.0001 in this research, is a hyperparameter responsible for
changes in the weight according to the estimated loss. Adam, a first-order gradient-based
optimization of the stochastic objective function, was used in this study [39].

The validation data set is a separate dataset which is not used for the learning and
training purposes of the model and processes as a forward pass from the first to the last
layer. It helps the network to evaluate the effectiveness of the trained model by testing the
validation dataset. The trained model processed the test data set, evaluated the important
features, and classified or predicted the different categories of the test dataset based on the
features extracted in the processing phase. The trained CNN-BiLSTM model in this research
analyzed the sequential pattern of visual features in both directions while predicting a
specific cell state’s output. In total, 2 layers of LSTM stacked on at a time t provide the
information from both consecutive time steps t − 1 and t + 1 to understand the change in the
features and make an accurate prediction. In another study, a CNN-based deep bidirectional
long short-term memory (CNN-DBLSTM) was used for human action recognition in the
UCF-101, YouTube 11 Actions, and HMDB51 [20], and considered every 6th frame for
the video sequences for the recognition propose. Meanwhile, this study implemented the
pre-trained CNN model “Googlenet” for feature extraction and considered each frame
of the video sequence. Furthermore, this study focuses more on the application of this
algorithm in earthwork construction industries.

3. Experimental Implementation
3.1. Datasets

The earthwork operation videos were collected from the YouTube of Volvo, Caterpillar,
Liebherr, Komatsu, and Hitachi excavators. The dataset consisted of 400 video clips of the
4 activities. Each clip contains only one of the activities of dumping (empty the bucket),
hauling (swing with filled bucket), excavation (filling the bucket), and return (swing with
empty bucket). In total, 80% of the data were randomly selected for the training purpose.
The training data is further divided into two parts: training data and validation data. A
total of 80% will be the training data and 20% is for validation purposes. The rest, a 20%
data set, was kept as the test set.

Hmdb51 functions were used to label the videos. The size of the video was defined as
H-by-W-by-C-by-S, where H, W, C, and S stand for Height, Width, Number of channels, and
the number of frames in the video, respectively. These video clips were placed in separate
folders with the folder name as the label. The resolution of the video was maintained at
720P for the whole dataset. The frames are RGB images from the video dataset. The color
images (RGB) are the combination of the 3 basic colors of red, blue, and green, with each
color containing 8 bits, which results in 24 bits for color images. The pixel values of the
image frame are the input data for the convolution network.

3.2. Video Classification Training Process

The video input is fed into the convolutional neural network (CNN) to extract the
features. A pre-trained CNN network, “Googlenet”, is used to extract the feature vectors
from the videos. The sequenced feature vectors from the video input are the output from the
activation function on the last pooling layer of the convolution neural network “Googlenet”.
It consists of 148 layers. The layers consist of the convolution layers, max-pooling layers,
and inception layers. The size of the convolution filter is kept 7-by-7, and 3-by-3, while
max-pooling of 3-by-3 is used. The activation function used here is ReLU. After the
convolution and max-pooling layers, the inception layers are used to stack all the processed
information at the output. The add-in feature of the Googlenet is the inception layer, which
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deals with the convolution of multiscale input frames. The filters and the weight of the
Googlenet layers are determined using the error backpropagation. The inception layers
in the architecture are 1-by-1, 3-by-3, and 5-by-5 and are convoluted by the information
from previous frames layers, respectively, by the application of max-pooling and the ReLU
activation function. An average pooling of 7-by-7 is used instead of the max-pooling feature
vectors at the end of the architecture.

The minimum batch size for the training of sequences is kept at 16 for each iteration.
The sequence length of each batch size has been measured and truncated to an optimum
length, 400 in our case. The learning rate is the measure of the change in the weight
while training the algorithm. The learning rate varies from 0 to 1, which is an important
parameter to tune the algorithm in terms of efficiency and processing time. The processing
time will increase by using a shorter learning rate. Additionally, a shorter learning rate
will increase the number of epochs and iterations. The initial learning rate is kept constant
at 0.0001 with the gradient threshold of 2. The forward and back pass in one iteration
computes the output and loss function for that pass. The maximum number of epochs is
30, and the number of iterations per epoch is 15. After passing all data through the neural
network, the input data is shuffled for the next epoch. The number of hidden units for the
BiLSTM is kept at 2000 to remember the time steps. The dropout probability is set at 0.5,
which will truncate the data to half. The learning rate of the algorithm has been selected
based on the hit-and-trial methods. The results are shown in Table 2. The learning rate
ranges between 0.1 and 0.00001 for the validation of optimum results. The performance of
the algorithm is found to be optimal at a learning rate of 0.0001.

Table 2. Validation accuracy at different learning rate.

Learning Rate 0.001 0.0001 0.0005 0.00001

Validation
Accuracy 58.73% 93.55% 69.84% 76.20%

Test Accuracy 55% 88% 51% 73%

4. Results and Discussion
4.1. Performance Metrics

Precision, recall, and accuracy are the parameters that describe the correctness of
classification problems. Precision measures all the real positive outputs from the positively
predicted ones, and recall is the measure of correctly predicted positive outputs from
all positive outputs. The formula of the precision, recall and accuracy are shown in
Equations (8)–(10), respectively.

Precision = TP/FP + TP (8)

Recall = TP/FP + FN (9)

Accuracy = (TP + TN)/(TN + FP + TP + FN) (10)

The output that is predicted as positive and is positive is known as true positive (TP),
and the output predicted as positive and is negative is known as false positive (FP) and
vice versa. There are four activities included in the current study. A confusion matrix to
describe all the possible outcomes for the third activity, “hauling” is shown in Table 3.

The outcomes in the diagonal are always true negative except for one. The third row
shows the actual count of the “hauling” while the third column shows the predicted count
of “hauling”. Therefore, all of the which values fall in the third row, except diagonal, are
wrongly classified as negative and so are named as “false negative”. Similarly, all of the
values which fall in the third column, except diagonal, are wrongly classified as positive
and so are named as “false positive”.
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Table 3. Confusion matrix for activity “hauling”.

Known
Predicted

Dumping Excavation Hauling Return

Dumping TN TN FP TN
Excavation TN TN FP TN

Hauling FN FN TP FN
Swing TN TN FP TN

4.2. Evaluating Results

The implementation of the algorithm, training and testing of the visual data is carried
out by a MATLAB R2020a environment in Window10, a 64-bit operating system with the
hardware configuration of the intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, RAM 8 gigabyte.
The training progress of the activity recognition system is showing in Figure 6. The number
of epochs for the training process is selected as 30, and each epoch consists of 15 iterations.
The training and validation error is updated after every epoch. The loss of information
during the training is known as training loss, whereas the loss of a validation set tested by
the previously trained neural network is known as validation loss. The loss of training and
validation decreases with the increase in training and validation accuracy. The training and
validation accuracy increases with the increase in the number of epochs, and the training
loss is lower than the validation loss, as shown in Figure 7. Hence, it is clear that the system
is reading the sequenced visual feature to classify the activities of the excavator.
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The validation accuracy progress throughout the training can be visualized through
Figure 7. It can be observed that the validation accuracy increased after each iteration. Sim-
ilarly, with the increase in the training/validation accuracy, the training loss reduces. The
work presented is this study is novel in terms of the integrated application of CNN-BiLSTM
for earthwork construction applications. A general approach to evaluate the performance
of overall systems can be performed through a Receiver Operating Characteristic (ROC)
Curve. A ROC curve demonstrates the true positive rate (TPR, or sensitivity) versus the
false positive rate (FPR, or 1-specificity) for different classification scores. Each point on
the ROC curve is a pair value of a TPR and TNR. A TPR in one class is a TNR of another
class such as the plot between TPRs, and TNR is the same as the graph between 1-TPR and
1-TNR. By reading the plot at any point, the TPR and TNR can be calculated. The ROC
curve has been shown in Figure 8 for each activity of the excavator. The behavior of the
training performance can be visualized in it.



Appl. Sci. 2023, 13, 272 13 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

The validation accuracy progress throughout the training can be visualized through 
Figure 7. It can be observed that the validation accuracy increased after each iteration. 
Similarly, with the increase in the training/validation accuracy, the training loss reduces. 
The work presented is this study is novel in terms of the integrated application of CNN-
BiLSTM for earthwork construction applications. A general approach to evaluate the 
performance of overall systems can be performed through a Receiver Operating 
Characteristic (ROC) Curve. A ROC curve demonstrates the true positive rate (TPR, or 
sensitivity) versus the false positive rate (FPR, or 1-specificity) for different classification 
scores. Each point on the ROC curve is a pair value of a TPR and TNR. A TPR in one class 
is a TNR of another class such as the plot between TPRs, and TNR is the same as the graph 
between 1-TPR and 1-TNR. By reading the plot at any point, the TPR and TNR can be 
calculated. The ROC curve has been shown in Figure 8 for each activity of the excavator. 
The behavior of the training performance can be visualized in it. 

 

 

Figure 8. ROC curve for different activities of the excavator. 

The validation dataset is part of the training set and takes part in the model building 
process. However, the validation data is different from the test dataset as well as the 
training dataset. The validation dataset evaluates the training performance by parameter 
selection and avoiding overfitting. A good validation accuracy with a good testing 
accuracy verified the correctness of the model training process. The validation accuracy 
of the model is calculated after completing the last iteration, as shown in Table 4. Twenty 
(20)% of the training dataset is used as a validation process, and the video clip is tested by 
the trained model to test and tune the model. All the clips are classified well in the 
respected classes. Only three (3) clips were misclassified: one of a swing falling into the 
dumping category, and two clips of excavations falling into the category of hauling and 
dumping. The validation precision of the 4 activities, dumping, excavation, hauling, and 
swinging, is 86.7%, 100%, 94.4%, and 100%, respectively. The overall precision, recall, miss 
rate and accuracy of the activity recognition system were 95.04%, 95.28%, 4.96%, and 
95.2%. The result shows that the second activity, “excavation,” misclassified the most 
among other activities. We obtained a true positive rate (TPR) of above 85% plus for all 
the attack categories and normal connections. For excavation attacks, there were 0.0% false 
predictions made by the model. 

Table 4. Confusion matrix of the validation dataset. 

Figure 8. ROC curve for different activities of the excavator.

The validation dataset is part of the training set and takes part in the model building
process. However, the validation data is different from the test dataset as well as the
training dataset. The validation dataset evaluates the training performance by parameter
selection and avoiding overfitting. A good validation accuracy with a good testing accuracy
verified the correctness of the model training process. The validation accuracy of the model
is calculated after completing the last iteration, as shown in Table 4. Twenty (20)% of
the training dataset is used as a validation process, and the video clip is tested by the
trained model to test and tune the model. All the clips are classified well in the respected
classes. Only three (3) clips were misclassified: one of a swing falling into the dumping
category, and two clips of excavations falling into the category of hauling and dumping.
The validation precision of the 4 activities, dumping, excavation, hauling, and swinging,
is 86.7%, 100%, 94.4%, and 100%, respectively. The overall precision, recall, miss rate
and accuracy of the activity recognition system were 95.04%, 95.28%, 4.96%, and 95.2%.
The result shows that the second activity, “excavation,” misclassified the most among
other activities. We obtained a true positive rate (TPR) of above 85% plus for all the
attack categories and normal connections. For excavation attacks, there were 0.0% false
predictions made by the model.

The performance of the activity recognition algorithm is shown in Table 5. A total
of 80 video clips were run through the trained model to recognize each activity. As the
test set contains 4 activities, each activity has 20 video clips. From 80 test videos, 70
were correctly recognized and the rest were misclassified. The model identified 18 out of
20 videos correctly for dumping and misjudged 2 videos as excavation and swinging, 1
of each. For the second activity, “excavation” was recognized in 17 out of 20 video clips
correctly and misjudged in 3 as “dumping”. For the third activity, “hauling” has shown the
least favorable results compared with the rest of the categories. Out of 20, 16 videos were
correctly identified while 4 video clips were misjudged as excavations. For the last activity,
“swing” was classified correctly in 19 out of 20 video clips and misclassified in only 1 video
clip as dumping.



Appl. Sci. 2023, 13, 272 14 of 19

Table 4. Confusion matrix of the validation dataset.

Confusion Matrix

Dumping
13 1 0 1 86.70%

21.00% 1.60% 0.00% 1.60% 13.30%

Excavation
0 12 0 0 100%

0.00% 19.40% 0.00% 0.00% 0.00%

Hauling 0 1 17 0 94.40%
0.00% 1.60% 27.40% 0.00% 5.60%

Swing 0 0 0 17 100%
0.00% 0.00% 0.00% 27.40% 0.00%

Output Class 100% 86% 100% 94% 95.20%
0.00% 14.30% 0.00% 5.60% 4.80%

Target Class Dumping Excavation Hauling Swing

Table 5. Confusion matrix of the test set.

Confusion Matrix

Dumping 18 3 0 1 81.80%
22.50% 3.80% 0.00% 1.30% 18.20%

Excavation
1 17 4 0 77.30%

1.30% 21.30% 5.00% 0.00% 22.70%

Hauling 0 0 16 0 100.00%
0.00% 0.00% 20.00% 0.00% 0.00%

Swing 1 0 0 19 95.00%
1.30% 0.00% 0.00% 23.80% 5.00%

Output Class 90% 85% 80% 95% 87.50%
10.00% 15.00% 20.00% 5.00% 12.50%

Target Class Dumping Excavation Hauling Swing

The average precision of the test dataset for the 4 activities of dumping, excavation,
hauling, and swing, is 81.8%, 77.3%, 100%, and 95%, respectively. The overall precision,
recall, miss rate and accuracy of the activity recognition system are 87.5%, 88.52%, 12.5%,
and 87.5%, respectively. The result shows that the third activity, “hauling” was misclassified
the most among the other activities.

Twenty (20)% of the total dataset is selected as a test dataset. The sequential pattern
of the activities of the excavator usually starts from the excavation to hauling, dumping
and swing. The 4 activity categories of excavators contain 80 video clips in total. The CNN-
BiLSTM algorithm tested each video clip from the test set to verify the effectiveness of the
trained model. The four activities of excavation, hauling, dumping, and swinging from
the test data set are tested. The screenshots during the prediction of activity are shown in
Figure 9a–d, respectively. The predicted label and ground truth have also been highlighted
in Figure 9. The CNN-BiLSTM classification algorithm has classified the activities into their
respective categories. The predicted and ground truth labels are compared to calculate the
precision, recall, and accuracy of the algorithm. The average precision of the test dataset
for dumping, excavation, hauling, and swing are 81.8%, 77.3%, 100%, 95%, and 18.2%,
respectively. Similarly, the miss rates of these classes are 18.2%, 22.7%, 0.0%, and 5%,
respectively. The average precision, recall and miss rates for the test dataset are 87.5%,
88.52%, and 12.5%, respectively.
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The results of our study have been compared with some previous research studies in
Table 6. These studies have used different algorithms and datasets. A CNN-based deep
bidirectional long short-term memory (CNN-DBLSTM) was used in the study [20] for
human action recognition on the UCF-101, YouTube 11 Actions, and HMDB51 datasets and
similar results are reported for activity recognition on the HMDB51 dataset. In another
study [17], the pre-determined starting point and duration of each activity has been used
for classifying actions of construction workers and equipment. The study [11] used a Faster
R-CNN detector + Deep SORT tracker + 3.D ResNet classifier for the excavator activity
recognition and productivity analysis from construction and showed a similar kind of result.
Furthermore, the study considered hauling and swinging as one activity. Meanwhile, this
study implemented the pre-trained CNN model “Googlenet” for feature extraction and
considered each frame of the video sequence. Furthermore, this study considered hauling
and swing as different activities. Compared with these studies, the results of the proposed
studies are promising.
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Table 6. Performance comparison with previous studies.

Reference Test Accuracy (%) Method

Gong et al. [17] 79 3D-Harris feature + Bayesian learning
classifier

Yang et al. [31] 57 HOG, HOE, MBH features + SVM classifier

Golparvar-Fard et al. [10] 86.33 3D HOG feature + SVM classifier

Luo et al. [32] 80.5 Faster R-CNN detector + Relevance network

Kim et al. [6] 90.9 Faster R-CNN detector + Tracking-
Learning-Detection tracker + CNN-LSTM

Proposed framework 87.5 CNN(GoogleNet) and BLSTM

5. Conclusions

There have been many studies carried out for the vision-based activity classification
of construction equipment. Most of them use the traditional BOW and SVM approaches.
However, the response of a pre-trained CNN model “Googlenet” and bidirectional long
short-term memory (BiLSTM) had not yet been used for the activity recognition of con-
struction equipment. The goal of this study was to practically demonstrate the application
of Googlenet for feature extraction, and of BiLSTM for the training and execution of the
classification of excavator activities. Additionally, the performance of integrated models of
Googlenet and BiLSTM have to be tested for the activity recognition of excavators in the
earthwork field. Therefore, the authors have implemented an integrated method based on
a pre-trained convolution neural network (CNN) “Googlenet” and bidirectional long short-
term memory (BiLSTM) for the activity classification of excavators. First, the pre-trained
CNN model extracts the sequential pattern of visual features from the video frames of con-
struction equipment and then feeds it into the BiLSTM. The BilSTM consists of two LSTM
layers, stacked on top of each other in both directions, with a forward direction as well as a
backwards direction. The benefit of BiLSTM is that it not only includes the information from
the previous frame but also from the upcoming frame. BiLSTM recognizes the different
activities of the excavator after analyzing the input from the pre-trained convolution neural
network. The bidirectional LSTM (BiLSTM) framework shows promising results on the
YouTube-based excavator dataset. The experimental results show accuracies of 93.55%
and 87.5% for the validation and test datasets, respectively. The experimental results of
the CNN-BiLSTM framework show that the algorithm is capable of recognizing the dif-
ferent activities of construction equipment by using single-action videos datasets. The
contribution to the knowledge of this research is the implementation and evaluation of the
pre-trained CNN model “Googlenet” and bidirectional LSTM for the activity recognition
of construction equipment. Furthermore, the authors intend to classify the value-added
activities of the construction equipment in the future.

There are some limitations in this research: (1) The activity recognition performance of
the model is affected by the detection results in the presence of two or more excavators.
(2) The light conditions of the construction site video during the operation impact on the
activity recognition results. When the light was too bright or low during the construction
operation, it is difficult to recognize the moving features in video frames. (3) The diversity
of data sets used in this study is limited, which may have affected the activity classification
performance. Considering the limitations and applications of the research, the future goals
of this study are to (1) improve the robustness of the activity recognition under varying
light conditions by using some filters and implementing multiple cameras for better visual
results in moving frames. (2) Various data should be collected from construction sites
under different light conditions with various activities of excavators being performed.
Furthermore, the authors intend to classify the value-added activities of the construction
equipment in the future.
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SVM Support Vector Machine
SURF Speeded-up Robust Features
HOG Histogram of Oriented Gradients
ILSVRC ImageNet Large Scale Visual Recognition Competition
RNN Recurrent Neural Network
CNN Convolutional Neural Network
RPN Region Proposal Network
ROC Receiver Operating Characteristic (ROC)
R-FCN Region-based Fully Convolutional Network
IFaster R-CNN Region based Convolutional Neural Networks
LRCN Long-term Recurrent Convolutional Network
LSTM Long Short-Term Memory (LSTM)
CNN-DLSTM CNN based Double-layer Long Short-Term Memory
CNN-DBLSTM CNN based Deep Bidirectional Long Short-Term Memory
CNN-BiLSTM CNN based Bidirectional Long Short-Term Memory
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