
Citation: Charitidis, P.; Moschos, S.;

Pipertzis, A.; Theologou, I.J.;

Michailidis, M.; Doropoulos, S.;

Diou, C.; Vologiannidis, S.

StreetScouting: A Deep Learning

Platform for Automatic Detection

and Geotagging of Urban Features

from Street-Level Images. Appl. Sci.

2023, 13, 266. https://doi.org/

10.3390/app13010266

Academic Editor: Tae Hyun Kim

Received: 20 November 2022

Revised: 17 December 2022

Accepted: 20 December 2022

Published: 26 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

StreetScouting: A Deep Learning Platform for Automatic
Detection and Geotagging of Urban Features from
Street-Level Images
Polychronis Charitidis 1,*, Sotirios Moschos 1 , Archontis Pipertzis 1, Ioakeim James Theologou 1,
Michael Michailidis 1, Stavros Doropoulos 1 , Christos Diou 2 and Stavros Vologiannidis 3

1 DataScouting, 30 Vakchou Street, 54629 Thessaloniki, Greece
2 Department of Informatics and Telematics, Harokopio University of Athens, Omirou 9, 17778 Athens, Greece
3 Department of Computer, Informatics and Telecommunications Engineering,

International Hellenic University, Terma Magnisias, 62124 Serres, Greece
* Correspondence: pcharitidis@datascouting.com

Abstract: Urban environments are evolving rapidly in big cities; keeping track of these changes is
becoming harder. Information regarding urban features, such as the number of trees, lights, or shops
in a particular region, can be crucial for tasks, such as urban planning, commercial campaigns, or
inferring various social indicators. StreetScouting is a platform that aims to automate the process
of detecting, visualizing, and exporting the urban features of a particular region. Recently, the
advent of deep learning has revolutionized the way many computer vision tasks are tackled. In this
work, we present StreetScouting, an extensible platform for the automatic detection of particular
urban features of interest. StreetScouting utilizes several state-of-the-art computer vision approaches
including Cascade R-CNN and RetinaFace architectures for object detection, the ByteTrack method for
object tracking, DNET architecture for depth estimation, and DeepLabv3+ architecture for semantic
segmentation. As a result, the platform is able to detect and geotag urban features from visual data.
The extracted information can be utilized by many commercial or public organizations, eliminating
the need for manual inspection.

Keywords: object detection; object tracking; deep learning; web application

1. Introduction

The rapid urbanization of cities necessitates the availability of updated information
regarding various urban features that can assist urban planning tasks, such as predicting
population growth, analyzing park space, surveying the water supply, identifying trans-
portation patterns, recognizing food supply demands, analyzing the impact of land use, and
others. Counting and geotagging the number of particular features in a given urban area or
city is crucial when making decisions for government policies and administration. Urban
planning officials and stakeholders often lack updated information regarding such features
and that can potentially lead to wrong decisions. The traditional methods used for counting
and geotagging features such as trees, trash bins, street lamps, retail shops, and others, in
most cases include manual inspection and consequently are time-consuming, costly, and
labor-intensive. Therefore, there is an increasing need for an automated approach to replace
conventional visual inspection.

Recently, following the advent of deep learning (DL) and the availability of large
datasets, many new models and approaches have emerged. These new methods have
proven promising to revolutionize the way particular problems are tackled. Related litera-
ture keeps expanding with research studies that use deep learning to achieve better results.
Specifically, computer vision (CV) is a domain that showcases substantial progress in recent
years and a lot of research effort is directed toward CV applications. convolutional neural

Appl. Sci. 2023, 13, 266. https://doi.org/10.3390/app13010266 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010266
https://doi.org/10.3390/app13010266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8591-9352
https://orcid.org/0000-0003-3620-4606
https://orcid.org/0000-0002-2461-1928
https://orcid.org/0000-0003-2945-0841
https://doi.org/10.3390/app13010266
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010266?type=check_update&version=1

Appl. Sci. 2023, 13, 266 2 of 19

network (CNN), one of the basic building blocks of CV models, outperform many of their
traditional machine learning (ML) counterparts. Consequently, CV tasks, such as object
detection, object tracking, and semantic or instance segmentation have gained significant
interest. The field has reached a state where powerful models and datasets are publicly
available and even used for commercial and business applications, such as self-driving
cars [1] and healthcare [2].

In the digital era, many urban research studies are trying to integrate methods that
quickly process and analyze the complexity of urban dynamics and fast-paced surrounding
changes. Machine learning and deep learning approaches are suitable tools for complex
task automation for various urban elements [3]. For example, many works incorporate
DL models to overcome specific urban problems, such as waste management [4], urban
environment quality [5], structure damage detection [6], traffic prediction [7], and others.

In this work, we present StreetScouting, a platform that utilizes powerful deep learning
and computer vision techniques to automatically detect and extract urban features in cities.
StreetScouting is a fully featured platform and its main task is to process GPS and video
data of a particular region and output visualizations and data regarding various objects
and urban features. Objects, such as trees, trash and recycle bins, street light poles and
lamps, vehicles, traffic lights, traffic signs, and other features, such as the width of the road
or the existence of sidewalks are some of the features that can be detected and localized by
the platform. To achieve this, StreetScouting incorporates many state-of-the-art computer
vision approaches for object detection, semantic segmentation, multiple object tracking,
depth estimation, and others. Ultimately, StreetScouting aspires to be an extensible platform
that can automatically capture and extract multiple visual features from urban streets and
progressively eliminate the need for visual inspection.

StreetScouting is a web application that provides an organized and easy-to-use environ-
ment that can be utilized by urban planning administrators and policymakers, municipal
offices, geoinformatics companies, and other commercial organizations. StreetScouting
uses street data as input and generates geotagged feature information that can be further
utilized according to user needs.

StreetScouting was developed in the context of the GRUBLES (georeferenced urban
landscape and socioeconomic indicators using machine vision) project (https://GRUBLES.
datascouting.com/, accessed date: 1 December 2022). The main purpose of the project is
to extract geotagged features in urban areas with the use of machine learning methods.
StreetScouting is responsible for detecting and tracking those features and transforming
them into primary indicators of a region. Primary indicators are a set of data that contain
geolocation information regarding the number of trees, street lights, retail shops, bins, cars,
and others. GRUBLES aspires to utilize primary indicators in order to perform a statistical
study to find correlations with some socioeconomic indicators of the region. Publicly
available data and statistics are used with StreetScouting data in order to infer indicators,
such as financial status, lighting quality, green areas, traffic, and waste management. The
final goal is to utilize StreetScouting outcomes and build statistical models that can infer
many of these indicators for a particular urban region.

The contributions of this work are therefore as follows:

• Design of data acquisition and preprocessing paradigm for high-rate street-level
photography data, beyond the use of Google Street View.

• A deep learning-based computational workflow for automatic urban feature measure-
ments, including the novel use of state-of-the-art object tracking and localization components.

• System architecture and design of the StreetScouting end-to-end web application.

The sequence of the article is as follows. We first present some related studies, followed
by a description of the data and DL and ML methods that are used by StreetScouting. Then
we showcase the platform’s architecture and the user interface. We later demonstrate
some quantitative and qualitative results and finally, we discuss the usage, limitations, and
future of StreetScouting and we conclude the findings after reviewing the functionalities of
the platform.

https://GRUBLES.datascouting.com/
https://GRUBLES.datascouting.com/

Appl. Sci. 2023, 13, 266 3 of 19

2. Related Work

Modern cities face several challenges and urban planners must develop urban forms
that address them. Solutions to this problem based on ML and DL algorithms are now
possible [3], thanks to the large volumes of data generated by new information and com-
munication technologies (smartphones, GIS, IoT, sensors, etc.) and the availability of high
computational power. For instance, there are works that estimate urban growth using ML
approaches [8], predict building heights, based only on open-access geospatial data on
urban forms, such as building footprints and street networks [9], predict building-level
waste generation [4], access the urban environment quality [5], detect structure damage [6],
predict traffic [7] and others.

The manual analysis of street-level photography has been extensively explored as
an efficient strategy for measuring urban characteristics linked with demographic or so-
cioeconomic indicators, e.g., with respect to health-related behaviors [10], obesity [11], or
pedestrian safety [12]. These “audit tools” allow researchers to quantify characteristics at
the neighborhood level without the need to actually visit each location.

Although initial attempts to automate this process were not effective enough to replace
manual processing (e.g., [13]), the advent of effective, deep learning-based computer
vision methods has enabled the fully automated extraction of urban indicators from street
images [14]. For example in [15], the authors use a mask regional convolutional neural
network (Mask R-CNN) to detect and locate trees from street images and use a monocular
depth estimation method to estimate precise tree location. Another study [16] uses a faster
region-convolutional neural network (Faster R-CNN) to measure street cleanliness from
images that are captured by high-resolution cameras installed on vehicles. Similarly in [17],
the authors use a segmentation and classification workflow to measure the presence of
unhealthy food advertisements in Liverpool, UK.

A significant body of work goes beyond the measurement of individual urban features,
to the use of computer vision for estimating demographic and socioeconomic indicators. In
a large-scale study in the USA, the authors of [18] propose to automatically analyze the make
and model of cars in street-level images to successfully estimate the demographic markup
of urban neighborhoods. In [19], the authors leverage deep multiple-instance learning
to eliminate the requirements for manually annotated data for the direct estimation of
socioeconomic indicators from cars detected in street images. In that case, cars are detected
using Faster-RCNN, and a deep learning model is used for the estimation of demographic
indicators. In [20], the authors use Siamese CNNs to analyze images of properties/buildings
obtained from Google Street View to map gentrification over a 9-year period in Ottawa,
Canada. Street-level imagery is also used as input to a multi-modal U-Net architecture
in [21], to measure income, overcrowding, and environmental deprivation in urban areas.
Other examples include linking blue and green spaces with geriatric depression [22], the
estimation of infection incidence rate [23], and the estimation of social, environmental, and
health inequalities in major UK cities [24].

Additionally, various platforms have been developed to assist in many urban chal-
lenges with the use of ML and DL techniques, such as improving the visitor experience in
urban parks [25], monitoring urban street lighting infrastructure [26], classifying the type
of the streets [27], predicting parking spaces [28], and urban mobility [29].

The proposed StreetScouting platform extends these efforts by introducing the archi-
tecture and implementation details of an end-to-end deep learning-based automated urban
feature extraction platform including:

1. High-rate data acquisition and pre-processing from a 360◦ camera. Most methods
in the bibliography rely on Google Street View data, which are subject to license
restrictions with respect to their use for urban feature measurement.

2. Object detection and privacy protection methods (license plates, faces). The relevant
literature usually assumes that these issues have already been resolved but this is
often not trivial.

Appl. Sci. 2023, 13, 266 4 of 19

3. Novel use of object tracking (to avoid duplicates across frames) and depth mapping
for object location estimation.

4. A method for road/sidewalk segmentation/measurement.
5. A complete system architecture for the measurement and visualization of urban features.

3. Data and Methods
3.1. Data Collection

To detect objects, such as trees and lights, there is a need for visual data from the streets
of a region or a city. As we mentioned in Section 2, many similar works use Google Street
View to retrieve street data. One major problem is that Google Street View has imposed
restrictive permission for data usage that prevents the use of the service for our purposes.
Additionally, some of the detection approaches that are described in the paper, work under
the assumption that the input data are consecutive frames from a video, extracted under a
specific frame per second (FPS) rate. Such data cannot be retrieved from Google Street View
or similar services. Last but not least, Google Street View data are usually not updated,
especially in smaller cities. Although updating such data with our data collection approach
is costly, is still a good trade-off for the users of the platform that would otherwise perform
the detection task using manual inspection methods.

As mentioned in Section 1, StreetScouting can be used by urban planning administra-
tors and policymakers, municipal offices, geoinformatics companies, and other commercial
organizations. These users are responsible for collecting the street data according to their
needs and the regions of interest. StreetScouting currently assumes that the data collection
route is not overlapping. This assumption is made to deal with duplicate detections.

In the context of the GRUBLES project, the footage is captured by specific personnel
from a geoinformatics company partner, that participates in the project. The Insta Pro2
camera (https://store.insta360.com/product/Pro_2, accessed date 29 November 2022)
is used to capture visual content. This camera consists of 6 ultra-wide-angle lenses for
recording 360° scenes with a 200° coverage angle each, with the aim of stitching the images
and reconstructing them into either a 2D or 3D panoramic scene. During data collection,
this camera is mounted on a car and precise routes are designed beforehand. For wireless
remote sensing, real-time camera control, and wireless pairing, an antenna is connected
to the RF socket of the wireless access point and an application for survey devices with a
user-friendly interface is utilized. The application provides options to control the number
of frames per second (FPS), the size of the frame resolution as well as the real-time stitching
of the panorama. In contrast to the short distance of the wireless local connection between
the survey device and the camera, the signal received by the camera’s internal GPS unit
is likely to show discontinuities leading to successive null or undefined GPS coordinates.
This problem is solved by adding an external antenna to the appropriate socket of the
camera. During the dataset collection process, the maximum suitable speed to avoid GPS
distortions was set empirically to be 50 km/h, which is often the upper limit of speed in
most urban areas.

Apart from the collected data using the Insta Pro2 camera, the personnel responsible
for data collection may also input additional video data from conventional cameras. In
this case, it is possible for the user to insert a GPS signal from an external device in GPX
file format.

For the GRUBLES use case, the collected dataset amounts to approximately 10 h of
footage from the city center of Thessaloniki in Greece.

3.2. Data Processing

The processing of the collected data from the Insta Pro2 camera is essential in order to
retrieve multimedia and metadata in a proper format. As we mentioned in the previous
paragraph, Insta Pro2 consists of 6 individual cameras. The footage from one camera is
processed by the StreetScouting platform, and usually, the camera that is directed towards
the front road is chosen. To process the multimedia stream, the video frames are extracted

https://store.insta360.com/product/Pro_2

Appl. Sci. 2023, 13, 266 5 of 19

at a specific FPS which is set to 10 by default. Moreover, the frames are clipped to specific
dimensions to eliminate any distortion from the ultra-wide lens. Then, the GPS data of the
video is extracted from the metadata. The GPS data are synchronized with the extracted
frames and any missing data are filled with linear interpolation. In the case of the video
input from a conventional camera and external GPS data file in GPX format, the processing
pipeline is similar. The only difference is that the frames are not clipped but resized to
particular dimensions preserving the aspect ratio of the image.

3.3. Data Annotation

Deep learning models require annotated datasets in order to be trained in a supervised
manner. Although a supervised learning [30] paradigm can only be applied with the
availability of large-scale datasets with annotations, fine-tuning pre-trained models is a less
data-demanding task. For example, pre-trained object detectors on the COCO dataset [31]
can be easily fine-tuned to detect new classes with relatively few samples.

Motivated by this observation, we randomly sampled 1000 frames from the dataset
that is described in the previous subsection and we manually annotate particular objects.
The annotation involves objects that are not present in popular open-sourced datasets.
More specifically, the objects that are annotated are trees, trash bins, recycling bins, street
lighting poles, and shops. 5228 total object instances of interest are annotated, as seen
in Table 1. We refer to this dataset as the GRUBLES objects dataset. The CVAT (https:
//github.com/opencv/cvat, accessed date 29 November 2022) annotation tool is used for
the labeling process. A useful feature of CVAT is the ability to export labeling data in a
wide range of different formats, from YOLO to PascalVOC annotation formats.

Table 1. Total number of annotated objects per class for the GRUBLES objects dataset.

Class Annotated Objects

trash bins 324
recycling bins 220

trees 2480
street lights 880

shops 1324

Apart from the deep learning models utilized to detect urban features, the project
needs to comply with the European General Data Protection Regulation (GDPR). The
license plates of parked and bypassing vehicles and the faces of passing pedestrians are
considered sensitive data and need to be detected and blurred. For the latter task, there is
a variety of pre-trained DL models and open-source datasets. For the former task, there
are no out-of-the-box models available, so we fine-tune a pre-trained model, as described
in Section 3.4.3. In order to evaluate the aforementioned model, we randomly sampled
105 images from the Stanford cars dataset [32]. From this sample, 106 license plates were
annotated; we refer to this dataset as the license plate evaluation dataset.

3.4. Object Detection

StreetScouting platform is based on a couple of state-of-the-art object detection ap-
proaches in order to detect objects that are of a particular point of interest. More specifically,
the Cascade R-CNN [33], and the RetinaFace [34] architectures are utilized. Cascade R-
CNN is a multi-stage object detection architecture that consists of a sequence of detectors
trained with increasing IoU thresholds, to be sequentially more selective against close false
positives. RetinaFace is a robust single-stage face detector, which performs pixel-wise face
localization on various scales of faces by taking advantage of extra supervision by facial
landmark annotations, in combination with self-supervised multi-task learning, and is
shown to achieve great results in the task of face detection. In this section, we describe the
object detection models that are used from the platform.

https://github.com/opencv/cvat
https://github.com/opencv/cvat

Appl. Sci. 2023, 13, 266 6 of 19

3.4.1. GRUBLES Objects

The GRUBLES objects dataset is a driving video dataset illustrating street scenes from
central Thessaloniki. In order to train an object detection model to trace urban features
from an image, a variety of diverse objects is annotated, as seen in Table 1. A neural
network based on the Cascade R-CNN architecture [33], with a backbone pre-trained on
the COCO dataset [31] is used. In detail, the GRUBLES objects dataset is split into training,
validation, and testing subsets with a 0.8/0.1/0.1 split, respectively. The aforementioned
neural network is fine-tuned using the training subset of the GRUBLES objects dataset, the
fine-tuning process is monitored utilizing the validation subset and the resulting model is
evaluated exploiting the testing subset, as presented in Section 5.

3.4.2. BDD100k Objects

The BDD100K dataset [35] is the largest driving video dataset with over 100 K videos
and 10 diverse tasks to evaluate. It possesses geographic, environmental, and weather
diversity, which is useful for training models that cope with the rapid changes of a street
scene. For the object detection task, the dataset consists of 10 object classes and contains
bounding box annotations for 100K images from different scenarios, such as streets, tunnels,
gas stations, parking lots, residential, and high-ways under diverse conditions at different
times of day and night in real traffic urban street and is split into training, validation, and
testing subsets with a 0.7/0.1/0.2 split, respectively. More specifically, a neural network
based on the Cascade R-CNN architecture [33] and pre-trained on the aforementioned
training subset of the dataset is used to detect cars, trucks, buses, motorcycles, traffic
lights, and traffic signs. The pre-trained model achieves 0.563 mAP on the validation
and 0.534 mAP on the testing subset at 0.5 IoU threshold. These performance scores are
quite satisfactory, as stated in public benchmarks (https://github.com/SysCV/bdd100k-
models/tree/main/det, date accessed 10 December 2022).

3.4.3. Licence Plates

For vehicle license plate detection, the analysis is comprised of two consecutive stages.
Initially, a neural network based on the Cascade R-CNN architecture [33] and pre-trained
on the BDD100K dataset [35] is used for vehicle detection. Indicative performance metrics
for the pre-trained model are presented in Section 3.4.2. Subsequently, the detected objects
are cropped from the frame and form the input to the neural network used in the second
stage of the process. More specifically, in order to detect vehicle license plates we fine-
tune a neural network based on the Cascade R-CNN architecture. The neural network
is fine-tuned within the PyTorch framework [36] and the backbone part of the model is
pre-trained on the COCO dataset [31]. The license plates dataset that is utilized consists
of 433 images of vehicles of different types accompanied by the corresponding license
plate annotation files in PascalVOC format and is publicly available on MakeML (https:
//makeml.app/datasets/cars-license-plates, date accessed 10 December 2022). In order to
evaluate the model, we use the license plate evaluation dataset described in Section 3.3.

3.4.4. Faces

Regarding the detection of faces, we used a neural network based on the RetinaFace
architecture [34], pre-trained on the WIDER FACE dataset [37]. This dataset consists
of 32.203 images containing 393.703 annotated faces at different scales, poses, expres-
sions, and illuminations and is split into training, validation, and testing subsets with a
0.4/0.1/0.5 split, respectively. Based on the detection rate of EdgeBox [38], three levels of
difficulty (i.e., easy, medium, and hard) are defined by incrementally incorporating hard
samples. RetinaFace produces the best AP in all subsets of both validation and test sets,
i.e., 0.969 (Easy), 0.961 (Medium) and 0.918 (Hard) for the validation set, and 0.963 (Easy),
0.956 (Medium), and 0.914 (Hard) for the test set.

https://github.com/SysCV/bdd100k-models/tree/main/det
https://github.com/SysCV/bdd100k-models/tree/main/det
https://makeml.app/datasets/cars-license-plates
https://makeml.app/datasets/cars-license-plates

Appl. Sci. 2023, 13, 266 7 of 19

3.5. Object Tracking

To detect unique objects in consecutive frames, an additional mechanism is required
that tracks the objects as long as they are visible to the camera frame. This mechanism
should account for object occlusion that frequently occurs in driving scenarios. For example,
Figure 1 shows three consecutive frames. In the first and third frames, there is a detection
of a bin. An object tracking mechanism should be responsible for understanding that these
two detections correspond to the same object and at the same time account for the brief
object occlusion that is depicted in the second frame of Figure 1.

Figure 1. Object tracking example in consecutive frames.

Several candidate approaches are tested for the tracking task, such as DeepSort [39],
Tracktor [40], and ByteTrack [41]. The latter achieves 78.1, the best evaluation result in
terms of the MOTA metric [42] in MOT17 [43] benchmark dataset. This method accounts
for temporarily occluded objects and utilizes low-confidence detections to generate object
tracks. These low-confidence detections are associated with previous or following confident
predictions of the same object in a video stream to form these tracks. For example, if an
object is far from the camera or partially occluded then is assigned with a low confidence
detection, but as it comes closer or its features are fully visible then the new high confident
detections are associated with the lower ones and the object is still identified. Another
important feature of this method is that it can run very fast, especially if object detection
inference data are available.

3.6. Object Location Estimation

Providing information regarding detected objects should be accompanied by accurate
GPS coordinates. The position of the objects is important for many GIS systems and geo-
processing tools, especially when aiming to apply statistical modeling to specific regions of
interest. For this task, we consider two different approaches, the first is focused on accuracy,
and the second aims at low execution time. It is worth noting that location estimation
in both approaches is still a rough estimation and is not suggested for applications that
require precise location information.

For the first approach, we employ a depth estimation method that follows the object
detection and tracking procedure. Depth estimation is the task of measuring the distance
of each pixel relative to the camera. For this task, we use DNET [44], which is a novel
self-supervised monocular depth estimation pipeline that exploits densely connected hi-
erarchical features to obtain more precise object-level depth inference, and uses dense
geometrical constraints to eliminate the dependence on additional sensors or depth ground-
truth to perform scale recovery, so that it is easier to transform relative to absolute depth.
The data split of the KITTI [45] dataset by Eigen et al. [46] was used for training and
evaluation purposes. DNET achieves 4.812 RMSE on the evaluation subset containing
697 test images.

To estimate the location of an object with this approach, we first apply the object
detection models to localize it in the frame (Figure 2a) and then we calculate the distance of
the object from the camera by applying the depth estimation model (Figure 2b). Having the
object’s bounding box and the respective pixel-level absolute depth in meters, we calculate
the median depth value for every object localization to compute the distance [47]. Knowing

Appl. Sci. 2023, 13, 266 8 of 19

the object’s distance d from the camera and the camera’s GPS lat1, lon1 coordinates we can
also infer the bearing θ from the direction of the car and camera and the object localization
in the frame. Let R be the radius of Earth and Ad be the angular distance i.e., d/R The
resulting coordinates lat2, lon2 in radians are given from the following formulas:

lat2 = asin(sin lat1 ∗ cos Ad + cos lat1 ∗ sin Ad ∗ cos θ) (1)

lon2 = lon1 + atan2(sin θ ∗ sin Ad ∗ cos lat1, cos Ad− sin lat1 ∗ sin lat2) (2)

This procedure can be applied iteratively in every frame the object appears and
then average the calculations for the final estimation. We refer to this approach as depth
location estimation.

(a) (b)
Figure 2. Example of object position estimation pipeline. (a) Object detection. (b) Depth estimation.

One disadvantage of this approach is that it is slow. For applications that do not require
such a fine-grained location estimation approach, we also provide a simpler heuristic
approach. This approach is based on the assumption that the final detection of an object
occurs when the object is very close to the camera. Although this might not always be
true, generally is an acceptable rule of thumb. Based on this, the GPS coordinates of the
camera, when the last detection of the object occurs, are used as the final position of the
object. We refer to this approach as fast location estimation. StreetScouting provides both
location estimation methods. The first is preferred when accurate location estimation is
required and the latter is used in scenarios that require faster processing sacrificing the
location accuracy.

3.7. Road Width Estimation and Sidewalk Segmentation

The width of the roads in one region can be an important feature for many statistical
analyses. StreetScouting supports the automatic road width estimation in each frame.
Additionally, the existence of sidewalks is evaluated. A segmentation model is initially used
to semantically segment the frame. Specifically, we use the DeepLabv3+ [48] segmentation
model. This model combines a Spatial pyramid pooling module and encode–decoder
structure to obtain the advantages of both methods. It also applies the depth-wise separable
convolution to both atrous spatial pyramid pooling and decoder modules, resulting in a
faster and stronger encoder–decoder network. This architecture is used pre-trained in the
cityscapes [49] dataset. Cityscapes is a dataset for semantic urban scene understanding and
it contains several classes, such as the BDD100k dataset. The effectiveness of the model
is assessed on the test subsets of the PASCAL VOC 2012 [50] and Cityscapes datasets,
accomplishing the performance of 0.89 and 0.821 mean IoU, respectively. An example
outcome of the model is shown in Figure 3a. Road and sidewalk classes are overlaid with
purple and pink colors respectively. Using just this result we can infer whether there is a
sidewalk in the frame.

Appl. Sci. 2023, 13, 266 9 of 19

(a) (b)
Figure 3. Example of object position estimation pipeline. (a) Semantic segmentation with DeepLabv3+
pre-trained in the cityscapes dataset. (b) Road width estimation.

To estimate the road width additional work have to be done which is depicted in
Figure 3b. First, we use the outline (green line) of the road mask. Then this outline is
split into two signals from the center of the camera (white line). We calculate the first
differences in these two signals to detect strictly increasing intervals for the left and strictly
decreasing intervals for the right signal. With this approach, we estimate the intervals that
potentially represent the road boundaries. To estimate the road boundaries we perform
linear regression in the intervals of these two signals. The result is two fitted lines that
represent the left (yellow line) and the right (red line) road boundaries.

For the final estimation, we calculate the number of pixels among the two boundaries
for a specific horizontal line (blue line). Then we fit another linear regression model
associating the pixels with ground truth measurements in meters. For fitting the model we
use 15 training samples with the number of pixels and corresponding ground truth values
in meters. To obtain ground truth values, we manually measured the width of various
streets. The fitted linear regression model and its details are shown in Figure 4. The sum of
squares error is 7.44, the slope is 0.011 and the intercept is −1.272.

Figure 4. Linear regression for transforming pixels to meters.

The final road width is given by Equation (3), where m denotes the width in meters
and p is the number of pixels.

m = 0.011× p− 1.272 (3)

We evaluate this model in Section 5.

4. Platform Architecture and User Interface

The schematic representation of the platform’s architecture is depicted in Figure 5.
StreetScouting consists of five modules that communicate with each other and are described
in this Section. The proposed platform is currently running as a web application on a server
and consists of a microservice architecture that enables portability and scalability.

Appl. Sci. 2023, 13, 266 10 of 19

Figure 5. A schematic representation of StreetScouting platform architecture.

4.1. Gateway

The gateway is the core management service and is utilized as an intermediary be-
tween the user interface and the modules responsible for urban feature detection. It is in
charge of most of the platform’s actions, such as user creation and authentication, action
authorization, video upload, and others. The gateway also acts as an orchestrator between
the modules. Specifically, it stores the uploaded multimedia from the user and informs the
appropriate modules to start the processing, depersonalization, and detection procedures.
Upon completion of the processes, the resulting JSON file is returned to the gateway and
successively back to the user interface. The aforementioned JSON file can be shared among
users as well as utilized for visualization purposes. The communication between the
modules is performed with a message broker.

4.2. User Interface

The user interface of the platform offers an organized and easy-to-use environment
that provides a variety of options. Through the user interface, a user is able to create an
account that will ensure the privacy and security of his data. The user has also the ability
to upload a video and the GPS metadata to the platform. The data will be securely stored
on the server and can be deleted at any time upon request. The automatic data processing
and detection task will enable the visualization of the geotagged urban features on a map.
Moreover, the aggregated results of each detected object will be presented. Sharing data

Appl. Sci. 2023, 13, 266 11 of 19

among users is also allowed. Specifically, the interface provides an option to upload and
share content with specific users that belong to the same organization. The user interface
also provides an option for downloading the aforementioned results.

4.3. Preprocessing

The preprocessing module illustrated in Figure 5 provides a visual representation
of the successive steps of the preprocessing pipeline analyzed in Section 3.2. In the final
step of the module, the results of the synchronization between the video frames and the
GPS data take the JSON format and are inserted into the communication queue of the
message broker. This module can support multiple workers to process many requests at
the same time.

4.4. Depersonalization

The depersonalization module consists of three successive procedures. At first, the
license plates of each vehicle are detected using the two-stage license plate detection model
described in Section 3.4.3, for each video frame. Subsequently, a smoothing filter is applied
to the detected license plate area to hide the sensitive information, using the OpenCV
tool [51]. In the second phase, the faces of bypassing pedestrians are detected utilizing the
face detector described in Section 3.4.4, for each video frame. The same smoothing filter
that was applied in license plate blurring is used to hide the detected faces. Finally, the
detection results are transformed into JSON format and forwarded to the communication
queue of the message broker. This module can also support multiple workers to process
many requests at the same time.

4.5. Primary Features Detection

The primary features detection module is comprised of five steps and is responsible
for detecting urban features. Initially, the video frames from the depersonalization module
are retrieved. The following step consists of the object detection and tracking process.
Specifically, information regarding the bounding box coordinates of each detected object in
the frame, the object class name, and the score representing the model’s confidence in the
detection is calculated, utilizing the detection models analyzed in Sections 3.4.1 and 3.4.2.
Then, object tracking is applied to avoid counting the same object multiple times, using
the mechanism described in Section 3.5. The tracking process assigns a unique identifier
to each detected object in the video stream. In the next step, the location of each object
is estimated, making use of the techniques documented in Section 3.6. Moreover, the
process of estimating the road width and the existence of a sidewalk is performed using the
semantic segmentation models and estimation techniques defined in Section 3.7. Finally,
the results are transformed into JSON format and forwarded to the communication queue
of the message broker for the Gateway service.

5. Results
5.1. Object Detection Evaluation

We use Average Precision (AP) to evaluate the effectiveness of object detection since
this is the metric commonly used in the relevant computer vision literature. It encapsulates
the trade-off between precision and recall and maximizes the effect of both metrics. Table 2
illustrates the AP of each object at a specific IoU threshold. The license plate model shows
high performance in temps of AP and usually misses some license plates that are far from
the camera. Trash and recycling bins are also detected with high precision. In the case
of trees and street lights which are evaluated with 0.857 and 0.841 AP, respectively, there
are some false negative detections. Trees that are very close to each other sometimes are
detected as one, and street lights with specific particularities that are not part of the training
set might be missed. Finally, the retail shop detection has 0.754 AP, this is mainly due to
false negative detections of retail shops with small storefronts. The fine-tuned detection
models and evaluation datasets utilized for each object class are described in Section 3.4.

Appl. Sci. 2023, 13, 266 12 of 19

The pre-trained models that are used to detect faces and urban features from BDD100k
are analyzed in Sections 3.4.4 and 3.4.2, respectively. These models demonstrate high
performances on benchmark datasets that exhibit similarities with the collected street scene
dataset and are utilized by StreetScouting.

Table 2. Average precision of each object class at 0.7 IoU threshold.

Class AP

license plates 0.947
trees 0.857

trash bins 0.964
recycling bins 0.948
street lights 0.841

shops 0.754

5.2. Object Tracking Evaluation

Figure 6 shows an example of the qualitative evaluation of the ByteTrack tracking
method. The method uses the object detector described in Section 3.4.1. In the first frame
(Figure 6a), there are four object detections: {id:39, class: Tree, score:0.70}, {id:41, class:
street light, score:0.99}, {id:36, class: Trash bin, score:0.70}, {id:40, class: Tree, score:0.99}.
Each detection has a unique id, the class name, the detection score, and the bounding box
coordinates which are omitted in this example. In the second frame (Figure 6b) there are
three object detections: {id:39, class: Tree, score:0.54}, {id:36, class: Trash bin, score:0.70},
{id:42, class: Tree, score:0.79}. Objects with ids 40 and 41 are no longer visible and new Tree
detection (42) is no longer occluded. Note that the confidence score for tree 39 dropped to
0.54. This fluctuation is usual for objects that are far from the camera, but generally, the
confidence is higher when the objects are closer. This is visible in frames Figure 6c,d, where
the confidence score for tree 39 is 0.92 and 0.95, respectively. In the frame in Figure 6c, a
recycle bin is detected with id 43 and a score of 0.95. In the next frame, the recycle bin is
even closer and obtains a detection score of 0.99.

In most scenes, the tracking process demonstrates high effectiveness. However, there
are cases where tracking fails to correctly track the objects especially when there are many
objects that appear next to each other or when the camera travels at high-speed leading
to substantial discrepancies among consecutive frames. Such cases are not frequent in the
collected dataset.

To evaluate tracking performance, we annotate a short video clip and evaluate the
tracking quantitatively in terms of the F1 score. Additionally, to investigate the impact of
the speed camera on the tracking method, we subsample the number of acquired frames
to emulate various car speeds and investigate the impact of speed on the overall accuracy
of the tracking approach. Specifically, the original video has 30 FPS and the camera speed
is traveling at 30 km/h. Reducing the number of frames with a specific rate increases the
emulated speed for that rate. Using this sub-sampling approach we evaluate the tracking
methods at various speeds in terms of F1 score. The F1 score is calculated using the tracked
objects and the annotated objects. Figure 7 shows the evaluation results. We observe that
the performance is above 0.9 F1 for speeds up to 90 km/h. The performance starts dropping
significantly for higher speeds. The best score is observed at 30 km/h with an F1 score of
0.921. From the Figure, we can conclude that the performance does not drop significantly
for the speed of 50 km/h, which is often the upper limit of speed in most urban areas, but a
performance drop is expected for speeds above 90 km/h. We also note that this experiment
does not account for motion blurring that might be introduced from the camera at very
high speeds, which will further hinder performance.

Appl. Sci. 2023, 13, 266 13 of 19

(a) (b)

(c) (d)

Figure 6. Example of object tracking in consecutive frames with the ByteTrack method [41]. (a) First
frame. (b) Second frame. (c) Third frame. (d) Fourth frame.

Figure 7. F1 score of the tracking model at various emulated speeds.

5.3. Object Location Estimation Evaluation

In Section 3.6, we described two methods to estimate the GPS coordinates of the
detected objects. To evaluate these models, we obtain the ground truth coordinates of ten

Appl. Sci. 2023, 13, 266 14 of 19

different urban objects and apply the two location estimation methods. Using the predicted
and actual points, we calculate the error for each object and average them for each method.

Table 3 shows the evaluation results for the two location estimation methods. As
expected, the depth is more accurate with only a 3.54 m average distance from the ground
truth locations. On the other hand, the fast method makes more coarse estimations with a
7.47 average error but requires no computation-intensive processing.

Table 3. Evaluation of the two location estimation methods.

Method Average Error

depth 3.54 m
fast 7.47 m

5.4. Road Width Estimation Evaluation

For the evaluation of the regression model that is described in Section 3.6 we use the
model to estimate the road width in 10 randomly sampled frames and retrieve ground
truth measurements. Then we calculate the mean absolute error of the predicted ŷi and
actual measurements of yi given by the following formula:

D

∑
i=1
|ŷi − yi| (4)

with D = 10, resulting in 0.53 m which is quite accurate taking into account the dynamic
street environment.

5.5. User Interface Example

After video processing, the UI provides helpful visualizations for the user. For instance,
Figure 8 shows count aggregations of each detected urban class for a sample 60-min video
in the city of Thessaloniki. The detected urban classes are aggregated into four general
categories. This visualization gives a quick overview of the results but also can be helpful
to extract insights for the region. For example, the 10,745 cars detected might be indicative
of traffic congestion or parking problems in the region.

Figure 8. Aggregated results of the StreetScouting UI for a sample video.

Additionally, StreetScouting also supports map visualization and navigation (Figure 9).
The user can navigate the map and inspect the geotagged urban features. Each object is
denoted by a particular urban class icon. The user can also filter results to examine specific
object classes and click on particular objects to obtain details regarding the detection. The
user can download the data in JSON format to proceed with further analysis.

Appl. Sci. 2023, 13, 266 15 of 19

Figure 9. Map visualization of the detected features from a sample video in the city of Thessaloniki.

6. Discussion

StreetScouting can be utilized by urban planning administrators and policymakers,
municipal offices, geoinformatics companies, and other commercial organizations, for
applications related to public health, real estate, traffic detection, waste management, and
others. More specifically, urban planning officials can automatically check the density of
the trees in particular regions to plan the creation of parks or new green areas. Municipal
administrators can collect data regarding the number of street lights that are available.
Information regarding the number of retail shops can be important for a real estate applica-
tion. The number and position of recycling or trash bins can support waste management
campaigns. StreetScouting generated data can be further utilized for statistical analysis and
geographic information systems.

The motivation for StreetScouting started in the context of the GRUBLES project. The
goal of the project is to build statistical models that can infer socioeconomic indicators of
a region by using information regarding the number and locations of urban features. For
this use case, StreetScouting is configured to track specific urban features, such as trees,
street lights, retail shops, recycling, and trash bins, vehicles, traffic signs, and traffic lights.
Some of these features are selected based on the related literature. For example, trees are
important for health in an urban environment [52], the detection of trash bins can enable
efficient waste management activities [53], and the detection of vehicles is important for
traffic management [54]. The rest of the features are selected from the user requirements
process of the GRUBLES project. One example of the outcomes of GRUBLES can be seen
in Figure 10. In the figure, the recycling bin coverage of a particular region is shown.
This analysis uses the results of StreetScouting and other publicly available census data to
calculate additional statistics, such as how many residents correspond to one recycle bin
and locations that require more bins.

It is easy to extend StreetScouting to other use cases. Any new user of the platform
can collect data with the proposed data collection method and define the region of interest.
Data collection should be performed with car speeds that are imposed within urban regions
but in any case not higher than 90 km/h to avoid object tracking errors. There is no
limitation on the size of the region coverage. Besides the already mentioned urban features,
StreetScouting can be configured to detect other features as well, for example in rural areas.
This process would require the creation of need object detection models using annotation
and fine-tuning.

Appl. Sci. 2023, 13, 266 16 of 19

Figure 10. Recycling bin coverage for a particular region in the city of Thessaloniki.

The generation of the StreetScouting results is asynchronous and the processing time in-
creases linearly with the duration of input videos. The hardware requirements for StreetScout-
ing include a typical server with at least 32 GB ram, a multi-core CPU, and a CUDA-enabled
GPU. The average execution time of StreetScouting is equal to the input video duration.

One limitation of StreetScouting is that the location estimation module cannot esti-
mate precise location information. This limitation is not so crucial for the intended use
of StreetScouting as it is more important for StreetScouting to correctly detect the object
and provide a rough estimation of the location. StreetScouting is not proposed for appli-
cations that require accurate location information. Moreover, as mentioned in Section 3.1,
StreetScouting currently assumes that the data collection route is not overlapping, meaning
that precise routes are designed beforehand by specific personnel. For the updated version
of the platform, we plan to exploit the GPS information of the detected objects in order
to discard duplicate detected features from overlapping data collection routes. To further
validate and improve the model’s performance, we plan to expand the training datasets
with additional annotations, create evaluation datasets for pre-trained models and provide
a benchmark for the tracking approach. StreetScouting is a platform that can be configured
to detect and track specific urban features. The platform can be extended to detect more
urban objects according to needs. StreetScouting will continue to obtain updates and
keep up with the latest trends in deep learning research. In the future, StreetScouting will
support processing 360◦ visual signals to better capture urban objects and decrease the
processing times. Finally, we plan to release a public benchmark dataset to automatically
evaluate all approaches described in this work.

7. Conclusions

In this work, we presented StreetScouting, a platform for the automatic detection of
urban features, such as trees, bins retail shops, vehicles, and others. StreetScouting utilizes
state-of-the-art computer vision approaches to detect and geotag urban features from visual
data. The platform offers an organized and easy-to-use environment that provides a variety
of options, such as visualization and data aggregation techniques to efficiently process,
review, and handle the resulting data.

StreetScouting is able to detect and track urban features, reducing the gap between
a fully automatic and manual detection approach. The small performance drop of the
automatic approach is definitely a good trade-off to the labor-intensive manual inspection.

In the context of the GRUBLES project, publicly available statistics and indicators,
such as financial status, lighting quality, green area coverage, traffic, waste management,
and others were studied in the analyses. The extracted information can be utilized by many
other commercial or public organizations, providing automatic and accurate data without
the need for manual inspection. This information is vital for urban planning tasks and
related commercial use cases.

Appl. Sci. 2023, 13, 266 17 of 19

Author Contributions: Conceptualization, S.V., P.C. and C.D.; methodology, P.C. and S.M.; software,
A.P., M.M. and I.J.T.; validation, S.M., M.M. and A.P.; formal analysis, P.C. and S.M.; investigation,
P.C. and S.M.; resources, S.V. and S.D.; data curation, S.M.; writing—original draft preparation, P.C.
and S.M.; writing—review and editing, P.C., S.D., C.D. and S.V.; visualization, A.P; supervision, S.D.,
C.D. and S.V.; project administration, S.D. and S.V.; funding acquisition, S.D. and S.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was co-financed by the European Regional Development Fund of the Eu-
ropean Union and Greek national funds through the Operational Program Competitiveness, En-
trepreneurship, and Innovation, under the call RESEARCH–CREATE–INNOVATE. Project Acronym:
GRUBLES, Project Code: T2EDK-04533.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AP average precision
DL deep learning
FPS frames per second
GIS geographic information system
GPS global positioning system
GPX GPS exchange format
IoU intersection over union
IoT Internet of Things
JSON JavaScript Object Notation
ML machine learning
MOTA multiple object tracking accuracy
RMSE root mean square error
UI user interface

References
1. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.

2020, 37, 362–386. [CrossRef]
2. Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to

deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [CrossRef] [PubMed]
3. Tekouabou, S.C.K.; Diop, E.B.; Azmi, R.; Jaligot, R.; Chenal, J. Reviewing the application of machine learning methods to model

urban form indicators in planning decision support systems: Potential, issues and challenges. J. King Saud-Univ.-Comput. Inf. Sci.
2021, 34, 5943–5967.

4. Kontokosta, C.E.; Hong, B.; Johnson, N.E.; Starobin, D. Using machine learning and small area estimation to predict building-level
municipal solid waste generation in cities. Comput. Environ. Urban Syst. 2018, 70, 151–162. [CrossRef]

5. Liu, L.; Silva, E.A.; Wu, C.; Wang, H. A machine learning-based method for the large-scale evaluation of the qualities of the urban
environment. Comput. Environ. Urban Syst. 2017, 65, 113–125. [CrossRef]

6. Kim, B.; Cho, S. Automated multiple concrete damage detection using instance segmentation deep learning model. Appl. Sci.
2020, 10, 8008. [CrossRef]

7. Liu, Z.; Li, Z.; Wu, K.; Li, M. Urban traffic prediction from mobility data using deep learning. IEEE Netw. 2018, 32, 40–46.
[CrossRef]

8. Gómez, J.A.; Patiño, J.E.; Duque, J.C.; Passos, S. Spatiotemporal modeling of urban growth using machine learning. Remote Sens.
2019, 12, 109. [CrossRef]

9. Milojevic-Dupont, N.; Hans, N.; Kaack, L.H.; Zumwald, M.; Andrieux, F.; de Barros Soares, D.; Lohrey, S.; Pichler, P.P.; Creutzig, F.
Learning from urban form to predict building heights. PLoS ONE 2020, 15, e0242010. [CrossRef]

10. Rundle, A.G.; Bader, M.D.; Richards, C.A.; Neckerman, K.M.; Teitler, J.O. Using Google Street View to audit neighborhood
environments. Am. J. Prev. Med. 2011, 40, 94–100. [CrossRef]

http://doi.org/10.1002/rob.21918
http://dx.doi.org/10.1038/s41591-018-0316-z
http://www.ncbi.nlm.nih.gov/pubmed/30617335
http://dx.doi.org/10.1016/j.compenvurbsys.2018.03.004
http://dx.doi.org/10.1016/j.compenvurbsys.2017.06.003
http://dx.doi.org/10.3390/app10228008
http://dx.doi.org/10.1109/MNET.2018.1700411
http://dx.doi.org/10.3390/rs12010109
http://dx.doi.org/10.1371/journal.pone.0242010
http://dx.doi.org/10.1016/j.amepre.2010.09.034

Appl. Sci. 2023, 13, 266 18 of 19

11. Bethlehem, J.R.; Mackenbach, J.D.; Ben-Rebah, M.; Compernolle, S.; Glonti, K.; Bárdos, H.; Rutter, H.R.; Charreire, H.; Oppert, J.M.;
Brug, J.; et al. The SPOTLIGHT virtual audit tool: A valid and reliable tool to assess obesogenic characteristics of the built
environment. Int. J. Health Geogr. 2014, 13, 52. [CrossRef] [PubMed]

12. Mooney, S.J.; Wheeler-Martin, K.; Fiedler, L.M.; LaBelle, C.M.; Lampe, T.; Ratanatharathorn, A.; Shah, N.N.; Rundle, A.G.;
DiMaggio, C.J. Development and validation of a Google Street View pedestrian safety audit tool. Epidemiology (Cambridge Mass.)
2020, 31, 301. [CrossRef] [PubMed]

13. Smith, V.; Malik, J.; Culler, D. Classification of sidewalks in street view images. In Proceedings of the 2013 International Green
Computing Conference Proceedings, Arlington, VA, USA, 27–29 June 2013; pp. 1–6.

14. Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [CrossRef]
15. Lumnitz, S.; Devisscher, T.; Mayaud, J.R.; Radic, V.; Coops, N.C.; Griess, V.C. Mapping trees along urban street networks with

deep learning and street-level imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 144–157. [CrossRef]
16. Zhang, P.; Zhao, Q.; Gao, J.; Li, W.; Lu, J. Urban street cleanliness assessment using mobile edge computing and deep learning.

IEEE Access 2019, 7, 63550–63563. [CrossRef]
17. Palmer, G.; Green, M.; Boyland, E.; Vasconcelos, Y.S.R.; Savani, R.; Singleton, A. A deep learning approach to identify unhealthy

advertisements in street view images. Sci. Rep. 2021, 11, 1–12. [CrossRef]
18. Gebru, T.; Krause, J.; Wang, Y.; Chen, D.; Deng, J.; Aiden, E.L.; Fei-Fei, L. Using deep learning and Google Street View to

estimate the demographic makeup of neighborhoods across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13108–13113.
[CrossRef]

19. Diou, C.; Lelekas, P.; Delopoulos, A. Image-based surrogates of socio-economic status in urban neighborhoods using deep
multiple instance learning. J. Imaging 2018, 4, 125. [CrossRef]

20. Ilic, L.; Sawada, M.; Zarzelli, A. Deep mapping gentrification in a large Canadian city using deep learning and Google Street
View. PLoS ONE 2019, 14, e0212814. [CrossRef]

21. Suel, E.; Bhatt, S.; Brauer, M.; Flaxman, S.; Ezzati, M. Multimodal deep learning from satellite and street-level imagery for
measuring income, overcrowding, and environmental deprivation in urban areas. Remote Sens. Environ. 2021, 257, 112339.
[CrossRef]

22. Helbich, M.; Yao, Y.; Liu, Y.; Zhang, J.; Liu, P.; Wang, R. Using deep learning to examine street view green and blue spaces and
their associations with geriatric depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [CrossRef] [PubMed]

23. Andersson, V.O.; Cechinel, C.; Araujo, R.M. Combining street-level and aerial images for dengue incidence rate estimation. In
Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8.

24. Suel, E.; Polak, J.W.; Bennett, J.E.; Ezzati, M. Measuring social, environmental and health inequalities using deep learning and
street imagery. Sci. Rep. 2019, 9, 1–10. [CrossRef] [PubMed]

25. Pristouris, K.; Nakos, H.; Stavrakas, Y.; Kotsopoulos, K.I.; Alexandridis, T.; Barda, M.S.; Ferentinos, K.P. An Integrated System for
Urban Parks Touring and Management. Urban Sci. 2021, 5, 91. [CrossRef]

26. Kumar, S.; Deshpande, A.; Ho, S.S.; Ku, J.S.; Sarma, S.E. Urban street lighting infrastructure monitoring using a mobile sensor
platform. IEEE Sens. J. 2016, 16, 4981–4994. [CrossRef]

27. Alhasoun, F.; González, M. Streetify: Using street view imagery and deep learning for urban streets development. In Proceedings
of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 2001–2006.

28. Li, J.; Li, J.; Zhang, H. Deep Learning Based Parking Prediction on Cloud Platform. In Proceedings of the 2018 4th International
Conference on Big Data Computing and Communications (BIGCOM), Chicago, IL, USA, 7–9 August 2018; pp. 132–137. [CrossRef]

29. Jiang, R.; Song, X.; Fan, Z.; Xia, T.; Chen, Q.; Miyazawa, S.; Shibasaki, R. Deepurbanmomentum: An online deep-learning system
for short-term urban mobility prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA,
USA, 2–7 February 2018; Volume 32.

30. Hastie, T.; Tibshirani, R.; Friedman, J. Overview of supervised learning. In The Elements of Statistical Learning; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 9–41.

31. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

32. Krause, J.; Stark, M.; Deng, J.; Fei-Fei, L. 3D Object Representations for Fine-Grained Categorization. In Proceedings of the 4th
International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia, 2–8 December 2013.

33. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162.

34. Deng, J.; Guo, J.; Ververas, E.; Kotsia, I.; Zafeiriou, S. RetinaFace: Single-shot multi-level face localisation in the wild. In
Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 5203–5212.

35. Yu, F.; Xian, W.; Chen, Y.; Liu, F.; Liao, M.; Madhavan, V.; Darrell, T. Bdd100k: A diverse driving video database with scalable
annotation tooling. arXiv 2018, arXiv:1805.04687.

36. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035.

http://dx.doi.org/10.1186/1476-072X-13-52
http://www.ncbi.nlm.nih.gov/pubmed/25515179
http://dx.doi.org/10.1097/EDE.0000000000001124
http://www.ncbi.nlm.nih.gov/pubmed/31596793
http://dx.doi.org/10.1016/j.landurbplan.2021.104217
http://dx.doi.org/10.1016/j.isprsjprs.2021.01.016
http://dx.doi.org/10.1109/ACCESS.2019.2914270
http://dx.doi.org/10.1038/s41598-021-84572-4
http://dx.doi.org/10.1073/pnas.1700035114
http://dx.doi.org/10.3390/jimaging4110125
http://dx.doi.org/10.1371/journal.pone.0212814
http://dx.doi.org/10.1016/j.rse.2021.112339
http://dx.doi.org/10.1016/j.envint.2019.02.013
http://www.ncbi.nlm.nih.gov/pubmed/30797100
http://dx.doi.org/10.1038/s41598-019-42036-w
http://www.ncbi.nlm.nih.gov/pubmed/31000744
http://dx.doi.org/10.3390/urbansci5040091
http://dx.doi.org/10.1109/JSEN.2016.2552249
http://dx.doi.org/10.1109/BIGCOM.2018.00028

Appl. Sci. 2023, 13, 266 19 of 19

37. Yang, S.; Luo, P.; Loy, C.C.; Tang, X. Wider face: A face detection benchmark. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5525–5533.

38. Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the European Conference on
Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 391–405.

39. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE international conference on image processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

40. Bergmann, P.; Meinhardt, T.; Leal-Taixe, L. Tracking without bells and whistles. In Proceedings of the IEEE International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 941–951.

41. Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. ByteTrack: Multi-Object Tracking by Associating Every
Detection Box. arXiv 2021, arXiv:2110.06864.

42. Bernardin, K.; Elbs, A.; Stiefelhagen, R. Multiple object tracking performance metrics and evaluation in a smart room environment.
In Proceedings of the Sixth IEEE International Workshop on Visual Surveillance, in conjunction with ECCV, Graz, Austria, 13
May 2006; Volume 90.

43. Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A benchmark for multi-object tracking. arXiv 2016,
arXiv:1603.00831.

44. Xue, F.; Zhuo, G.; Huang, Z.; Fu, W.; Wu, Z.; Ang, M.H. Toward hierarchical self-supervised monocular absolute depth estimation
for autonomous driving applications. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 2330–2337.

45. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

46. Eigen, D.; Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2650–2658.

47. Masoumian, A.; Marei, D.G.; Abdulwahab, S.; Cristiano, J.; Puig, D.; Rashwan, H.A. Absolute Distance Prediction Based
on Deep Learning Object Detection and Monocular Depth Estimation Models. In Proceedings of the CCIA, Virtual Event,
20–22 October 2021; pp. 325–334.

48. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

49. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

50. Everingham, M.; Eslami, S.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A
retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

51. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125.
52. S, andric, I.; Irimia, R.; Petropoulos, G.P.; Anand, A.; Srivastava, P.K.; Ples, oianu, A.; Faraslis, I.; Stateras, D.; Kalivas, D. Tree’s

detection & health’s assessment from Ultra-High Resolution UAV Imagery and Deep Learning. Geocarto Int. 2022, 1–21. [CrossRef]
53. Yu, Y. A Computer Vision Based Detection System for Trash Bins Identification during Trash Classification. J. Phys. Conf. Ser. IOP

Publ. 2020, 1617, 012015. [CrossRef]
54. Song, H.; Liang, H.; Li, H.; Dai, Z.; Yun, X. Vision-based vehicle detection and counting system using deep learning in highway

scenes. Eur. Transp. Res. Rev. 2019, 11, 1–16. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1080/10106049.2022.2036824
http://dx.doi.org/10.1088/1742-6596/1617/1/012015
http://dx.doi.org/10.1186/s12544-019-0390-4

	Introduction
	Related Work
	Data and Methods
	Data Collection
	Data Processing
	Data Annotation
	Object Detection
	GRUBLES Objects
	BDD100k Objects
	Licence Plates
	Faces

	Object Tracking
	Object Location Estimation
	Road Width Estimation and Sidewalk Segmentation

	Platform Architecture and User Interface
	Gateway
	User Interface
	Preprocessing
	Depersonalization
	Primary Features Detection

	Results
	Object Detection Evaluation
	Object Tracking Evaluation
	Object Location Estimation Evaluation
	Road Width Estimation Evaluation
	User Interface Example

	Discussion
	Conclusions
	References

