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Abstract: Insider threats pose a critical challenge for securing computer networks and systems. They
are malicious activities by authorised users that can cause extensive damage, such as intellectual
property theft, sabotage, sensitive data exposure, and web application attacks. Organisations are
tasked with the duty of keeping their layers of network safe and preventing intrusions at any level.
Recent advances in modern machine learning algorithms, such as deep learning and ensemble models,
facilitate solving many challenging problems by learning latent patterns and modelling data. We
used the Deep Feature Synthesis algorithm to derive behavioural features based on historical data.
We generated 69,738 features for each user, then used PCA as a dimensionality reduction method
and utilised advanced machine learning algorithms, both anomaly detection and classification
models, to detect insider threats, achieving an accuracy of 91% for the anomaly detection model. The
experimentation utilised a publicly available insider threat dataset called the CERT insider threats
dataset. We tested the effect of the SMOTE balancing technique to reduce the effect of the imbalanced
dataset, and the results show that it increases recall and accuracy at the expense of precision. The
feature extraction process and the SVM model yield outstanding results among all other ML models,
achieving an accuracy of 100% for the classification model.

Keywords: insider threat; deep learning; anomaly detection

1. Introduction

Cybersecurity attacks are becoming more frequent, targeting widespread domains
with frightening consequences. Attacks today are carried out using trending technologies
that are hard to detect. The main goal of cybersecurity is to protect organisations and
individuals from cyber attacks and prevent or mitigate harm to computer networks, appli-
cations, resources, and data. Cyber defence mechanisms exist at the application, network,
host, and data levels. Industry surveys show that 79% of security threats are insider threats,
i.e., malicious acts carried out by the organisation’s careless or disgruntled employees who
abuse their authorised access to networks, systems, and data [1]. Insider threats can cause
extensive damage, so defenders must guard against them. Identifying authorised users
who are harming the organisation while they are trusted is the most difficult cybersecurity
challenge [2].

Insider threat is a substantial problem in the cybersecurity field. As insiders act on the
system as regular users, it makes the threat more difficult to detect and classify. Previous
studies on company’s internal security have mainly focused on detecting and preventing
outside intrusion. Although several studies have tried to address the issue of detecting
insider threats using machine-learning approaches, there is still room for improvement. The
number of studies developed using current advanced machine learning algorithms is low.
An insider threat is defined as “a current or former employee, contractor, or other business
partner who has or had authorised access to an organisation’s network, system, or data and
who intentionally (or unintentionally) exceeds or misuses that access to negatively affect
the confidentiality, integrity, or availability of the organisation’s information or information
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systems” [3]. Insider threat has become a widespread issue and a significant challenge in
cybersecurity. There are four main types of cyber insider threats:

1. Data theft: where the attacker attempts to steal private information. Examples of
activities that indicate this scenario include: accessing sensitive data at odd hours,
downloading data to personal devices, or sending data outside the protected perimeter.

2. Privilege abuse: a particularly difficult to detect insider attack that involves users
with privileged access rights uploading harmful data or editing/deleting activity logs,
creating privileged accounts without a request, deploying suspicious software, or
changing security configurations.

3. Privilege escalation: where a regular user attempts to gain privileges to abuse re-
sources. Indicators of such as attack include frequent and unnecessary access requests,
showing unusual interest in data and projects that a user cannot access, or installing
unauthorised software.

4. Sabotage: where the employee attempts to destroy data or infrastructure. Some
indicators of this attack include sending emails with attachments to competitors,
deleting accounts intentionally, failing to create backups, or making changes to data
that no one requested.

In this study, we focus on the first type: Data theft [4]. Data theft can be detected by
monitoring user activity using a set of rules put in place by the organisation’s security
officers. However, if a rule does not exist, then the user will not be reported. Another
method is active threat hunting by the security officers. Both of these methods require
human expertise to detect attacks. A newer approach is to use a user and entity behaviour
analytics tool, which detects a deviation from a user’s normal behaviour using a machine
learning approach.

In order to detect malicious users, detailed usage logs within the organisation are
collected and analyzed. The number of potential features we can develop from the logs
grows rapidly when we access detailed information on the insiders. Developing concepts,
manually building software, and extracting features may be time-consuming and may need
adaptation each time a log is changed or updated. This research utilises an automated ap-
proach, known as deep feature synthesis (DFS) to quickly build a comprehensive collection
of features that characterise a specific employee’s use behaviours. The number of features
detected will usually be very large and may lead to the overfitting problem in machine
learning when the number of features far exceeds the number of data examples. As such,
we use a feature dimensionality reduction algorithm to select the most important features,
and then use the data to train our detection system.

Detecting anomalies aims to uncover any strange behaviour on the computer system
and catch risky user behaviour before data are lost. It uses acceptable or usual behaviours
in the system and quantifies them in an attempt to isolate irregular behaviour, categorising
them as intrusive or not. The system will detect anomalous behaviour in an organisation
by using machine learning algorithms that detect anomalies (abnormal activities) in user
behaviour to ensure that the security of the system is maintained and information is kept
safe. Thus, the aims of this study are threefold: (1) to develop an intelligent machine
learning model utilising the most recent advances in machine learning approaches coupled
with feature engineering to detect anomalies of potential insider threats based on the CERT
insider threat dataset, (2) to ensure that the system pipeline is streamlined and designed
to fit into any organisational log file structure, and (3) that the system has the capability
to easily adapt to changes to log file structure. Such a system would be able to detect
zero-day attacks in real time. The system has the ability to recognise anomalous user
behaviour compared with the user baseline. Once the system is installed on the network, it
can be used to monitor incoming user actions that are written on the corresponding logs
and send appropriate messages to the security officer. A new user added to the system
will require the training phase to be repeated in order to enrol the user into the system.
An important consideration in cyber security nowadays is to build a system with strong
guarantees of resiliency in response to attacks. Formal verification is an approach used to
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prove a system’s compliance with the required security properties [5–7]. Machine learning
algorithms may be verified during both the data preparation and training phase, as well as
the verification of the machine learning system itself [8,9]. Currently, research efforts are
still far away from being able to verify the entire machine-learning pipeline [10]. However,
the formal verification of random forests, SVMs, and NNs have been studied [10–12].
Before the system is deployed in an organisation, formal verification of the system should
be conducted, both for the data pre-processing and training stage, as well as verification of
the system itself.

The rest of this paper is organised as follows. Section 2 reviews and evaluates existing
anomaly detection and classification machine learning approaches. Section 3 describes the
utilised CERT dataset and gives our proposed system’s overall methodology. Section 4
shows and discusses the results of ML models used to solve the insider threat problem.
Finally, we conclude with the conclusion in Section 5.

2. Literature Review

Insider threat detection is a broadly researched topic; a variety of solutions have been
proposed: specifically, different learning techniques to facilitate early, more accurate threat
detection. To discover present research gaps and potential future research domains, an
analytical review of the various approaches to insider threat identification is required.

Over the past two decades, researchers have investigated insider threat detection and
prevention using anomaly-based approaches. These techniques “learn” from normal data
only to detect anomalous instances that deviate from expected instances; this approach
has remained the most popular method in the literature. Anomaly-based detection is
based on one major assumption: that an attacker’s actions differ from normal patterns of
actions. Specifically, some of the common behaviours associated with insider threats include
(i) the collection of large datasets and (ii) uploading files that originate from outside the
organisation’s website [13]. One crucial shortcoming of this traditional approach to anomaly
detection is that once the baseline has been fully modelled, anything outside this threshold
will be considered a potential threat; this causes an abundance of false positives [14].
Moreover, classification-based insider threat detection represents an alternative research
method; it "learns" from normal and anomalous data to determine the decision boundary
that distinguishes normal from anomalous incidences.

This section provides an up-to-date, comprehensive survey of recent approaches that
address insider threat detection: (i) machine learning (ML) and deep learning (DL) approaches
(either anomaly-based [13–27], and (ii) classification-based approaches [2,14,25,28–42]).

2.1. Machine Learning

Researchers have employed many different algorithms for the insider threat detection
problem, such as deep neural networks [43], multi-fuzzy classifiers [37], hidden Markov
method [41,44], one-class support vector machines [40], deep belief networks [43], linear
regression [26], clustering algorithms [24], and light gradient boosting machine [36]. We
outline some of the more significant studies below.

A study by Noever [2] investigated different families of ML algorithms; the findings
suggest that random forest offers the best results compared with other ML models. The
experiments were conducted using the CERT insider threat dataset, and a feature vector
was produced by extracting the risk factors from the data. They incorporated sentiment
analysis factors from email and website content and file-access details. In general, they
ranked these features based on their importance.

Another interesting ML method that has gained attention is iForest [16,17]. Gavai et al.
[17] used iForest as an unsupervised anomaly detection method; they identified statistically
abnormal behaviour using features extracted from social data, including email communica-
tion patterns and online activities. With this strategy, they take advantage of the fact that
insider threats are more likely to be started by workers who intend to leave the organisation.
The authors used iForest to predict when employees would quit the company as a proxy
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to identify the likelihood of insider threats; they obtained a ROC score of 0.77 for insider
threat detection. Karev et al. [16] also used iForest for insider threat detection but on an
online framework. A generic algorithm was used to find the optimal HTTP features to
help detect abnormal insider behaviours from normal behaviours. Although the study
achieved good results (82% AUC), it was limited by its use of HTTP log data only in the
CERT dataset.

Employing a predictive model that uses a ML algorithm on an imbalanced dataset
has been shown to produce high levels of inaccuracy and bias. The lack of real-world data
and the issue of data imbalance mean that insider threat analysis remains an understudied
research area. Various researchers have addressed the pre-processing step of balancing
the dataset [14,29,34,39]. The results obtained by Sheykhkanloo and Hall [30] showed
that no significant improvement in performance was achieved when using the spread-
subsample technique to balance datasets. However, the method significantly reduced the
amount of time needed to build and test the model. Additionally, their experiments showed
that all supervised ML algorithms, except Naïve Bayes, achieve better performance for
imbalanced datasets.

Orizio et al. [22] utilised a constraint learning algorithm for insider threat detection.
The algorithm creates an optimised constraint network that represents normal behaviour;
it detects threats when the cost exceeds a specified threshold. One advantage of this
approach is that it provides an explanation for making the decision—unlike most other ML
algorithms. They manually select features and suggest using deep learning models in the
feature extraction process to enhance the results.

Gayathri et al. [35] considered the problem of insider threat detection using a deep
learning approach; their approach combines a generative model with supervised learning
to perform multi-class classification. They used Generative Adversarial Network (GAN)
on the CERT insider threat dataset for data resampling to enrich the minority data samples.
To choose GAN, three different resampling techniques were used on four different classifi-
cation methods; the GAN method was nominated due to its promising results compared to
the other resampling techniques.

2.2. Deep Learning

Traditional shallow ML models are unable to fully utilise user behaviour data de-
spite existing approaches demonstrating excellent performance on insider threat detection
because of their high dimensionality, complexity, heterogeneity, and sparsity [45]. Deep
learning, on the other hand, can be an effective tool for examining user behaviour in an
organisation in order to spot malicious insiders. Deep learning is a representation learning
algorithm that can learn multiple levels of hidden representations from complex data based
on its deep structure [45].

Several methods for detecting insider threats have recently been proposed, deep feed-
forward neural networks, convolutional neural networks, and recurrent neural networks.
This section introduces some contemporary deep-learning methods for the detection of
insider threats.

2.2.1. Recurrent Neural Networks

The use of traditional techniques, such as cumulative sum and exponentially weighted
moving averages, for monitoring data logs has proven to be challenging. In conventional
log data monitoring systems, long data sequences are common; this results in longer pro-
cessing times; therefore, there is a need to achieve pre-determined monitoring results and
detection, which the aforementioned approaches are unable to achieve. These approaches
need to feature a pre-determined time window in the detection of significant changes in an
underlying data distribution. One significant benefit of RNNs is that stacking deep layers
in RNNs allows the network to learn over different time scales [46].

Many researchers have employed LSTM as an unsupervised anomaly detection
method, such as [15,21,27]. This approach is meant to overcome the challenges of RNNs,
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such as the reduction in time gradients in long data sequencing. The inefficiencies associ-
ated with the use of RNNs were also highlighted by [47]; namely, this technique offers poor
stability, especially when applied to a long sequence of imbalanced data. Large training
datasets and an imbalanced distribution in such training sets in most practical cases of
anomaly detection make RNN a less favourable approach.

Meng et al. [19] suggested using LSTM-RNNs and Kernel PCA to analyze insider
threats. CMU CERT Insider Threat dataset v6.2 was used to build and test the model.
Performance comparison evaluation of the proposed technique was conducted against
traditional ML algorithms (e.g., SVM and isolation Forest); it was not compared against
deep learning models. This approach achieved a TPR of 92.46%, an FPR of 6.8%, a precision
of 95.12%, and an accuracy of 93.85%. This accuracy was achieved through thoroughly
pre-processing the initial log data. First, events were standardised and aggregated into a
format around the behaviours and attributes of individuals; next, features were extracted
for the training and testing phases, respectively.

Tian et al. [23] proposed an insider threat detection method based on an attention-
LSTM that models normal user behaviour and indicates anomalies as malicious behaviour.
They used a multi-head attention-LSTM (that has shown high priority in neural language
processing) to separate the attacked data from normal data in parallel, given different types
of features. The Dempster–Shafer theory was then employed to determine whether a given
set of input data qualifies as an attack.

A different approach proposed by Rastogi et al. [38], known as DANTE, uses system
logs to generate a sequence of events for each user over a given time frame to establish
ground truth. Their model uses LSTM to process the sequences and classify normal and
outlier behaviours. They further classify threats into one of five categories provided in the
CERT insider threat dataset. Although the model achieves high accuracy, it suffers from a
high FP rate.

2.2.2. Convolutional Neural Networks

Many researchers have applied CNN in their proposed work, such as [14,27,33,35]. An
interesting approach to solving the problem of insider threat detection was introduced by
Gayathri [39]. Here, image classification was used to classify insiders. They used the under-
sampling technique prior to extracting the features. After the extraction of 20 features, they
generated a grey-scale image for each user within a day. The grey-scale image was then
fed into a deep pre-trained CNN for classification. The main focus of the paper was the
transference of learning on MobileNetV2, VGG19, and ResNet50 pre-trained models; the
results were promising. Another work by Koutsouvelis [29] used a CNN trained from
scratch to classify coloured images that represent either malicious or normal activities.
Their results were promising, although they used a long-time window where each image
represents weekly or monthly activities.

Yuan et al. [45] further showed the attainability of a hybrid, high-performance anomaly
detection model by combining CNN and LSTM for deep neural networks (DNN). Their
work is focused on a feature engineering process to detect insider threats. First, LSTM is
used to extract and abstract the temporal features of users and then learn user behaviour
and language through their actions on a network. The second stage is to convert the features
extracted by LSTM to fixed-size matrices and then apply CNN algorithms to the matrices
to detect anomalies and insider threats. The results show the successful detection of insider
threats and anomaly detection but fail to present data on accuracy and FP rates. Moreover,
the method suffers from delays in the conversion of features to fixed-size matrices, which
affects its overall performance.

Singh et al.’s [31] approach detect insider threats using a different approach: user
behaviour profiling; this observes and explores user behaviour action sequences. The
researchers presented a hybrid ML model comprised of convolution neural networks
(CNN) and multi-state long short-term memory (MSLSTM) to identify a stabiliser outlier
in the behavioural patterns. Deep neural networks were applied in two stages: first, the



Appl. Sci. 2023, 13, 259 6 of 19

LSTM samples user behaviour temporal action sequences to extract the temporal features
and encode each user behaviour action sequence. LSTMs are able to process any size input
and output length; these features are then converted into a fixed-size low-dimensional real
vector matrix. The fixed-size feature matrices are given as input to the CNN to detect insider
threats; the matrices take only fixed-size inputs and outputs to determine the particular
action sequence of a particular user as either normal or anomalous. Multi-state LSTM
provided accuracy rates of 0.9042 and 0.9047 on training and testing data, respectively.
Given the experimental results, multi-state LSTM is preferred for single-state LSTMs.

The previous literature review explained several techniques used by different researchers
for anomaly detection and highlighted the complexity of tackling insider threats: mainly
because, unlike other types of cyberattacks, the internal attacker has access and privileges
to information systems; hence, they do not have to bypass existing IDS or firewalls. From
the findings, it is evident that insider threats are eminent and can result in catastrophic
ramifications for a multitude of diverse organisations. Feature extraction of user behaviour
is an essential consideration and foundation of anomaly detection. However, using deep
learning for insider threat detection still faces various challenges related to the characteristics
of insider threat detection data, such as extremely small incidences of malicious activities and
adaptive attacks. Hence, developing advanced deep learning models that can improve the
performance of current state-of-the-art insider threat detection solutions remains an under-
explored research area. There is a general lack of research on feature-engineering-based deep
learning techniques for insider threat detection. Future research could address the possibility
of using a hybrid ML approach and leveraging data mining for feature extraction as a means
of reducing FP rates. The literature review has highlighted that most of the existing methods
suffer from inefficiencies, especially when using a large dataset consisting of imbalanced data,
which provides an opportunity for further research. In this study, we propose a solution to fill
this gap using the CERT Insider Threat dataset.

Table 1 summarises the most significant results from the literature review. All apply
their methods with different versions of the CERT insider threat dataset using either su-
pervised or unsupervised machine learning algorithms. The anomaly detection method
produced the best results, with an accuracy of 99.91% with a very low false positive rate,
while the best results achieved by classification methods were an accuracy of 99% and
a precision and recall of 99.32%. Anomaly detection studies had no need for balanc-
ing techniques, and three classification studies employed balancing techniques with two
forgoing balancings.

Table 1. Literature review summary. Abbreviations: Accuracy (acc), False Positive Rate (FPR), False
Alarm Rate (FAR), Precision (P), F1 − Score (F1), Recall (R). The learning method is either supervised
(S) or unsupervised (U). The data column shows the version of CERT used in the study.

Ref Method Learn Data Results Type Balancing

[2] Random forest S r4.2 acc: 98% Classification Under/Over sampling

[16] iForest U - AUC: 82% Anomaly detection -

[22] constraint network U r4.2
acc: 99.91%
FPR 0.06%
P: 99.84%
F1: 55.00%

Anomaly detection -

[39] CNN S r4.2
acc: 99%
P: 99.32%
R: 99.32%

Classification
Random
under
sampling

[19] LSTM U r6.2
TPR: 92.46%
FPR: 6.8%
P: 95.12%
acc: 93.85%

Anomaly detection -

[23] attention-LSTM U r6.2
R: 95.79%
FAR: 4.67%
acc: 95.47%

Anomaly detection -
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Table 1. Cont.

Ref Method Learn Data Results Type Balancing

[38] RNN-LSTM U r6.2 acc: 93% Classification -

[35] XGBoost RF, MLP, 1DCNN S r4.2 P: 83%
R: 76% Classification GAN

[23] attention-LSTM U r6.2
R: 95.79%
FAR: 4.67%
acc: 95.47%

Anomaly detection -

[37] CNN-LSTM S r6.2 AUC: 90.47% Classification -

3. Materials and Methods

This study aims to build an advanced insider threat detection system by leveraging
modern machine learning algorithms. The preparation of the dataset is essential in the
implementation of any machine learning algorithm. Hence, it is crucial to prepare the data
by cleaning and pre-processing the raw data to be fitted to the learning algorithm. Once
the dataset is cleaned and pre-processed, feature extraction extracts the latent patterns that
could help the designed algorithm learn as independent variables. Then, advanced machine
learning algorithms are utilised to develop a comprehensive model that can classify a given
data point with high accuracy as being either malicious or a regular activity. To measure
the model’s accuracy, we will use evaluation metrics accuracy, recall, precision, and F1 −
Score. Figure 1 illustrates the research methodology.

Figure 1. Research methodology.

3.1. Dataset

The lack of actual data is a major barrier for researchers studying the insider threat
problem. These data involve log files that contain private user information [3]. In order to
protect their users and assets, organisations frequently deny researchers access to real data.
However, under specific regulations, an organisation may agree to give the researchers
restricted access after anonymizing the private and confidential attributes of the data.

This problem makes it difficult for the researchers to continue their work. In order to
solve the insider threat detection problem, it is, therefore, preferable to use synthetic data in
the system’s design and evaluation. The DARPA ADAMS [48] and Schonlau datasets [49],
among others, have been used in research papers in the past, even though they were not
specifically created to address the insider threat issue. However, these datasets are less
useful due to the complexity of the insider threat problem.

The CMU-CERT dataset(s) has seen a significant increase in usage for insider threat
detection systems over the past decade. The CERT insider threat dataset [50] is a collection
of artificial datasets produced by the Community Emergency Response Team (CERT)
at Carnegie Mellon University (CMU) [51]. It is widely used in insider threat detection
studies [43]. There are several releases of the CERT insider threat dataset, and the most used
versions are r4.2 and r6.2. Table 2 shows the two versions’ statistics, demonstrating that
compared to prior CERT dataset versions, CERT r4.2 has a higher rate of malicious activities.
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Table 2. CERT datasets r4.2 and r6.2 statistics.

Version Employees Insiders Activities

r4.2 1000 70 32,770,227
r6.2 2500 5 135,117,169

Thus, we used the CERT r4.2 dataset, which consists of five different events—logon/logoff
events, email transmission, devices, files, and HTTP events—as illustrated in Table 3. These
events document the activities of 1000 employees in an organisation over a period of
17 months. The dataset has 32,770,222 events from 1000 normal and abnormal users.
Experts intentionally injected 7323 malicious insider instances. The CERT dataset con-
tains the psychometric score for each employee, also known as the “Big Five personality
characteristics”. These characteristics are stored in the psychometric.csv file.

Table 3. Dataset files and features.

File Feature Description

logon.csv (logon/logoff activities) ID, date, user, PC, activity

device.csv (external storage device usage) ID, date, user, PC, activity (connect/disconnect)

email.csv (email traffic) ID, date, user, PC, to, cc, bcc, form, size, attachment
count, content

http.csv (HTTP traffic) ID, date, user, PC, URL, content

file.csv (file operations) ID, date, user, PC, filename, content

psychometric.csv (psychometric score) ID, user, openness, conscientiousness, extraversion,
agreeableness, neuroticism

In terms of insider threats, Version r4.2 of the dataset consists of three primary scenarios
described as follows:

1. A user who never worked after hours or used removable drives starts logging in after
hours, using a removable drive, uploading information to wikileaks.org, and then
leaves the company shortly after;

2. A user begins searching for career opportunities on job search websites and contacting
potential employers. Before leaving the office, they use a thumb drive to take data (at
a rate noticeably higher than their prior actions);

3. A dissatisfied system administrator downloads a key logger and transfers it to his
supervisor’s computer using a thumb drive. The following day, he logs into his
company’s network as his boss and sends out an alarming mass email, causing
widespread concern, and immediately leaves the organisation.

As already indicated, we have focused mainly on the CERT r4.2 dataset because the
CERT r4.2 dataset contains a high number of insider threats compared with previous and
later versions. Our attention is drawn to the first scenario, which corresponds to a data
theft attack, as compared with privilege abuse, privilege escalation, or sabotage attack.
We extrapolate data from the files device.csv, http.csv, psychometric.csv, and logon.csv.
The description of the scenario includes the following: hours worked (logon.csv), using a
removable device (device.csv), and uploading information (http.csv). We exclude file.csv
and email.csv due to runtime considerations when using DFS, as outlined in Section 3.3.1.

3.2. Data Pre-Processing

Data collection and pre-processing are essential not only to detect insider threats
but also to perform other cybersecurity activities. Successful implementation of machine
learning techniques is possible by following suitable processing steps combined with
enough data collection. This allows security analysts to make correct conclusions with
the help of machine learning techniques. The data collected often lack the background
information necessary for feature extraction. Hence, we performed a feature engineering
step in data pre-processing. Utilizing feature engineering, we were able to gather valuable
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supplementary data for additional processing to determine normal business hours and
website categories. Table 4 describes the added features.

Table 4. Extra features added to enhance the feature extraction process.

Feature Name Feature Description

Weekday_Logon_After Employees log on outside of working hours on weekdays
Weekday_Logon_Normal Employees log on during working hours on weekdays
Weekend_Logon Employees log on during weekends
url_Count The number of URLs visited by an employee in a day

3.3. Feature Extraction

One of the main problems with insider threat detection is the extraction of features
throughout the feature engineering process. There is no rule regarding the number of
features derived from each log source, and it has been found to be variable in different
studies. The CERT insider threat dataset is seen as a relational dataset from which features
may be manually derived from the relationships between the entities (files). All researchers
try to manually derive as many features as possible to glean high-quality descriptive
results. One powerful automated feature engineering tool that has gained the attention of
many scholars working in relational datasets over the last couple of years is Deep Feature
Synthesis (DFS). This algorithm captures features usually supported by human intuition
and performs feature engineering for multi-table and transactional datasets commonly
found in databases or logs. After the DFS process, the data are gathered so that every event
relating to a user is represented in a separate feature vector. We build 1000 user-specific
profiles based on user action sequences.

Given that many of the DFS characteristics are categorical and hence unreadable by the
ML methods we are using, the aggregated data must be transformed into the right format.
We perform one-hot encoding for categorical values. Further, all columns containing null
values are removed. DFS results in 69,737 features. DFS produces a large number of
features that lead to the dimensionality curse issue (where the dimensions are complex
and difficult to visualise). To determine the most important characteristics in the CERT
dataset that have the greatest influence on the target variable, we employed PCA as a
dimensionality-reduction technique. It produces a reduced set of the most important linear
combinations of the initial set of features, which are uncorrelated features. After PCA, we
obtain a final 553 features. We used SMOTE [52] balancing techniques because CERT is
an imbalanced dataset, as the anomalous samples are significantly less than the standard
samples. DFS, PCA, and SMOTE are described in the following subsections.

3.3.1. Deep Feature Synthesis

Machine learning algorithms rely heavily on their input features. A suitable choice of
features is an essential process in any machine learning algorithm; however, it must involve
human intuition in many cases. At the same time, recent developments in deep learning
algorithms can omit the choice of a suitable feature because the feature is learned through
the network architecture. However, feature selection remains a human-intuition-driven
and time-consuming phase in other machine learning algorithms.

Previous researchers have not considered automated feature engineering in their work
before. This study used an automated feature engineering tool to improve the effectiveness
of insider threat detection approaches. The DFS tool takes into account many of the
manually selected features from prior research, as well as many more additional features.
DFS was proposed by J. M. Kanter and K. Veeramachaneni [53]. It automatically creates
features for relational datasets based on connections in the data to a base field, generating
predictive models from raw data. Mathematical functions were then sequentially applied
along that path to constructing the final features, as illustrated in Figure 2. It implements
a generalisable machine-learning pipeline tuned using a novel Gaussian Copula process-
based approach [53].
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The algorithm forms some specialised features from the given data by intuiting what
could predict the outcome. The algorithm catches features that are generally aided by
human interpretation, although it is automatic. It performs feature engineering for various
tables and transactional data found in databases and log files [53]. This approach helps data
scientists save time by deriving new features that are specific to the dataset and applying
the same mathematical equations. The features created by DFS are easier to understand
since they are based on primitive combinations that can be easily described in natural
language; this helps the data scientist understand the features generated by DFS.

Figure 2. An illustration of a feature that DFS can produce.

The inputs of this algorithm are entity sets with several data types, such as numeric,
categorical, and timestamps, a set of relationships, and several mathematical functions.
The mathematical functions are applied at two different levels: the entity level and the
relational level. DFS generates three sorts of features: Entity features (efeat), Direct Features
(dfeat), and Relational features (rfeat), as illustrated in Figure 3 [53].

Figure 3. Demonstration of a relationship.

Entity features (efeat) are calculated by considering only one entity, such as translating
an existing feature into another value type, converting a categorical string data type to a
pre-decided unique numeric value, or rounding a numerical value. An example of such
a computation is a cumulative distribution function (cdf)-based feature. To generate this
feature, the DFS forms a density function over x:,j, and then evaluates the cumulative
density value for x(i,j) (or percentile), thus forming a new feature [53].

When there is a forward relationship between one instance of entity EI , instance m,
and one instance of entity Ek, instance i, i has an explicit dependency on instance m. In
Figure 4, an e-commerce example, the Logon entity has a forward relationship with the
Psychometric; each logon is related to only one user in the Psychometric table. Direct
features (dfeat) are applied over the forward relationships. In these, features in related
entity i ∈ Ek are directly transferred as features for the m ∈ EI [53].

For backward relationships, from instance i in Ek to all instances m = 1 . . . M in EI
that have a forward relationship with k. In the same example above, the Logon entity
has a backward relationship with Psychometric; many logons can point to the same user
in the Psychometric table. The functions min, max, and count are examples of rfeat
functions. Other rfeat functions include functions that could be applied to the probability
density function [53]. The depth of a DFS is based on how early the decision tree or other
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framework response is activated [53]. Without DFS, scientists require coding to aggregate
data for specific customers by applying different statistical functions resulting in features
quantifying users’ behaviour.

Figure 4. Deep Feature Synthesis [53].

Several features could be chosen to modify DFS’s output. We selected all compatible
features from the available collection of DFS features [54]. After choosing the features,
we create entities from each file, thereafter defining the relationships between the entities.
Figure 5 represents the relations between the files. The arrows represent many-to-one
relationships. By applying a second primitive to the output of the first, DFS explores a vast
space of meaningful features, resulting in 1000 user-specific profiles with 69,738 features
in total.

Figure 5. Illustration of the relations between the files.

3.3.2. PCA

PCA is a statistical process that decomposes a multivariate dataset into principal
components using an orthogonal transformation. The original data’s variance is preserved
as much as possible by the PCA. Given that the principal components are orthogonal to
the primary components and that the first component explains the majority of the data
variability, each principal component has the greatest amount of variation that may be
accommodated. It produces a condensed collection of the most important uncorrelated
characteristics, which are linear combinations of the initial features [55].

In the experiments, the datasets are pre-processed by normalising each column in the
original features set to have zero mean and unit variance. The most important uncorrelated
features, which are linear combinations of the initial set of characteristics, were then
obtained by using PCA with 95% of the variance.
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3.3.3. SMOTE

Problems involving imbalanced datasets, in which instances of one class dominate
instances of the other class, are frequently encountered in real-world applications. Without
a particular countermeasure for imbalanced training data, the resulting decision boundary
will bias classification performance for the majority class; however, the classification per-
formance for the positive class degrades. There are two techniques for dealing with the
problem of an imbalanced dataset: resampling methods (resulting in a balanced dataset)
and imbalanced learning algorithms (anomaly detection methods, such as OCSVM and
isolation forest).

Due to the imbalanced nature of the CERT dataset, where we have only 30 positive
instances out of 1000. Thus, we used these two distinct methods to obtain satisfactory
performance. In this study, SMOTE was not used for all models; rather, it was only used
for classification models. CERT is an imbalanced dataset, as the anomalous samples are
significantly less than the standard samples. We use SMOTE to balance the dataset and
adjust the class distribution to get a good performance in the minority class.

3.4. Insider Threat Models

Due to the imbalanced nature of the CERT dataset, we used two different types of
machine learning approaches: classification methods and anomaly detection methods. The
models that were employed are described in detail in the following sections.

3.4.1. Anomaly Detection Models

The method employed to deal with the insider threat problem is determined by data
availability. Previous insider attacks in the organisation would consist of only normal
instances rather than a mixture of normal and abnormal instances. This section will look
at cases where an organisation’s data availability maturity is medium (i.e., only normal
behaviour data are available).

The suggested framework detects harmful insider threats using one-class support
vector machine (OCSVM) and isolation Forest (iForest) as base approaches. Because the
data are highly skewed (30:1000), we want to make a model that treats the 30 instances
as anomalies or outliers. The basic aim of OCSVM and iForest training is to identify a
function, f, that returns a positive (+) result when applied to a point within f and a negative
(−) result otherwise.

We take 70% of the typical data for the training phase after labelling it to (−1, 1) to make
it appropriate to the output of the OCSVM and iForest. We add the remaining 30% to the
threat instances for the testing phase. For OCSVM, we use gamma = 0.0001 and nu = 0.001
with RBF kernel, and for iForest, we used the following: number of estimators = 100,
maximum number samples = 256, and contamination = 0.5.

3.4.2. Classification Models

When both normal and abnormal data are available, the system can learn from both
data classes. A binary classification approach is used to address the insider threat detection
problem. A total of four supervised classification models are tested: SVM, Random Forest
(RF), Neural Network (NN), and AdaBoost, each of which is evaluated separately.

We used stratified k-fold cross-validation, which folds the data while maintaining the
percentage of samples for each class. Furthermore, we use the Grid-Search optimisation
algorithm [56] to maximise the ROC-AUC in order to have the best set of classifier hyper-
parameters. Since we are using cross-validation, a pipeline was used to avoid information
leakage. For every fold, we used PCA and StandardScaler. PCA is used for dimensionality
reduction while preserving 95% of the variance. StandardScaler standardises features by
eliminating the mean and scaling to unit variance.

Preparation for training the SVM classifier begins with tuning the C, gamma, and
kernel hyperparameters via the GridSearch technique. Gamma is the parameter of a
Gaussian Kernel (which is used to handle non-linear classification), and C is the parameter
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that governs the cost of misclassification of the training data. A kernel translates the data
to a higher dimension, allowing the classes to be separated. The parameter C presented for
a range of C = {0.001, 0.05, 0.1, 1, 1.5, 10, 100, 1000}, gamma for a range of gamma = {0.01,
0.1}, and kernel for a range of r = {0.3, 0.4, 0.5, 0.6, 0.7}, kernel = {RBF, ‘poly’, ‘gamma’}.

The experiment’s neural network design comprises an input layer, two fully connected
layers, and an output layer. The majority of the learnable parameters are usually included
in the fully connected layers. Before the fully connected layer, we employed Dropout to
prevent over-fitting and enhance the model generalisation. Dropout provides regularisation
by removing a fraction of the previous layer’s outputs, forcing the network to not over-rely
on any particular input. We used batch normalisation with a ratio of 0.5 to accelerate training
convergence and increase overall performance. It is accomplished by normalising each feature
at the batch level during training. Figure 6 shows the model architecture.

Figure 6. The proposed NN architecture.

In AdaBoost, we used a decision tree stump as a base estimator. Using a strong
classifier might lead to an overfitting problem. The number of the base estimator is a
significant hyperparameter that affects the classification results. We tuned the number of
base estimators with the range {100, 500, 600, 700}. The learning rate in AdaBoost reflects
how much each model contributes to the weights, and we tuned it using the range of {0.1,
0.5, 1}. The number of estimators in the random forest was tuned by {10, 20, 40, 50, 100, 150,
200, 500, 600}, as well as the number of features to take into account while looking for the
best split = {‘auto’, ‘sqrt’, ‘log2’}. We utilised entropy as a criterion, which is a function that
measures the quality of a split in each estimator.

3.5. Evaluation

Following the prediction phase, we must use various evaluation metrics to assess the
correctness of the model results, such as accuracy, precision, recall, and F1 − Score. The
accuracy metric is a type of evaluation statistic that evaluates how accurate a classifier
is. We simply add up the samples that were correctly predicted (true positive and true
negative) and divide that amount by the number of samples to determine the accuracy
using the confusion matrix; see Equation (1). In our case, we will classify the data into two
categories: normal and abnormal, and the accuracy metric will give the percentage of the
user’s activities that are classified correctly.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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where:

• TP: predicted abnormal activity is an abnormal activity;
• FP: predicted normal activity is an abnormal activity;
• FN: predicted abnormal activity is a normal activity;
• TN: predicted normal activity is a normal activity.

We can use these elements as input to calculate additional evaluation metrics, as
demonstrated in Equation (2). Precision is a measurement of precision that provides
us with a measure of exactness, which determines the number of all true predictions of
anomaly (or abnormal activity) on all predictions. We can obtain 100% accurate predictions
if the precision value is close to 1, which indicates that FP ≈ 0.

Precision =
TP

TP + FP
(2)

The recall metric presented in Equation (3) provides an indicator to measure com-
pleteness. Thus, we will calculate the fraction of true predictions of abnormal activities
out of the actual abnormal activities. If recall equals 1, it means we achieve high accuracy
and FN = 0. Precision and recall both provide a metric for determining the efficacy of the
proposed models in anomaly detection.

Recall =
TP

TP + FN
(3)

The F1− Score, which is shown in Equation (4) and reflects the accuracy of the models’
test set, will be used to determine the harmony between precision and recall measurements.
We will reach the best value if the F1 − Score = 1 and the worst value if the F1 − Score = 0.

F1− Score =
2× precision× recall

precision + recall
(4)

4. Experimental Results

Insider threat detection has been the subject of extensive research for many decades.
The literature reveals a wide range of solution approaches used in this issue, making
method comparisons in terms of data, strategies, and aims challenging. We attempted
to incorporate various contexts in which insider detection has been explored based on
previous research. Our results improve previous results with the help of the feature
engineering phase, including DFS. In this section, we present anomaly detection methods
in the first section and classification methods in the second.

4.1. Anomaly Detection

Anomaly detection is the process of detecting deviations from normal behaviour in
the data. We used two distinct anomaly detection methods, one-class SVM and isolation
Forest. We train the models on the negative class, i.e., the normal class, which represents
most users. We test the models’ efficiency using the positive class with a subset of the
negative class.

Recall that our dataset contains 1000 users, 30 of whom are abnormal or positive class.
We divide the dataset into 80% and 20% for training and testing, respectively. The 80% for
training contains all negative class users. We used 20% of the training set as a validation
set. The 20% for testing has all 30 users as well as the remaining negative class. Table 5
shows the results on the CERT4.2 dataset after employing DFS and PCA on OCSVM and
isolation Forest.
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Table 5. Results of the anomaly detection methods.

Model Precision Recall F1 − Score Accuracy

OCSVM 0.94 0.86 0.89 0.86
iForest 0.92 0.91 0.88 0.91

4.2. Classification

Finding a suitable classifier that can identify the class of a testing instance based on the
provided features related to that instance is the main goal of the classification task. We used
four ML classification models to classify the users into normal and abnormal: NN, SVM,
AdaBoost, and random forest. We aimed to reduce the imbalanced dataset problem and
avoid the ML models’ bias; we used the SMOTE balancing technique only in the training
set to ensure no data leakage and received a balanced dataset of 1552 instances. Table 6
shows the results of supervised machine learning algorithms after DFS, PCA, and SMOTE
on the unseen test data part of CERT r4.2. All experiments were performed using the grid
search optimisation algorithm with 10-fold cross-validation. Additionally, Table 7 displays
the results without utilising any balancing techniques.

Table 6. Results of classification methods with SMOTE.

Model Precision Recall F1 − Score Accuracy

NN 0.98 0.95 0.96 0.95
SVM 1.00 1.00 1.00 1.00
AdaBoost 0.98 0.94 0.95 0.94
RandomForest 0.95 0.72 0.81 0.72

Table 7. Results of classification methods.

Model Precision Recall F1 − Score Accuracy

NN 0.94 0.97 0.96 0.97
SVM 1.00 1.00 1.00 1.00
AdaBoost 0.99 0.98 0.98 0.98
RandomForest 0.94 0.97 0.96 0.97

4.3. Discussion

There were four distinct classification models that we utilised. Compared to the
anomaly detection methods, the ML classification models produced the best overall results.
The SVM model achieved the best results by successfully identifying all threat users. The
primary step in the SVM experiment is finding the best combination of C and gamma
parameters. A high value of C attempts to minimise the misclassification of the training
data, while a low value smooths the model. Conversely, if the gamma value is too large, it
will lead to an overfitting problem.

As the findings show, relying on SMOTE to achieve an equal balance with the majority
class may not always the best option, depending on the desired outcome. Despite the
fact that SMOTE did not raise the F1 − score in the NN model, it boosted recall at the
expense of accuracy and precision, an entirely desirable outcome when it comes to detecting
insider threats, as a few false alarms are more desirable than undetected attacks. We would
also like to emphasise that the original SMOTE paper [52] achieved excellent results by
combining SMOTE and random under-sampling. Under-sampling was not used in this
study because all data instances were necessary. Random forest and AdaBoost are machine
learning algorithms designed explicitly for imbalanced datasets. We note that SMOTE is
not required to achieve excellent results with these two methods. The overall performance
of AdaBoost is superior to that of the random forest in all cases.

A comparison of other previous similar methodologies is presented in Table 8. The
main similarity is that they handle collecting the data the same way as this research,
where each data instance represents a user feature vector. The SVM model obtained the
highest overall performance compared to the other algorithms. It achieved 100% accuracy.
Furthermore, it has a higher recall (100%) and fewer false alarms. Additionally, the CNN
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model [34] has achieved a high accuracy (100%). However, since no values are provided
for the other evaluation metrics, it is difficult to ascertain how well they are doing.

Table 8. Comparison with different classification methods.

Model Accuracy F1 − Score Recall Precision

CNN [29] 100% n/a n/a n/a
Bio-Inspired models [57] n/a 100% n/a 70%
Autoencoder [58] 92% 96% 96% 94%
DBN-OCSVM [39] 87.79% n/a n/a n/a
DNN [16] 96% 95% n/a n/a
Generative adversarial network [17] n/a n/a 76% n/a
Light Gradient Boosting [40] 99.47% 92.26% n/a 0.83%
CNN [29] 99% 99.3% 99.32% 99.29%
Random forest [59] 98% n/a n/a 99.32%
Our method 100% 100% 100% 100%

5. Conclusions

This study utilised machine learning techniques to detect malicious activity. A system
pipeline that is able to accurately detect malicious users as well as being resilient to different
organisational structures and updates to the log file structure was proposed. We used
automated deep feature engineering to improve the detection of malicious insider users.
DFS results in a vast number of meaningful features that hasten the feature engineering
phase and help non-expert domains achieve results with good descriptive features. We
examined the influence of the SMOTE oversampling technique to reduce the impact of data
with an uneven class distribution because CERT is an extremely unbalanced dataset. The
results showed that SMOTE helps increase recall over precision.

To increase system performance, we used PCA to minimise the number of features
and reduce redundancy. To classify behaviours as malicious or normal, we tested several
ML algorithms, either through anomaly detection methods or classification ones. The
results of the experiments indicate that the SVM classification method outperforms the
other models. The algorithm was trained and tested using a dataset of 1000 created feature
vectors based on user action sequences, including both malicious and regular activity. We
conclude that with the methodology used, the malicious users of the information system
were effectively detected. The forecasting of the results was successful, with a percentage
that reached 100%.

However, the study is not without some drawbacks. Although the system is designed
to be resilient in the face of log file structural changes, it still requires a retraining phase; to
build a different set of features that correspond to the new structure. The time required
should be taken into consideration by the security officer. In addition, enrolling new users
and learning their specific behavioural patterns necessitates collecting some usage pattern
data first, i.e., the system is unable to detect malicious users who happen to be newcomers
to the organisation. Finally, the system will require periodic retraining in order to keep the
user baselines up to date.

Future work may consider different scenarios from the CERT insider threat dataset. In
addition, organisations should be targeted, and a data-sharing agreement should be sought
to attain access to real-world insider threat data and assess the methodologies described in
this study. Future work should also consider using DFS in other problem domains.
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