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Abstract: Assisting employees in acquiring the knowledge and skills necessary to use new services
and technologies on the shop floor is critical for manufacturers to adapt to Industry 4.0 successfully.
In this paper, we employ a learning, training, assistance-formats, issues, tools (LTA-FIT) approach
and propose a framework for a language-enabled virtual assistant (VA) to facilitate this adaptation.
In our system, the human–robot interaction is achieved through spoken natural language and a
dashboard implemented as a web-based application. This type of interaction enables operators of
all levels to control a collaborative robot intuitively in several industrial scenarios and use it as a
complementary tool for developing their competencies. Our proposed framework has been tested
with 29 users who completed various tasks while interacting with the proposed VA and industrial
robots. Through three different scenarios, we evaluated the usability of the system for LTA-FIT based
on an established system usability scale (SUS) and the cognitive effort required by the users based
on the standardised NASA-TLX questionnaire. The qualitative and quantitative results of the study
show that users of all levels found the VA user friendly with low requirements for physical and
mental effort during the interaction.

Keywords: natural language processing; virtual assistant; human–robot interaction; usability studies;
NASA TLX; system usability scale

1. Introduction

Digitalization is changing the manufacturing world. The exponential growth in digital
technologies provides manufacturing companies with possibilities for introducing new
products, processes, and services, many of which have the potential to be disruptive. Hence,
the manufacturing industry has adapted to Industry 4.0 values and is slowly transitioning
to the Industry 5.0 era [1]. However, due to the complexity of the manufacturing tasks and
the speed of the technological development, the adoption of new technologies remains a
grand challenge [2].

As the nature of many proposed solutions typically involves multidisciplinary activi-
ties, operators with years of experience and domain knowledge are needed. However, in
modern industrial settings, such expertise is not always readily available, and new, more
flexible approaches for knowledge acquisition and dissemination of learned experience
should be utilized [3]. One revolutionary model used to assist workers in their learning
and training is the learning, training, assistance-formats, issues, tools (LTA-FIT) model
proposed by [4]. The model offers a flexible approach to assist the re-qualification and
training of workers in new digital tools.
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In this work, we expand the proof-of-concept we presented previously [5], in which we
proposed a virtual assistant (VA) built on a natural language processing architecture used
as a digital interpretation of the LTA-FIT model in a smart factory. The system provides
additional instructions to facilitate a basic understanding of the steps of an assembly
process of a mobile phone mockup, assists the workers through the necessary training
process, and then answers workers’ task-related questions. Because human operators are
at the center of the LTA-FIT model, we performed an extensive user study to evaluate the
system’s usability and the users’ acceptance, comfort, satisfaction, and task load. We used
the proposed framework to complete an assembly task by using the eighth iteration of our
autonomous industrial mobile manipulator (AIMM), named Little Helper 8 (LH8) (Figure 1).
Little Helper is a series of mobile manipulators with an integrated industrial robot arm and
mobile platform to offer flexible solutions to industrial settings [6]. The eighth iteration
consists of a Franka Emika Panda collaborative robot mounted on a MiR200 omnidirectional
mobile platform.

Figure 1. The autonomous industrial mobile manipulator Little Helper, in which our proposed virtual
assistant is integrated.

Contribution

In this study, we design and create a language-enabled VA for human–robot interaction
in LTA-FIT of manufacturing tasks that enhance the user experience while maintaining a
high level of system usability. Our specific contributions are:

• a novel VA trained on the state-of-the-art bidirectional encoder representations from
transformers (BERT) [7] model with a high human intent-recognition capability fo-
cusing on the industrial robots and satisfies downstream assistance needs of fac-
tories for employees to successfully obtain the acquired knowledge and skills for
manufacturing tasks;

• three common manufacturing scenarios are selected and analyzed in a genuine pro-
duction setting with an emphasis on each level of LTA-FIT. To our knowledge, this is
the first time an industrial-oriented VA has been integrated into an industrial setting
with the goal of providing LTA-FIT for shop floor workers; and

• a user study of human–machine interaction with both the VA and the robot. This
analysis evaluates the system’s usability, the perceived comfort, and mental load
while working on the task, and the comfortability, perceived competence, performance
expectancy, and effort expectancy.

In the rest of the paper, we present an overview of related literature in Section 2, the
architecture of the proposed framework in Section 3 and the selected LTA-FIT scenarios in



Appl. Sci. 2023, 13, 205 3 of 18

Section 4. Sections 5 and 6 present the experimental setup and analyze the obtained results
while we reflect on the results and conclude the paper in Section 7.

2. Related Work

As we discussed before, the transition to the so-called Industry 5.0 era requires spe-
cialists and domain experts to be able to learn new concepts quickly and improve their
qualifications intuitively [8]. A general term used often for such workplace training activi-
ties is work-based or work-integrated learning [9]. It is related to all learning generated
directly through workplace considerations and concerns. It is typically an unplanned and
informal process and either appears organically through regular development and problem-
solving at work or as part of workplace training or coaching in response to identified
work-related issues [10]. It has been proven to be more effective compared to traditional
classroom teaching, mainly when it tackles real work issues, and it can improve professional
work readiness, self-efficacy, and team skills [11].

In the context of industrial automation and manufacturing processes, the learning
principles of work-based learning have been incorporated effectively into the concept
of learning factories [12,13]. They constitute a paradigm of close collaboration between
industry parties and universities to offer a flexible industrial environment where the
involved stakeholders can introduce and test artificial intelligence (AI) techniques [14],
swarm production concepts [15], and virtual recommissioning methods [16].

However, although learning factories can support proof-of-concept integration, they
do not scale up adequately to real industrial challenges, as human operators, who should
work in close collaboration with various machines or robots, lack the required qualifica-
tions [17]. Therefore, several employee qualification and competency-building models have
been developed whereby a variety of personal, social, action-related, and domain-related
competencies can be improved [18,19].

In our work in particular, where human–robot collaboration is the focus, we employ
the LTA-FIT qualification model, and based on the lessons learned from [20] we propose a
framework for a language-enabled virtual assistant (VA)-integrated system with the latest
iteration of our AIMM [21] and deployed it in our own learning factory [22].

In recent years, voice-enabled interaction and VAs, in particular, have become an
integral element in the interaction of humans with machines in various domains [23]. In the
area of teaching and learning, Prgorskly et al. [24] proposed a virtual learning assistant as
an assessment tool by which to support online learners’ self-regulation in online learning,
whereas Preece et al. [25] investigated the effectiveness of a controlled natural language-
based conversational interface for human–machine interaction regarding locally observed
collective knowledge. In the manufacturing domain, Barbosa et al. [26] created a VA, which
supported the training process of the technical personnel in industrial plant operators,
Casillo et al. [27] built a chatbot for the training of employees in an Industry 4.0 scenario,
and Zimmer et al. [28] developed a VA to assist the ramp-up process of an assembly system.
In our previous work, we have presented a VA named Bot-X to assist the workers in
handling a variety of complex manufacturing tasks, e.g., order processing, and production
execution [29]. Naturally, VAs, dialogue systems, and conversational agents have also
facilitated scenarios wherein humans work closely with robots. Maksymova et al. [30] used
several models for voice control of an industrial robot in the context of a collaborative
assembly whereas Bingol and Aydogmus [31] evaluated deep neural networks for the
classification of commands in a natural speech-recognition system for a collaborative
robot task.

Despite the vast amount of research that has been performed in all these domains,
VAs are still not readily accepted as the preferred means of interaction with machines or
robots. Many researchers have concluded that several challenges remain to be resolved.
Russo et al. [32] focused their research on using dialogue systems and conversational agents
for patients with dementia, where they concluded that the delay of the robot in respond-
ing to patients increased the cognitive load of the patients. Similarly, Bernard [33] and
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Rawassizadeh et al. [23] manifest that the use of VAs increases the cognitive requirements
of the users. Additionally, Skantze [34] evaluated conversational agents in human–robot
interaction (HRI) and concluded that natural timing in conversation systems is one of the
essential factors for fluent human–human interaction, but it is also a challenging feature to
adopt in VAs. He also emphasized that broken words and unclear sentences often hinder
the performance of the VA and consequently increase the discomfort of the users.

Therefore, in this paper, we have a strong interest in evaluating our VA by human
operators in an industrial scenario. We have enhanced our VA with natural timing capabili-
ties, and we performed a user study focused on tracking the comfortability of the users and
the usability and cognitive requirements of our overall system. Based on the learnings from
other researchers [35–37], and our lessons learned from standardising HRI and human–
robot collaboration (HRC) experiments before [38,39], we evaluated the system’s usability
with the system usability scale (SUS) [40], the perceived mental load while working on the
task, based on the NASA task load index (TLX) [41], the perceived competence, perfor-
mance expectancy, and effort expectancy metrics inspired by [35], and the comfortability
scale based on our uniquely designed questionnaire.

3. System Overview

This section describes the architecture of the proposed natural language-enabled VA,
named Max. A preliminary development step is presented in our previous work [21].
Following the client-server (CS) style architecture, language and robot services are hosted
on the Max server side. The Max client is composed of Microsoft cognitive speech service
and the robot control module. RESTful API requests support the communication between
the Max server and Max client. The Max client provides a voice interface (i.e., microphone
and speaker) to interact with the human operator and leverages the RESTful APIs to
communicate with the shop floor robots. The overall architecture is showcased in Figure 2
while a description of each component is presented in the remainder of the section.

Figure 2. The architecture of the proposed natural language-enabled VA.
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3.1. Language Services

Intent Recognition. Two services are provided for human-intent recognition—rule-
based keyword extraction and neural network-based intent recognition. Due to its simplic-
ity and quick response time, learning and training scenarios rely heavily on the keyword-
extraction approach. Max, on the other hand, should be able to precisely grasp the op-
erator’s intent and directions in order to assist with everyday logistic activities in the
assistance scenario.

We fine-tuned the pretrained basic BERT model (see language service part of Figure 3),
which provides contextualized sentence representation and can learn the meaning of the
words in the given context to predict the operator’s intent and key slots from the operator’s
utterance. The model has 12 layers, 768 hidden units, 12 attention heads, and 110 M
parameters fine-tuned with a feed-forward neural network (FFNN) layer and Softmax
as the activation function to normalize the output of the model. A series of sequential
operations (masking (15% of the words), tokenisation, and embeddings) are applied to the
user’s utterance to generate the input representation. A special symbol, [CLS], is added as
the first token to indicate the beginning of the user’s utterance. The embedded utterances
are passed through 12 transformer encoders. The last FFNN takes the results of the BERT
model as input and outputs a possible user’s intent (Xintent) and slots (Xslot). The model is
trained and validated on a dialogue dataset containing the task-related conversations, and
it achieves intent accuracy of 97.7% and slot F1 of 96.8% [5]. Compared with the rule-based
keyword extraction, the pretrained BERT is a context-dependent model that can distinguish
the word’s meaning in the given context. Therefore, operators may give the same command
by using different words, e.g., “Hey Max, I need your help” or “Max, can you give me a
hand?” when they need assistance without mentioning the exact keywords.

Dialogue State Tracking. A manufacturing task can take several steps to complete.
Therefore, a VA may require several rounds or turns of conversation to obtain the necessary
slots to complete the task. In this module, a JavaScript object notation (JSON) file called
dialogue state rule (DSR) is predefined to specify all the slots (the optional slot marked
with “optional”, otherwise marked as “Yes”) for completing each task. Max verifies and
updates the state based on the requested slots. The dialogue continues until Max receives
all the required slots.

Figure 3. The fine-tuned pretrained BERT model for intent prediction and slot extraction.
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Response Generation. Max’s response generation follows the template-based ap-
proach, i.e., mapping the nonlinguistic input (e.g., slots values from the user’s utterance) to
the linguistic surface structure [42]. Furthermore, we introduce human–human conversa-
tion strategies in the interaction with the VA and the industrial robots. In this module, two
dialogue strategies, namely lexical-semantic strategy and general diversion strategy [43],
are integrated so Max can increase the task-completion rate while improving the user en-
gagement. High engagement is also observed from active participation in human–human
collaboration, e.g., taking the initiative in a task and smoothly switching the topic if it is
not relevant to the current task. In this video (http://y2u.be/lYnh2cOeeE0, accessed on
1 October 2022), we demonstrate Max’s ability to initiate a request to the operator and start
working with manufacturing tasks at the appropriate time, providing suggestions to the
operator if the requested task cannot continue. Therefore, Max can complete the requested
tasks and support active dialogues to enhance the user experience.

3.2. Robot Service

Grounding. Natural language grounding is essential for matching a word to the
appropriate representation in terms of terminology and relationship in the learning and
training scenarios. At the same time, it is responsible for assigning a vocal command to
the associated robot’s action representation in the assistance scenario. To support learning
scenarios, a knowledge graph (KG) [44], which stores interlinked descriptions of phone
production, is designed based on the Neo4j system (https://neo4j.com/, accessed on 1
October 2022). It defines the entities (e.g., materials of producing a phone, operation
process), attributes (e.g., color, size), and relationships (e.g., pair, need).

A knowledge graph is defined as

KG := (N, E, aN , rE, s, t), (1)

where
N(KG) is a finite set of nodes (i.e., entities)

E(KG) = {(p, q) ∈ N × N} where p, q ∈ N is a finite set of edges (i.e., relationship)
aN(KG) : N → aN is a labeling function for nodes attribute
rE(KG) : E→ rE is a labeling function for relationship and

s(KG), t(KG) : E→ N attaches the edge to its source and target node.

The grounding process can be explained with the following process. Considering
that we have a corpus of operator’s utterance U which contains n extracted keywords
K = {k1, ..., kn}, we can find a partial function f to map the extracted keywords from
operator’s utterance to their representations in the graph, f : K → KG. The keywords refer
to a predefined set of robot services and skill categories, which are stored as a JSON file in
the database. The JSON file also lists the supported robot services and skills for the training
and assistance scenarios.

Algorithm 1 provides an example of how the system interprets the operator’s dia-
logue related to the task “delivery_package” to provide the core skill parameters, e.g.,
“destination” for a package-delivery task.

3.3. Voice Interface

A voice-enabled interface is designed for Max’s client to enable efficient communica-
tion with low hardware requirements (i.e., headphones with a built-in microphone and
Bluetooth wireless connection). In this module, we chose the Microsoft cognitive speech
services, speech-to-text and text-to-speech, to enable Max’s client voice interface. The
operator’s utterance transcripts are organized into a RESTful style HTTP request and
sent to Max’s server. The response message is then extracted from the server’s reply (a
JSON string), and a natural-sounding voice is generated. Such a voice interface frees
the operator’s hands while providing natural communication for efficient HRI on the
shop floor.

http://y2u.be/lYnh2cOeeE0
https://neo4j.com/
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Algorithm 1 Robot skill and response computation.

1: Input: the dialogue history, User0, SysAct0,...,Useri, and DSR
2: Output: the Robot_Skilli, the Robot_Skill_Parameteri and res_ponsei
3: extract the current user intent, intenti, and previous intent, intenti−1, from Useri and

Useri−1 respectively
4: if intenti 6= intenti−1 then
5: Assign null to the Robot_Skilli and inconsistent_intent to res_re f erencei
6: return
7: else
8: Assign intenti to the Robot_Skilli
9: for Every dialogue D ∈ (User0, ..., Useri−1) do

10: save the obtained slots of each turn to obt_slots
11: end for
12: end if
13: extract the slots, slotsi, from current user utterance, Useri
14: for Every slot ∈ slotsi do
15: if slot ∈ obt_slots then
16: update the obt_slots with the new value of the slot
17: else
18: save the slot to obt_slots
19: end if
20: end for
21: extract all the required slots (req_slots) from DSR regarding the requested intenti from

Useri
22: for Every slot ∈ req_slots do
23: if slot /∈ obt_slots then
24: Assign requested_slot to the Robot_Skill_Parameteri and res_re f erencei
25: return
26: end if
27: end for

3.4. Web Interface

An interactive web interface is being developed to enhance the operator’s experience
with LTA-FIT through Max. The interface is designed as a web interface on any web
browser-enabled device, such as a mobile phone, tablet, or PC.

Figure 4 illustrates the main web interface. The interface’s message panel shows
the operator’s real-time dialogue with Max. It enables the operator to keep track of the
conversation history and verify that the Max accurately transcribes spoken orders and
whether the Max delivers relevant responses or not. A robot services panel is included
to tell the operator about the services that the requested robot supports. Additionally, a
system status panel provides real-time information regarding activities or systems, such as
network connections and the status of running processes.

3.5. Robot Control Module

Max is designed to be agnostic of robot hardware and aims to support various kinds
of industrial robots, from mobile robots to industrial manipulators. Two subcomponents,
a robot service management (RSM) component and a robot service execution (RSE) com-
ponent, are implemented on the robot control module. RSM periodically synchronizes
the local robot services and skills with Max’s server to update the robot services/skills
registered on the local client side and the robot-controlling scripts. RSE invokes the corre-
sponding robot control script, which specifies robot control functionalities (e.g., package
delivery) and communication protocols for shop floor robots. A JSON file is maintained on
RSM to ground the operator’s verbal commands (including operator’s intent and slots) to
the requested robot service/skill. For example, “warehouse” is grounded to the coordinate
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“x”:, “y”:, “z” of the location of the mobile robot in the 2D map of the warehouse. The
grounding results are used to match the corresponding robot control function and set up
the input parameters.

Figure 4. The web interface of the Max client running on a common web browser.

4. Selected LTA-FIT Scenarios

In order to explore the capabilities of our proposed language-enabled VA, we examined
three LTA-FIT scenarios. Here, our focus is to teach the production terminology to the
operators, train them to assemble mock-up mobile phones, and assist them with the
internal logistics.

4.1. Learning Scenario

According to the definition of the LTA-FIT model, learning focuses on providing the
appropriate basic knowledge to the workers via instructions. Therefore, in the first scenario,
the VA is leveraged to teach the worker the production terminology and the process of the
assembly of a mock-up mobile phone (shown in Figure 5).

Figure 5. The parts of the mock-up mobile phone used for the learning and training scenarios.

Such knowledge consists of a list of the raw materials, components, the respective
quantities required to produce a phone, and the corresponding sequence of the phone-
assembly task. Usually, such information is shared at the beginning of the training of new
operators or during the introduction of new products in production.

In this case, the VA is expected to perform as a question answering (Q&A) system. To
this end, we designed a repository of logical connections between the parts of the mock-up
phone assembly with the means of the knowledge graph. The knowledge graph contains
the core entities (e.g., printed circuit board (PCB), phone cover, fuse), attributes (e.g., the
color of the cover), and the relationships (e.g., the order of the operations) regarding the
mock-up phone assembly task (see Figure 6 [5]). The VA is able to understand the operator’s
verbal requests (e.g., “how many processes are needed in a phone assembly?”), retrieve the
relevant answer according to the knowledge graph, and generate responses to the operator
(e.g., “There are eight operations in total.”).
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Figure 6. The graphic representation of the knowledge graph for the assembly of the mock-up
mobile phone.

4.2. Training Scenario

To solidify the gained knowledge from the learning level, the second scenario is se-
lected for training operators to assemble the mock-up mobile phone. A live demonstration
performed by an experienced and skilled operator is the most common way to carry out
such a task in current manufacturing environment with a follow-up Q&A or hands-on
learning session afterward. In this scenario, the VA performs as a task-oriented dialogue
system. Based on the dialogue with the operator, the VA controls the industrial mobile ma-
nipulator and demonstrates the required steps for the assembly of the mock-up phone. The
robot manipulator is programmed to perform the mock-up phone assembly automatically.
However, the continuous assembly process may be challenging for operators to follow,
and the correct sequence of the operations could be difficult to remember. Therefore, in
addition to the entire demonstration, the VA is able to guide the operators throughout all
the steps of the hands-on learning session.

4.3. Assistance Scenario

The third scenario targets the top level of the LTA-FIT, i.e., assistance. The purpose is
to evaluate the performance of the VA when it comes to assisting the operators’ daily work
and, specifically, internal logistics. In general, internal logistics focus on internal supply
processes, transportation of materials and tools, and cargo distribution. Such tasks may
require a mobile robot to deliver the goods to a location within the organization. A fleet
manager or web application for robot control usually comes as a package with the chosen
mobile robot to assist in scheduling and tracking the tasks. However, it could have a steep
learning curve for new or inexperienced operators. To this end, we tested the VA on two
practical assistance cases, including package delivery and system status checking.

The VA is expected to obtain the core information (e.g., a package delivery task may
require the destination of the delivery and a recipient) through a dialogue with the operator.
In such a case, a standard wireless headset is the only extra device we need to maintain
the communication between the operator and VA. The operator’s verbal command is
transmitted through the headset to the VA. Based on the needs of these two cases, real-time
assistance in manufacturing tasks requires that the VA can understand the operator’s
utterance with high accuracy and low latency. Therefore, in contrast to the learning and
training scenarios, the assistance scenario focus on tracking the VA’s overall performance
based on four quantitative metrics, i.e., intent error rate (IER), slot error rate (SER), task
success rate (TSR), and average communication time (ACT).

5. Experimental Setup

The industrial feasibility of the three LTA-FIT scenarios was evaluated based on a set
of experiments designed to assess the interactions of the human operators with the robot
and the VA. The participants were expected to complete a task during the experiments
while interacting with the system. The tasks for the learning and training scenarios were
focused on the assembly of the mock-up mobile phone (shown in Figure 5), whereas
the assistance scenario focuses on an internal logistic task. The list of identified tasks is
presented in Table 1).
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Table 1. Identified tasks for the three LTA-FIT scenarios.

Category Task Description Intent Recognition

Learning 1: Explain terminology Keywords
Learning 2: Reason operation relationships Keywords
Training 3: Demonstrate auto phone assembly Keywords
Training 4: Guide phone assembly Keywords
Assistance 5: Assist package delivery BERT Model
Assistance 6: Check system status BERT Model

The purpose of our experiments was twofold: (1) exploration of the system’s behavior
when used by a diverse user group; (2) collection of suggestions for improvement on the
usability, workload, and overall human–machine interaction. Therefore, we were interested
in the following research question: How can the adoption of a natural language-enable
virtual assistant for LTA-FIT scenarios provide an easier implementation of Industry 4.0
principles in factories?

5.1. Evaluation Metrics

To assess and analyze the interaction between the VA, the robot, and the human
operators, subjective and objective metrics were used for the examined scenarios. All
participants used a postexperiment questionnaire to rate their interaction with the system
anonymously in the learning and training scenarios. This questionnaire was built with
standardized questions to evaluate the system’s usability, the perceived mental load while
performing the task with the system and subjective metrics which cover a comfortability
scale, the perceived competence, the performance, and effort expectancies. As mentioned
in Section 4.3, four quantitative metrics were used to track the performance of the VA in the
assistance scenario. These four metrics can assess Max’s ability to recognize the operators’
verbal commands, perform tasks successfully, and latency during the interaction with
the users.

5.1.1. Metrics Used in the Learning and Training Scenarios

System Usability Scale. The SUS is a ten-item survey where the participants score
the experiment on a five-point Likert scale (from strongly disagree to strongly agree).
Afterward, an overall score of the system can be used to assess its usability of the system.
The SUS score is calculated by following the instructions in [45], where each item is
attributed a score from 0 (strongly disagree) to 4 (strongly agree). Therefore, a participant’s
score can vary within the range of 0–100 and in our experiments, and we used the grouping
proposed by [35] as: “80–100, users liked using the system”; “60–79, users accept the
system”; “0–59, the users did not like to use the system”.

NASA-TLX questionnaire. The NASA-TLX questionnaire is commonly used to assess
the mental workload that users experience while interacting with a system. It includes six
subscales that the participants rate individually, i.e., mental demand, physical demand,
temporal demand, performance, effort, and frustration [41,46].

Furthermore, the NASA-TLX questionnaire often employs a 20-point or 100-point
scale for participants to grade the experiment. However, because there are many areas for
the participant to score, there is a possibility for additional frustration while completing
the questionnaire. Therefore, several researchers [47,48] support the idea that having a
five-point format in the scale design could reduce the frustration level of the users and
could thereby increase the response rate. Consequently, we used a five-point Likert scale
format in our questionnaire to increase the quality of the responses.

Similarly, we divided the last subscale (frustration) into categories since the original
question contains numerous adjectives that might be deemed synonyms. The new cate-
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gories we used are: stressed, insecure, and annoyed. These are evaluated in relation to both
the interaction with the VA and the robot system overall.

Subjective metrics. In addition to the objective and standardized SUS and NASA-
TLX scales, we deemed it necessary to utilize some of the subjective metrics proposed
by [35] and add our own comfortability scale. Similar to SUS, the participants score using a
five-point Likert scale in a postexperiment questionnaire. These subjective metrics cover
the following elements:

• The comfortability scale measures the participant’s level of comfort with the system at
the beginning and conclusion of the interaction.

• Perceived competence refers to the participant’s conviction that they can complete the
task with the help of the system.

• Performance expectancy is the degree to which participants feel that utilizing the
system would help them perform better in a work environment.

• Effort expectancy defines the degree of easiness involved with using the system.

5.1.2. Metrics Used in the Assistance Scenario

Intent Error Rate (IER). This is the rate where the model cannot predict the requested
intent of the user correctly. For instance, the requested intent is PACKAGE_DELIVERY, but
the predicted intent from the BERT model might be POSITIONCHECK. IER is obtained by
calculating the proportion of it occurring in all experiments.

Slot Error Rate (SER). This is the rate of incorrect slot values, i.e., the BERT model
selects an incorrect value for the slot, and slot detection fails, i.e., the model cannot recognize
the slot. Similar to IER, the number of occurrences of failing to recognize slot values is used
to calculate the SER.

Task Success Rate (TSR). This corresponds to Max’s ability to retrieve all the required
information from operator’s verbal commands to complete the task without encountering
any intent or slot error problem.

Average Communication Time (ACT). This is the required time for a task to be com-
pleted on average. The average communication time equals the meantime from the begin-
ning of the conversation to its end. In general, high IER or SER requires more communica-
tion time.

5.2. Physical Setup

The experiments were conducted in our learning factory at Aalborg University [22].
Figure 7 provides a schematic representation of the physical setup, together with a visual
representation of the placement of the phone components on the robot table. A camera
and an external microphone were placed 2.2 and 1.6 meters away from the robot table,
respectively, to capture the participants’ interactions for further analysis.

5.3. Evaluation Procedure

At the beginning of the experiment, the users were introduced to the overall goal and
purpose of the user studies. A short introduction to the scope of the survey was given,
along with a brief explanation of the task at hand. Afterward, the users were introduced to
the methods they could choose to interact with the system, and they were informed that the
whole experiment would be recorded for archival purposes. To conduct the experiments,
participants were asked to randomly choose a task and initiate a dialogue based on sample
dialogues that were distributed to them. A sample task specification and the corresponding
dialogue example of the phone assembly used for the training scenario are shown in
Figure 8a, where the user requests from the system to demonstrate how to assemble the
phone. In Figure 8b, the VA asks the user to verify that all components are in their default
places before starting the demonstration.
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(a)

(b)

Figure 7. An analysis of our experimental setup. (a) Schematic representation of the use case setup.
Each user was positioned 30 cm away from the robot platform. The camera and microphone were
positioned 1.5 m away and the screen where Max was showing messages for the interaction was
placed 80 cm away from the user. (b) Phone components on the robot table.

(a)

(b)

Figure 8. An example of a task and a dialogue for the training scenario. (a) A sample task specification
for the assembly of the mock-up phone. (b) Example dialogue for the task of phone assembly.

In total, 29 people took part in the user study. Based on their demographics shown in
Figure 9, they represent the age group of 20–25 years old primarily, they are mainly users
who identify as males (72.4%), and 75.9% have an IT/engineering background. Moreover,
72.4% of all users had interacted with an industrial robot before, whereas almost 21% had
previous interactions with a VA.
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(a) (b) (c)

Figure 9. Participants’ demographics. (a) Participants’ age range. (b) Participants’ gender. (c) Partici-
pants’ study/work background.

6. Experimental Results
6.1. System Usability Scale

In general terms, the users found the system easy to use, and they were satisfied
with the interaction with the VA and the industrial manipulator. In our experiments, the
SUS score varied between 50.0 and 90.0. The average score in the system usability scale
was 68.53, which, as we mentioned in Section 5.1, means that the users accept the system.
Obviously, they did not have an enthusiastic response to the system for multiple reasons
that we explain in Section 7.

6.2. NASA-TLX

In terms of the mental workload that the users had to overcome while using the
system, the obtained results with NASA-TLX showcase that the system requires low mental
demand (MD) while the users can achieve high performance with minimal effort. Figure 10
depicts the obtained scores for each subscale of the NASA-TLX questionnaire.

Figure 10. The obtained results based on the NASA-TLX questionnaire.

As expected, physical demand (PD) scored the lowest with 1.31 because no physical
interaction with the industrial manipulator was needed to complete the required tasks.
At the same time, temporal demand (TP) also scored low with 1.41 because there were
no time limits or time requirements for the completion of the tasks. Furthermore, it is
important to mention that these scores are related to the evaluation of the overall system.
However, the overall frustration subscale is divided into three categories, i.e., stressed,
insecure, and annoyed, and evaluated for Max and the industrial manipulator separately.
In the box-plot shown in Figure 11, we can see that the overall frustration is low for both
systems. However, the annoyed category scores higher than expected for the VA. The
reason for this reaction from the users were the network delays and lack of quick feedback
from the VA when multiple queries took place during the experiments.
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Figure 11. Scores obtained for the overall frustration subscale of NASA-TLX.

6.3. Subjective Metrics

In a similar fashion, as in the SUS and NASA-TLX metrics, the scores collected for
the subjective metrics proved that the system was intuitive to use. More specifically,
Figure 12 visualizes the mean score for each metric, where higher scores mean better
evaluation of the system. Based on the scores obtained in the comfortability scale (CS), we
can safely state that the users found the system comfortable to use, whereas by looking
at the scores of perceived competence (PC), they were confident in their competencies to
complete the tasks with the help of the system. At the same time, the high score of effort
expectancy (EE) proves that the general impression of the users was that the system is easy
to use; however, based on the score of performance expectancy (PE), there were still users
who were not convinced that the proposed system would assist them adequately in the
work environment.

Figure 12. Scores obtained for the subjective metrics: comfortability scale (CS), perceived competence
(PC), performance expectancy (PE), and effort expectancy (EE).

6.4. Quantitative Performance Results

In order to assess the individual performance of the VA in the tasks of the assistance
scenario (see Table 1), we performed each task 30 times. The evaluation was divided
considering two different areas of interest; the language area and the task area. In the
former area, we assessed how well Max can recognize the users’ intent and slot value
during the dialogue, whereas in the latter we measured the rate where the VA could
execute the requested tasks successfully and the average communication costs. As Table 2
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shows, the VA managed to recognize the operator’s intent with minimum IER but struggled
with recognizing the required slot values. Due to the complexity of the dialogues and the
ambient noise of an industrial shop floor, the VA completed the two tasks with TSR of 0.50
and 0.76, respectively, whereas it required 31.08 and 15.28 s on average to complete the
communication.

Table 2. Quantitative results for the performance of the proposed VA in the tasks of the
assistance scenario.

Task ID IER SER TSR ACT (in secs)

5 0.1 0.43 0.50 31.08
6 0.2 0.06 0.76 15.28

7. Discussion & Conclusions

In this work, we demonstrated a natural language-enabled VA, integrated with a robot
platform to conduct multiple learning, training, and assistance scenarios in a real industrial
environment. In an expansion of our prior work [5], we conducted user studies with an
emphasis on user feedback on satisfaction and usability of our system.

The user study proved that adopting the proposed VA could provide an easier imple-
mentation of Industry 4.0 technologies in factories and support a more intuitive interaction
with intelligent systems and robots. In particular, the system scores high in usability, user
satisfaction, and comfortability metrics whereas it requires low cognitive effort from the
vast majority of the users. At the same time, the VA alone performs with a high success
rate and handles complex queries with minimum error rates.

Naturally, there are several lessons learned and areas for improvement. As many
users in the user studies originated from a diverse geographic range, they spoke with
various accents and dialects during their interaction with the system. This fact created an
unexpected challenge for the VA to understand the verbal commands of certain participants.
As a side effect, the VA would occasionally perform an incorrect command or would request
the participant to repeat the instruction for clarification multiple times leading to higher
annoyance and mental demands, as shown in Figure 11. However, toward the conclusion
of the experiments, the participants appeared to have an easier time interacting with the
system due to their increased familiarity with the system’s behavior. Additionally, most
participants expressed satisfaction with the system, with many of them stating that it was
“fun and intuitive” and that they would be interested in working with such a system in
their workplace.

A significant area for improvement in our future work is the management of ambient
noise. Further investigation into noise-suppression methods of steady-state background
noise (e.g., ventilation, production) in the workplace can significantly improve the speech
recognition accuracy, resulting in a higher task success rate and shorter communication
times. Moreover, the addition of speech-enhancement techniques can also be essential to
alleviate issues with various dialects and decrease the accent recognition error rate.

Despite the fact that the proposed user study confirmed the satisfaction and usability
of the VA, the population of sampled users is limited, and the majority of them are lab
engineers, researchers, and students with a robotics background. Future plans include
organizing a large-scale user study with our industry partners. Together with the shop floor
experts, we will specify their LTA tasks and collect and annotate a new dialogue corpus
for training the BERT model in order to implement and assess the VA in the company.
Additionally, the robot control algorithms will be adjusted based on the robots in use.
Employees and shop floor specialists will be invited to evaluate the VA’s generality.

The source code of the proposed VA and the supplementary material of the user study
are accessible at https://github.com/lcroy/Virtual-Assistant-Max, accessed on 1 October
2022) to support the reproducibility of the proposed framework.

https://bit.ly/VA_MAX
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