
Citation: Canle, M.; Antão-Geraldes,

A.M. A Snapshot on the Occurrence

and Risk Assessment of Organic

Pollutants in an Urban River. Appl.

Sci. 2023, 13, 146. https://doi.org/

10.3390/app13010146

Academic Editors: Raffaele Marotta,

Mauro Marini and Vlasoula Bekiari

Received: 24 October 2022

Revised: 13 December 2022

Accepted: 20 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Snapshot on the Occurrence and Risk Assessment of Organic
Pollutants in an Urban River
Moisés Canle 1,* and Ana M. Antão-Geraldes 2,3,*

1 React! Department of Chemistry, Faculty of Sciences & CICA, University of A Coruña,
E-15071 A Coruña, Spain

2 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia,
5300-253 Bragança, Portugal

3 Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC),
Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

* Correspondence: moises.canle@udc.es (M.C.); geraldes@ipb.pt (A.M.A.-G.)

Abstract: A snapshot screening was carried out in an urban river at the end of a dry period in the water
and sediments to assess the presence and environmental risk for the following CECs: paracetamol,
ibuprofen, diclofenac, clofibric acid, carbamazepine, ofloxacin, caffeine, tonalide, galaxolide, and
bisphenol-A. Concomitantly, the occurrence and environmental risk of sixteen PAHs congeners,
six indicator PCBs, and twelve dioxin-like PCBs were evaluated in sediments. The most abundant
and ubiquitous CECs were bisphenol A (BPA) and caffeine, and the total contents in the surface
water varied between 90.95–212.18 and 3.17–167.38 ng·L−1, respectively. The concentrations found
in lixiviates ranged from 134.94–772.85 (BPA) and 14.43–92.60 ng·L−1 (caffeine). Other CECs were
detected in lower concentrations, and their presence varied between sampled sites. Values of total
PAHs congeners in sediment varied between 10.39–52.91 ng·g−1 dw. The majority of the detected
PAHs seem to have a pyrolitic origin with a small petrogenic contribution. Total PCBs’ concentrations
ranged from 5.06 to 6.13 ng·g−1 dw. Despite the relatively low concentration of most of the detected
compounds, the overall environmental risk, considering the screened compounds altogether, cannot
be considered negligible. The obtained results are discussed in terms of other data available (though
highly dispersed) in the literature. A four-color alert system is included to inform about the level of
risk associated with the amount of each CEC, PAH, and PCB.

Keywords: urban river; water and surface sediments; CECs; PAHs; PCBs; risk evaluation

1. Introduction

Freshwater aquatic ecosystems have high levels of biodiversity and offer a wide range
of ecosystem services, including water supply and purification as well as cultural and
recreational services [1]. However, despite the Water Framework Directive (WFD- Directive
2000/60/EC of 23 October) and a set of “satellite legislation” [2], establishing that aquatic
systems should achieve good ecological status, water and sediment anthropogenic con-
tamination continue to be a reality, jeopardizing the services provided by these systems.
Indeed, one of the major global threats that these ecosystems face is exposure to contami-
nation resulting from the inputs of complex mixtures of compounds from several sources
(e.g., atmospheric deposition of substances originated from wildfires, vehicle exhaustion
and industrial facilities, outflow from wastewater treatment plants (WWTP) and other
non-point sources) [3,4]. Even the most remote aquatic ecosystems are affected by contami-
nation [5,6]. Among the most worrying pollutants are contaminants of emerging concern
(CECs), polyaromatic hydrocarbons (PAHs) and polychloro biphenys (PCBs). CECs in-
clude a broad range of substances such as pharmaceuticals, pesticides, plasticizers, and
fragrances. These compounds are not commonly monitored and when dumped into the en-
vironment, from point and diffuse sources, many still have biological activity and undergo
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transformation into other compounds that may cause undesired effects on ecosystems and
health and, therefore, become hazardous, persistent, or semi-persistent and ubiquitous
contaminants [7–16].

PAHs are generally persistent, semi-volatile, and hydrophobic, with low water sol-
ubility and, despite being widely distributed in the environment, their concentrations
are usually very low in water, with a clear tendency to be adsorbed onto sediments [17].
Most PAHs are generated by pyrolysis or an incomplete combustion of organic mate-
rial [18,19], being toxic, mutagenic, carcinogenic, teratogenic, and very bioaccumulative
compounds [19–24]. PCBs are a group of chlorinated persistent organic pollutants. Like
PAHs, PCBs are hydrophobic with low water solubility, persistent, ubiquitous, and bioac-
cumulative [25]. PCBs were widely spread during the last century through many industrial
processes, as undesired reaction products. Due to their persistent nature and harmful
impacts on organisms and environment, PCBs have been banned in different countries
since the 1970s. Because of their long half-life, they can still be detected long after the
ban [18,26–32]. More than 700 substances included in 20 classes have been identified in
European aquatic ecosystems (NORMAN network, 2016, [33]). Despite this vast number,
the legal control over their discharge and environmental levels has not been set up yet from
many of them. Indeed, only 33 substances or compound classes are considered priority
substances by WFD and EC Directive, 2013/39/EU. The management of these substances
in freshwater aquatic environments faces two challenges: the consequences of chronic
exposure to these mixtures are mostly unknown [34], and there is a serious lack of informa-
tion concerning most aquatic ecosystems’ chemical and ecological status [2,35]. Despite
the many references that focus on monitoring the occurrence of CECs in surface water in
European freshwater ecosystems, monitorization of these compounds in surface waters is
still not routinely carried out in (Table S1) and PAHs’ and PCBs’ monitoring in European
riverine sediments is even scarcer (Table S2). After an extensive review, the only existing
approaches, scanning for CECs in Portuguese freshwaters, were the references [36–46]
in superficial waters and WWTP. PAHs and PCBs have been mainly monitored in estu-
arine and marine ecosystems [47–50], except for the evaluation of the presence of PCBs
performed by [51] in a small intermittent urban stream. To our knowledge, this study is
the first approach to CECs, PAHs, and PCB(s) carried out in the upper Portuguese part
of the Douro basin (NE Portugal). For this purpose, the Fervença river was used as an
example of a stressed urban river in a low-density region. Therefore, the objectives of this
exploratory study were: (a) to determine the occurrence and environmental risk of parac-
etamol, ibuprofen, diclofenac, clofibric acid, carbamazepine, ofloxacin, caffeine, HHCB,
AHTN, and BPA both in water and sediment lixiviates; (b) to estimate the occurrence and
environmental risk of PCBs (IPCBs: 28, 52, 101, 138, 153, and 180; DLPCBs: 77, 81, 105, 114,
118, 123, 126, 156, 157, 167, 169, and 189) and PAHs in sediments; (c) to assess in a relatively
simple and straightforward form the environmental risk posed by the different studied
substances, following a procedure that is easily adapted for other substances not studied
here. Additionally, the obtained results were compared with dispersed studies on these
contaminants, carried out previously in other European countries, and gathered in Tables
S1 and S2. We would like to stress the relevance of this preliminary information for river
managers and decision-makers. A four-color alert system is included to inform about the
level of risk associated with the amount of each CEC, PAH, and PCB.

2. Materials and Methods
2.1. Study Site

The Fervença River (River Douro Basin—Figure 1) runs for about 25 km, flow-
ing through Bragança, NE Portugal, the major city located in this region (41◦48′20′′ N;
6◦45′25′′ W—24,078 inhabitants [52]). The Fervença is a tributary of the Sabor River, that is,
itself, a tributary of the Douro River, showing three distinct sections: (1) upstream the city,
a rural area, where the main sources of diffuse contamination are associated with extensive
agriculture and farming; (2) within the city, where diffuse contamination is generated from
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storm water and runoff from constructed areas, and point contamination sources originated
mainly from illegal sewage discharges and (3) downstream the city and the wastewater
treatment plant (WWTP) flowing throughout a rural area.

Figure 1. (A): Location of Fervença River, Bragança city, sampling sites and WWTP and (B): Riverbed
conditions F1, F2, and F3.

Bragança WWTP planned for a population of 41,955 inhabitants, intended for domestic
and industrial wastewater (WW) treatment, and located downstream of the city, is the
most important contamination source herein. After secondary treatment, WW is disposed
directly into the river. The climate in NE Portugal is continental, with a Mediterranean
influence. Therefore, this permanent river has a torrential hydrological regime, with large
flow variations, in line with rainfall amounts. However, the river flow was low due to
the precipitation below the average values from the end of spring 2017 until March 2018
(Figure S1).

2.2. Water and Sediment Samples and Contaminant Determination

The concentrations of pollutants tend to increase during dry periods. The occurrence
of such periods has become more frequent due to the climate change situation in which
we are living, and this was the case with the sampling campaign for this piece of research
that took place by the end of the mentioned dry period, on 12 February 2018. The most
representative sampling site was selected at each riverine section: F1, F2, and F3. The
selection of the pollutants to be assessed was based on the following criteria: (i) they are
present in the EU’s watch list for emerging water pollutants, or (ii) they are candidates to
follow-up EU’s watch lists, or (iii) they may have a relevant potential impact on human
and environmental health.

To characterize each sample site, several environmental parameters—temperature, pH,
dissolved oxygen (DO), conductivity, and total dissolved solids (TDS)—were measured at
each point. In addition, total phosphorus (TP) and phosphate (SRP) were determined in the
lab according to [53]. In addition, the degree of fine interstitial sediments’ deposition and
the disturbance of riparian wood was visually evaluated in each sampling site (Figure 1).

Concerning the analysis of contaminants, three replicated 150 mL of water were
sampled at 0.2 m depth, in the middle of the river, onto glass bottles previously rinsed
with 10% nitric acid and acetone. Bottle caps were Teflon-laminated on the inner part
that might be in contact with the sample. Surface sediments were randomly sampled in
triplicate, from the top 5 to 10 cm depth, using a core sampler, and pooled and mixed
together. Immediately after collection, the sediment samples were stored in acid-rinsed
sterilized polyethylene bags. Sediments lixiviates were prepared [54] by stirring 4 parts
of milli-Q water and 1 part of sediment during 24 h. The resulting fluid was allowed to
decant for ca. 1 h. The supernatant fluid was filtered through paper with a pore size ca.
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20–25 µm that had been previously washed with distilled water and then dried. The first
10 mL of supernatant liquid were rejected to reduce the amount of impurities. Both water
and sediment samples were stored in the dark in a refrigerated container and then frozen
at −20 ◦C until analysis.

Extraction of CECs was carried out by SPE with polymeric cartridges of Waters Oasis
HLB and elution with methanol. Samples were concentrated on a rotary evaporator under
N2 and the obtained concentrate was redissolved in methanol or in the mobile phase accord-
ing to the analytical technique. CECs analysis was carried out by HPLC/MS for all com-
pounds except galaxolide and tonalide, using a Thermo Aquasil 3 mm, 150 mm × 4.6 mm
column. Elution was performed in gradient, as follows: A = water + 5 mM ammonium
acetate, B = methanol + 5 mM ammonium acetate, T = 50 ◦C, injection volume 20 µL, and
1 mL·min−1. Detection was carried out in ESI+ and ESI−modes by HRMS.

Galaxolide and tonalide were analysed by GC/MS using a J&W, DB-XLB
60 m × 0.25 mm × 0.25 mm column. Injection was performed on PTV mode; vol. of injec-
tion 9 µL, T = 50 ◦C, splitless time 0.20 min, splitless flux 20 mL·min−1, transfer velocity
3 ◦C·s−1, and final temperature 300 ◦C (15 min). Elution was carried out as follows: 40 ◦C
(5 min) to 200 ◦C at 10 ◦C·min−1, to 300 ◦C at 30 ◦C·min−1, to 300 ◦C (10 min). Constant flux
at 1 mL·min−1, transfer line 290 ◦C. Detection was performed by EI+ in tandem MS-MS.

PAHs and PCBs were extracted by SPE with C18 J disks. Elution was carried out with
ethyl acetate. Concentration was carried out in a rotary evaporator under N2, redissolving
the concentrate in ethyl acetate. Analysis was performed by GC-MS on a J&W, DB-XLB
60 m × 0.25 mm × 0.25 µm column. Injection was made on PTV mode, initial T = 50 ◦C,
slipt flux 50 mL·min−1, splitless time 5 min, injection time 0.5 min, transfer rate 4 ◦C/min,
final T 290 ◦C, and injection volume 9 mL. Elution was made as follows: 50 ◦C (2 min) to
150 ◦C at 10 ◦C·min−1, to 300 ◦C (5 min) at 3 ◦C/min. Constant flux: 1 mL·min−1. Transfer
line: 290◦C. Detection was made in SIR (Selected Ion Recording) mode.

2.3. Quality Assurance/Quality Control

Special care was taken to prevent potential contaminations during sampling and
analysis. The absence of contamination was assessed by pouring LC-MS grade wa-
ter into collection bottles and carrying out the whole analytical procedure. To prevent
cross-contamination, both the sample loop and the extraction column were flushed at a
2 mL min−1 flow with 98% of methanol after every extraction and conditioned with the
appropriate eluent before analyzing the next sample.

Calibration curves (0.1–500 ng·L−1) were generated using linear regression analysis.
Calibration curves were injected at the beginning and the end of each sequence. Blanks
(Mili-Q water, 5 mL) were injected in every 2 vials to prevent carryover. Standards of
known concentration were measured through the sequence to test background levels and
to check for signal stability. Where samples showed concentrations above the linearity
range, the samples were diluted and reinjected. Quality controls were carried out by blank
analysis, as well as reproducibility and repeatability tests.

2.4. Environmental Risk Assessment

The Hazard Quotient (HQ) was calculated to evaluate the potential ecological risk. HQ
is the ratio between the measured environmental concentration (MEC) and the predicted
no-effect concentration (PNEC) [55–57]. When the measured environmental concentrations
were the below LOQ, their values were considered as being LOQ/2 [58]. PNEC value is
a ratio between a benchmark concentration selected as the lowest toxicity value from the
available experimental data for aquatic organisms from different trophic levels (e.g., algae,
crustacean, aquatic insect larvae, fish) and an assessment factor (AF) that varies between
1000 (if there is only acute toxicity data for at least one of the evaluated trophic levels)
and 10 (when there is chronic toxicity data for all trophic levels). Therefore, an exhaustive
bibliographic search was performed in order to compile a list of published PNEC, derived
preferentially from chronic toxicity values, for the compounds evaluated in the present
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research (Table S3). Reference [59] recommends using PNEC values derived from chronic
toxicity, because these compounds generally induce most likely chronic rather than acute
toxic effects. Moreover, the lowest value for PNEC for each compound was chosen to
maximize the protective threshold. If HQ < 0.1, the risk is negligible; if the 0.1 < HQ < 1, the
risk is low; however, a probable adverse effect should be considered; when 1 < HQ < 10,
the risk is moderate and, finally, when HQ > 10, the risk is high. Toxic Units (TUs) for each
group of compounds were determined by adding the respective HQs [13,60].

Because of the scarcity or lack of toxicity data for PAHs in sediments, PNEC values for
sediments were derived from PNEC values for water using the equilibrium partitioning
method expressed as the simplified formula suggested in [61]. The PNEC values used
in this approach are presented in Table S4. Complementarily, the classification of PAHs’
contamination, proposed by [62], was used. ΣPAHs were categorized into four groups:
low (0–100 ng·g−1), moderate (100–1000 ng·g−1), high (1000–5000 ng·g−1), and very high
(>5000 ng·g−1). Depending on PAHs composition, it is possible to identify different sources
of these compounds by carrying out the diagnostic determination ratios—the ratios of
defined pairs of individual compounds [20,22,30,63–66]. In the present study, the following
ratios were determined: F/(F + Pyr), Ant/(Ant + P), BaA/(BaA + Chr), IcdP/(IcdP +
BghiPer) and ΣLPAHs (low molecular weight: 2 and 3 ring)/ΣHPAHs (high molecular
weight: 4 to 6 ring). To overcome the shortage related to the identified discrepancy among
the values of diagnostic ratios [66,67], the use of the total index calculated was suggested as:

Total Index = An/An + P/0.1 + F/F + Pyr/0.4 + BaA/BaA + Chr/0.2 + IcdP/IcdP + BghiPerP/0.5

Similarly to PAHs, PCBs’ PNECs determination for sediment were derived from
PNEC for water (Table S5). However, the available PNEC are considered to be merely
indicative values [68] and were only available for PCBs indicators. These PCBs have no
or only one chlorine atom at the ortho-position. Mixtures of the non-dioxin-like PCBs are
generally assessed on the basis of a chemical analysis of the sum of the seven so-called
‘indicator PCBs’; these were selected as suitable representatives for all PCBs because they
are predominantly present in biotic and abiotic matrices [69]. So far, there is still no uniform
standard available to assess the biological effects of PCBs [26,70]. Therefore, and also due
to the lack of PNEC water values for most of the dioxin-like PCBs, their potential toxicity
was also estimated by using the values of the Toxic Equivalence Factors (TEFs). The TEF
value for each PCBs was multiplied by its environmental concentration in order to calculate
Toxic Equivalents (TEQs) (Table S5). The sum of all TEQs allowed the determination of the
total PCB TEQ [71]. The obtained PCB TEQ was compared with interim sediment quality
guideline (ISQGs) of 0.85 pg TEQ·g−1 dw and the probable effect levels (PELs) of 21.5 pg
TEQ/g as recommended by [72].

3. Results and Discussion
3.1. Physicochemical Parameters

Conductivity, TDS, total phosphorus, and phosphate showed increasing values from
F1 to F3 (Table 1). The values obtained are higher than those found in other rivers of the
region and are higher than expected for the time of the year. These can be explained not
only by the anthropogenic impacts that the Fervença is subjected to but also to the low
flow after a long absence of precipitation [73]. The deposition of fine interstitial sediments
showed the same pattern: in F1, riverbed > 50% of the material consists of small pebbles
and coarse sand (0.5 cm); in F2, 30–50% of the material is more abundant larger than
coarse sand (0.5 cm); and the rest is formed by silt and sand. In F3, the riverbed is only
composed of silt and fine sand (Figure 1). This pattern indicates an increasing gradient of
eutrophication and anthropogenic disturbance from F1 to F3.
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Table 1. Location, channel and riparian indexes, macroinvertebrate community structure and some
water parameters (mean values) in F1, F2, and F3 at the time of the present study.

Parameters F1 F2 F3

Location and height over sea level
41.79454 N
−6.8008 W

692.9 m

41.7985 N
−6.7645 W

668.7 m

41.7716 N
−6.7136 W

497.8 m
Temperature (◦C) 7.04 6.54 6.68

Dissolved oxygen (mg·L−1) 9.8 (83) * 10.3 (85) * 9.0 (74) * 1

Conductivity (µS·cm−1) 149 209 290
Total dissolved solids (mg·L−1) 75 105 145

pH 7.0 6.5 7.2
PO4

3− (mg·L−1) 0.03 0.04 0.42
Total phosphorus (mg·L−1) 0.08 0.23 1.10

Riparian Quality Some disturbance
Good quality

Some disturbance
Good quality

Disturbance
Fair quality

* (DO%); 1 in summer months, dissolved oxygen can reach 2.3 mg·L−1 [73].

3.2. CECs Monitoring in Water

All the targeted CECs were found in the Fervença river, and the results are summarized
in Table 2 and Figure 2. A four-color alert system is included to inform about the level of risk
associated with the amount of each CEC. Paracetamol and clorofibric acid concentrations
found in the present study were near or below the LOQ. As expected, the highest diversity
and compound abundance was detected in F3 (the sampling site downstream Bragança city
and its WWTP). The most abundant compounds were diclofenac (398.35 ng·L−1), ofloxacin
(376.16 ng·L−1,), tonalide (231.43 ng·L−1), galaxolide (224.36 ng·L−1), BPA (212.18 ng·L−1),
Caffeine (167.38 ng·L−1), carbamazepine (52.10 ng·L−1), and ibuprofen (21.81 ng·L−1). The
assumption that WWTP effluents are the main sources of superficial water contamination
has been proven in several studies: [39,40] observed that the diclofenac and ibuprofen
concentrations ranged between 79–380 and 370–3600 ng·L−1, respectively, in Bragança
WWTP effluent samples obtained in summer and autumn; Ref. [74] analyzed several
Portuguese WWTP effluents and despite the effluent concentrations of carbamazepine,
clorofibric acid, diclofenac, ibuprofen, caffeine, HHCB, and AHTN were generally much
lower than the influent concentrations (clorofibric acid and diclofenac demonstrated a high
level of adsorption to the sludge), none of these compounds were totally removed in the
WW treatment process. Other international approaches [13,15,75–77] also demonstrate
that the conventional WWTPs are neither specifically designed nor operated to remove
residual concentrations of organic pollutants, causing the potential accumulation of such
pollutants in the receiving water bodies. Nevertheless, in the sampling points located
upstream the WWTP, ibuprofen ranged between 7.65 (F1) and 6.94 ng·L−1 (F2), and caffeine
ranged between 3.17–10.23 ng·L−1 in F1 and F2, respectively. AHTN in F2 showed a
similar concentration to F3 (207.92 ng·L−1). The highest BPA concentration observed in the
Fervença river was achieved in F1 (642.69 ng·L−1). The concentrations achieved in F1 and
F2 indicate the occurrence of non-point pollution sources [78].
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Table 2. Measured mean environmental concentrations (MEC) and Hazard Quotient (HQ) for CECs
dissolved in water and lixiviates from sediments in F1, F2, and F3.

F1
MEC
ng·L−1

HQ
F2

MEC
ng·L−1

HQ
F3

MEC
ng·L−1

HQ
L-F1
MEC
ng·L−1

HQ
L-F2
MEC
ng·L−1

HQ
L-F3
MEC
ng·L−1

HQ

Pharmaceuticals

Paracetamol 0.05 0.002 0.05 0.002 0.05 0.002 0.05 0.002 0.05 0.002 0.05 0.002

Ibuprofen 7.56 0.756 6.94 0.694 21.81 2.181 10.36 0.006 18.80 0.011 0.05 0.005

Diclofenac 0.05 0.001 0.05 0.001 398.35 7.967 92.63 0.142 0.05 0.001 0.05 0.001

Clofibric Acid 0.05 0.000 0.05 0.000 0.05 0.000 21.47 0.003 0.05 0.000 0.05 0.000

Carbamazepin 0.05 0.000 0.05 0.000 52.10 0.021 0.05 0.000 0.05 0.000 47.10 0.019

Ofloxacin 0.05 0.002 0.05 0.002 376.16 12.539 0.05 0.002 0.05 0.002 0.05 0.002

Stimulant alkaloid

Caffeine 3.17 0.063 10.23 0.205 167.38 3.348 14.43 0.030 92.60 0.191 20.41 0.042

Musk fragrancies

Galaxolide (HHCB) 0.05 0.000 0.05 0.000 224.36 0.051 0.05 0.000 0.05 0.000 0.05 0.000

Tonalide (AHTN) 0.05 0.000 207.92 0.059 231.45 0.066 0.05 0.000 0.05 0.000 0.05 0.000

Plasticizers

Bisphenol A (BPA) 642.69 64.27 90.95 9.095 212.18 21.218 134.92 0.957 149.27 1.059 772.85 5.484

Toxic units (without BPA) 0.824 0.964 26.175 0.185 0.207 0.071

Total Toxic units 65.09 10.06 47.393 1.142 1.266 5.555

Limit of quantification (LOQ) = 0.1 ng·L−1 (concentrations below LOQ were considered as LOQ/2); Green:
Negligible risk; Yellow: Low risk; Orange: Moderate risk and Red: High risk.

Figure 2. Relative percentage of CECs found in water (A) and in sediment (B) in F1, F2, and F3.

3.3. CECs Monitoring in Sediment Lixiviates

The results seem to indicate that the presence of CECs in sediments might be indepen-
dent of the distance and discharge from WWTP (Table 2; Figure 2). Ibuprofen, diclofenac,
clorfibric acid, carbamazepine, caffeine, and BPA were trapped in the sediments (lixiviates).
In F1 and F3 an accentuated divergence in concentrations between water and sediment. [79]
also observed that sites with higher concentrations of CECs in sediment generally exhibit
lower concentrations in water and vice-versa. Ibuprofen was found in F1 (10.36 ng·L−1)
and in F2 (18.80 ng·L−1). Diclofenac and clorofibric acid were detected only in the F1 sedi-
ment. Ibuprofen was found both in F1 (10.36 ng·L−1) and F2 (18.80 ng·L−1). The observed
concentrations for diclofenac and ibuprofen in F1 can be related with the sandy nature
of the sediments, as [80] demonstrated that diclofenac and ibuprofen exhibit significant
sorption to sandy sediments. Carbamazepine was found in similar concentrations to those
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found in water in F3. Reference [79] also observed that carbamazepine was in elevated
concentrations in sediments located downstream from WWTP, probably with high sorption
and low migration rates [81].

Similarly to surface water, the most ubiquitous compounds found in sediments were
caffeine and BPA. It is not surprising that BPA is the most abundant compound found
in the river. Indeed, it is one of the most widely produced plasticizers used massively
in the formulation of polycarbonate and epoxy resins. Polycarbonate is used in reusable
plastics, food packages, drinking water bottles, dental sealants, and in many other products.
Epoxy resins are generally coated in food contact surfactants and electrical coils [8,82].
BPA release probably originated from the degradation of the polymer structure of plastics
in the environment and the wastewaters [83,84]. Reference [85] verified that BPA was
found in higher concentrations in suspended matter than in sediments because of the
affinity of BPA for small organic particles. Reference [84] corroborated the results obtained
by [85], observing that BPA is mostly present in water and suspended solids (52%), soil
(25%) and sediments (23%). This behavior might be due to its moderate hydrophobicity
(log Kow = 3.32: Table S6). The results obtained for F1 are in line with these assumptions.
In F2 and F3, the higher levels of BPA associated with sediments, and eventually to sus-
pended solids, can be explained by the gradual increasing predominance of fine particles
in the riverbed (Figure 1). Caffeine was also found in F1, F2, and in F3. This compound is
considered an indicator of anthropogenic disturbance because it is present in all ecosystem
compartments (water, sediment, and biota) including in rainwater [9,86]. As expected,
in the Fervença river, it was detected both in water and sediments, with increasing con-
centrations in water from F1 to F3. Nevertheless, in F1 and F2 the caffeine concentration
was higher in sediments than in water. The ability of the studied compounds to sorb to
the sediments is influenced by their octanol-water partitioning coefficient (Kow: Table S6):
The higher log Kow values, the greater is the tendency for a given compound to be sorbed
into the sediment [60,87]. However, this correlation is not always consistent with the
concentrations in sediments for all the detected compounds. As shown by [78,79], for
small rivers, the ratio of the measured concentrations between water and sediment is not
only influenced by the solubility of CECs but also by the polar and ionic nature of the
compounds [60,80,81,87]. Indeed, this ratio depends on other local characteristics such as:
sediment mineral composition and grain size [81]; temporal contamination fluctuations [78],
river bed morphology [88,89]; the degree of shading in the riverbed promoted by riparian
vegetation [90], which influences photochemical degradation rates of many CECs [91]; and
the river ecosystem complexity and associated biodiversity [4,92–94]. These characteristics
have an influence on the CECs’ sorption and desorption behavior and ultimately on water
and sediment concentrations’ ratio.

3.4. Comparative Analysis of CECs in Relation to Previously Available Data

The literature published after 2008 in Portugal and Europe in freshwater ecosystems
was searched considering the CECs included in the current approach. Extensive data were
found for water in Europe and less for Portugal. For sediments, the existing research is
much less abundant (Table S1). Due to the general data lack for sediments, this analysis is
mainly centered on water. Contrarily to River Liz (Portugal) and other European rivers, the
paracetamol concentrations were ≤0.05 ng·L−1 in the Fervença river. In several surveyed
European rivers, the concentrations of ibuprofen exceed 1 µg·L−1 in water. Even in the
monitored Portuguese rivers, the observed concentrations exceeded those detected in the
Fervença waters, except the Douro tributaries Tinhela, Rabaçal, and Cabrum, which flow
throughout natural areas with almost no human occupation. Ibuprofen has a high ubiquity
in surface water because it is one of the most prescribed drugs in Europe [95,96] and Portu-
gal [37], and together with diclofenac, it is considered to be ‘pseudo-persistent’, as their
constant use results in their continuous replenishment within receiving environments [97].
Similarly, diclofenac seems to have a high ubiquity both in water and sediment in Fer-
vença. The same range concentrations to those found in F3 (398.35 ng·L−1) were detected



Appl. Sci. 2023, 13, 146 9 of 22

in Kalamas river (Greece), Thames river, and several German streams (Table S1). Similar
concentrations were found in the Ave river (Portugal) in autumn [98]. However, unlike the
Ave and some other European rivers that flow through densely urbanized, industrialized
areas and where very intensive agriculture is practiced, the Fervença flows through areas
with low population density, being non-industrialized and with more extensive agriculture.
Thus, one would expect to always find lower concentrations in the Fervença even in F3
(located downstream of the WWTP). Nevertheless, it should be noted that although our
results were obtained in February, the river had flow values similar to those of late summer
due to the lack of precipitation, which allows us to assume that the concentrations observed
for diclofenac and the other contaminants are concentrations typically observed in late
summer before the first rains. Concerning carbamazepine, the obtained concentrations
(higher in F3: 52.10 ng·L−1) are in line with those obtained in other rivers such as river
Ouse (UK). Ofloxacin, in F3, showed one of the highest concentrations when compared
with other similar studies (Table S1). Caffeine concentrations ranged from 3.17 (F1) to
167.38 ng·L−1 in F3. Regarding the observed concentrations, it is verified that they are of
an identical order of magnitude to those found in other Portuguese and European rivers
located in more densely urbanized and industrialized areas (Table S1). For HHCB, the
observed concentrations in F3 are in line with the highest concentrations reported for river
Prut (Romania) and Leça River (Portugal). The observed concentrations for AHTN are
of the same magnitude as those reported for river Molgora (Italy) (Table S1). However,
contrarily to what we observe in the Fervença, most authors (Table S1 and [99]) have found
that the HHCB/AHTN ratio is always greater than one in the environment. According
to [100], the larger concentrations of HHCB are explained by the higher photodegradation
rates of AHTN in the natural environment. However, in Fervença, this ratio is lower than
one at the sampling period. AHTN concentrations in Fervença are one of the highest found
in literature. BPA also demonstrated relatively high concentrations when compared to
other European rivers (Table S1).

3.5. PAHs and PCBs Presence in Surface Sediments

PAHs were categorized in three groups: (1) 2–3 ring; (2) 4 ring; and (3) 5–6 ring
(Table 3). A four-color system, indicating risk, has been adopted, as described above. In F1,
the three groups demonstrated very similar total concentrations: 2–3 rings (15.75 ng·g−1

dry weight (dw)); 4 rings (14.98 ng·g−1 dw); and 5–6 rings (12.82 ng·g−1 dw). In F2, the
highest concentrations were observed for 2–3 ring PAHs (18.88 ng·g−1 dw) and 4 ring
PAHs (28.11 ng·g−1 dw), and for 5–6 ring PAHs, the total concentrations were 5.93 ng·g−1

dw. In F2, the highest concentrations were observed for 2–3 ring PAHs (18.88 ng·g−1 dw)
and 4 ring PAHs (28.11 ng·g−1 dw), and for 5–6 ring PAHs, the total concentrations were
5.93 ng·g−1 dw. F3 presented the lowest concentrations for all groups. The most abundant
PAHs in this sampling site were 2–3 rings (5.25 ng·g−1 dw). Indeed, the highest Σ PAHs
were observed in F2 (52.92 ng·g−1 dw), followed by F1 (43.55 ng·g−1 dw). The lowest Σ
PAHs (10.39 ng·g−1 dw) were detected in F3. Nevertheless, in F1 and F2, the higher weight
molecular PAHs (HPAHs) were predominant. A similar pattern was observed for Tiber
River (Italy) and Danube (Serbia). Nevertheless, the contamination level due to PAHs can
be considered low compared to other European river sediments (Table S2). Indeed, the
observed concentrations in the Fervença were similar to the lowest concentrations observed
in the European rivers. These concentrations can be explained by the fact that the Fervença
River is located in a region with low population density and little industrialization.
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Table 3. Measured environmental concentrations (MEC) and Hazard Quotient (HQ) for the analyzed
PAHs in sediments in F1, F2, and F3. Compound name abbreviations are in brackets.

F1
MEC

ng·g−1 dw
HQ

F2
MEC

ng·g−1 dw
HQ

F3
MEC

ng·g−1 dw
HQ

2–3 rings
Naphtalene (N) 0.05 0.001 0.05 0.001 0.05 0.001

Acenaphthylene (Acy) 0.05 0.005 0.05 0.005 0.05 0.005
Acenaphthene (Ace) 0.05 0.001 0.05 0.001 0.05 0.001

Fluorene (F) 2.63 0.035 1.07 0.014 0.08 0.001
Phenanthrene (P) 8.08 0.019 10.13 0.024 2.95 0.007
Anthracene (Ant) 4.89 0.076 7.53 0.118 2.07 0.032

Σ 15.75 18.88 5.25

4 rings
Fluoranthene (Flu) 2.48 0.165 6.28 0.418 1.31 0.087

Pyrene (Pyr) 6.97 0.134 9.25 0.178 0.35 0.007
Benz(a)anthracene (BaA) 2.81 0.281 9.40 0.940 1.31 0.131

Chrysene (Chr) 2.72 0.045 3.18 0.053 0.49 0.008
Σ 14.98 28.11 3.46

5–6 rings

Benzo(b + j)fluoranthene (BbjF) 2.79 2.70 - 0.69 -
Benzo(k)fluoranthene (BkF) 4.77 0.954 1.80 0.359 0.49 0.099

Benzo(a) pyrene (BaP) 1.21 0.302 0.05 0.013 0.17 0.042
Dibenz (a.h)anthracene (DBA) 0.05 0.004 0.05 0.004 0.05 0.004
Benzo(ghi)perylene (BghiPer) 2.21 0.737 0.05 0.017 0.05 0.017
Indeno(1.2.3-cd) pyrene (IcdP) 1.79 0.138 1.28 0.099 0.23 0.018

Σ 12.82 5.93 1.68
ΣTotal ≥ 4 rings 27.80 34.04 5.14

Toxic units 2.897 2.244 0.460

Limit of quantification (LOQ) = 0.1 ng·L−1 (concentrations below LOQ were considered as LOQ/2); Green:
Negligible risk; Yellow: Low risk; Orange: Moderate risk and Red: High risk.

The diagnostic ratio indicated the dominance of PAHs with pyrolitic origin with a
small petrogenic contribution. The mixed combustion of biomass and fossil fuels seems to
be the primary source of pyrogenic PAHs (Table 4).

Table 4. PAH diagnostic ratios calculated for the analyzed samples and their limit values, indicating
pyrogenic/petrogenic sources.

Ratios F1 F2 F3 Limit Values for
Petrogenic Source

Limit Values for
Pyrogenic Source

Ant/(Ant + P) 0.38 0.43 0.59 <0.1 >0.1
F/(F + Pyr) 0.26 0.40 0.78 <0.4 >0.5 a

BaA/(BaA + Chr) 0.39 0.75 0.73 <0.2 >0.35 b

IcdP/(IcdP + BghiPer) 0.48 0.96 0.82 <0.2 >0.5 c

LMW/HMW 0.57 0.55 1.02 >1 <1
Total Index 8.01 14.72 20.69 <4 >4

a 0.4–0.6 petroleum (liquid fossil fuels, crude oil) combustion and >0.6 biomass and coal combustion. b 0.2–0.35
petroleum combustion and >0.35 biomass and coal combustion. c 0.2–0.5 petroleum combustion and >0.5 biomass
and coal.
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The observed trends in PAHs’ concentrations in the Fervença might be explained
based on a multiplicity of factors: from those intrinsic to chemical properties of PAHs to
those concerning riverine ecosystem functioning, biota composition (which, as mentioned
in the previous section, can decisively influence their biodegradation rates [27,92] and
environmental disturbance such as coarse riverbed clogging and atmospheric deposition
rates [20,22,24]. The highest concentrations of PAHs found in F1 and F2 might be related to
the dominance of HPAHs which, according to [24], have a higher tendency to accumulate in
the sediments, since they are less soluble in water than LPAHs (higher log Kow—Table S7).

Since HPAHs are released during the incomplete combustion (pyrolysis) of organic
material, the main sources of these compounds in Portugal are, according to [101], forest
fires, agricultural wastes and industrial waste incineration, and residential wood combus-
tion (RWC). The mentioned authors estimated that the total emissions of PAHs due to RWC
in Portugal is about 9 Tm·y−1 (Bragança district contribution is about 0.3 Tm·y−1; Figure 3).
Indeed, RWC is higher in Portuguese inland rural areas, such as Bragança, where winters
are more severely cold. Figure 3 shows that most PAHs emitted from RWC are present
in samples from F1 to F3, indicating that sediment contamination might have partially
resulted from local and/or regional atmospheric dust deposition [102]. Concerning LPAHs,
(petrogenic origin), it is plausible to hypothesize that their main sources might be the
rainwater runoff from urbanized areas and roads (F1 and F3 are located near a regional
road) discharged directly into the river or into a sewage network. Indeed, it is known that
rainwater runoff is one of the most important sources of organic pollution [102–104].

Figure 3. (A): PAHs’ relative abundances in sediments in F1, F2, and F3; (B): PAHs’ emissions
from RWC (T y−1) in Bragança district (source: [101]). The name of the compounds and respective
abbreviations are presented in Table 3.

Concentrations of PCBs’ congeners and relative abundance are presented on Table 5
and Figure 4, respectively. Both in F1 and F2, PCB 101 congener was the most abundant
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(1.32 and 1.56 ng·g−1 dw, respectively). Conversely, in F3, PCB 138 showed the highest
concentration (1.63 ng·g−1 dw). The Σ(IPCBs) was higher in F3 (4.22 ng·g−1 dw) and lower
in F2 (2.65 ng·g−1 dw). Concerning Σ(DLPCBs), the highest values were found both in
F1 and F2 (4.11 and 3.42 ng·g−1 dw, respectively). The DLPCBs that contributed more
for these observed values were PCB 105 and PCB 118 in both F1 (0.99 and 0.97 ng·g−1,
respectively) and F2 (2.16 and 1.45 ng·g−1 dw, respectively). Similarly to PAHs, PCBs
have a high bioaccumulation potential (Kow in Table S8). The flow regime, the sediment
characteristics and the number of Cl atoms are crucial factors to explain the distribution
and mobility of PCBs in sediments and from the sediments into the water and particulate
organic matter [26,26,27,29,29,31]. The lack of heavy industry in the region where the
Fervença River is located, suggests the concentrations found in the present study might
have resulted from atmospheric inputs and from deposition through rain wash [105].
According to [106,107], about 20 to 30% of the total amounts of PCBs discharged into
municipal WWTPs originated from the surface runoff. This assumption could help explain
the higher concentrations of IPCBs observed in F3. Besides, past dumping in domestic
sewage or directly in the river of dyes, inks and other substances containing PCBs might be
another explanation for the observed concentrations.

Table 5. Measured mean environmental concentrations (MEC) and Hazard Quotient (HQ) and TEQ
(toxic equivalents) for the analyzed PCBs in sediments in F1, F2, and F3.

F1
ng g−1

dw
HQ ng TEQ g−1

F2
ng g−1

dw
HQ ng TEQ g−1

F3
ng g−1

dw
HQ ng TEQ g−1

PCBs indicators
PCB28 0.05 0.581 0.05 0.581 1.16 13.488
PCB52 1.19 74.375 0.05 3.125 1.28 80.0
PCB101 1.32 6.471 1.56 7.647 0.05 0.245
PCB138 0.05 1.612 0.05 1.613 1.63 52.581
PCB153 0.05 1.852 0.05 1.852 0.05 1.852
PCB180 0.05 1.471 0.89 26.176 0.05 31.176

Total 2.71 2.65 4.22

PCBs
“dioxin-like”

PCB81 0.05 1.50 × 10−5 0.05 1.50 × 10−5 0.05 1.50 × 10−5

PCB77 0.05 6.250 5.00 × 10−6 0.05 6.250 5.00 × 10−6 0.05 6.250 5.00 × 10−6

PCB123 0.05 1.50 × 10−6 0.05 1.50 × 10−6 0.05 1.50 × 10−6

PCB118 0.97 38.80 2.91 × 10−5 1.45 58.0 4.35 × 10−5 0.29 11.60 8.70 × 10−6

PCB114 0.05 1.50 × 10−6 0.05 1.50 × 10−6 0.05 1.50 × 10−6

PCB105 0.99 7.226 2.97 × 10−5 2.16 15.766 6.48 × 10−5 0.05 0.365 1.50 × 10−6

PCB126 0.05 5.00 × 10−3 * 0.05 5.00 × 10−3 * 0.05 5.00 × 10−3 *
PCB167 0.05 1.50 × 10−6 0.05 1.50 × 10−6 0.05 1.50 × 10−6

PCB156 0.65 162.50 1.95 × 10−5 0.05 12.50 1.50 × 10−6 0.05 12.50 1.50 × 10−6

PCB157 0.41 1.23 × 10−5 0.05 1.50 × 10−6 0.05 1.50 × 10−6

PCB169 0.05 1.50 × 10−3 * 0.05 1.50 × 10−6 * 0.05 1.50 × 10−3 *
PCB189 0.05 1.50 × 10−3 * 0.05 1.50 × 10−3 * 0.05 1.50 × 10−6

Total 3.42 4.11 0.84

Limit of quantification (LOQ) = 0.1 ng·L−1 (concentrations below LOQ were considered as LOQ/2); * TEQ with the
same value F1, F2 and F3; Green: Negligible risk; Yellow: Low risk; Orange: Moderate risk and Red: High risk.
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Figure 4. Relative abundances of IPCBs (A) and DLPCBs (B).

Most studies (Table S2) only evaluate the presence of IPCBs (the most common PCBs
across the compositional range of the most common technical mixtures), whereas the
DLPCB used to assess human health risks are scarcely approached [107]. Therefore, in
the present study, only IPCBs concentrations were compared with other European studies.
Fervença showed one of the lowest concentrations (Table S2).

3.6. Environmental Risk Assessment

Table 2 shows the HQs’ values, determined for each evaluated compound from the
selected PNEC values presented on Table S1. In water, the main concerns for aquatic
organisms were: BPA (in F1 and F3 HQ > 10) and ofloxacin in F3 (HQ > 10). Moreover, in
F3, the obtained HQs for ibuprofen and diclofenac were between 1 and 10, indicating a
moderate risk. Despite the very high contribution of BPA for overall environmental risk
as shown by TU, the remaining compounds together were not negligible: even without
considering BPA in TU, the environmental risk lay between low and high, both in water
and in lixiviates. PAHs’ HQs are presented in Table 3. The HQs were compatible with the
assumption that in all sampling sites, the sediment contamination by PAHs is low. Indeed,
considering each compound, the environmental risk varied between negligible and low.
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When considering TU values, the risk rose to moderate (F1 and F2) and was still considered
low in F3.

The results of risk assessment for PCBs are presented in Table 5 (derived from the
PNEC and TFEs-Table S5). HQs values were compatible with the assumption that the envi-
ronmental risk caused by the presence of PCBs was very high. Nine of the analyzed PCBs
exceeded PNEC values and their global risk were high in all sampling sites. Nevertheless,
in the case of some DLPCBs, when there were simultaneously available HQs and TEQ, they
demonstrated important discrepancies (Table 4).

Despite the limitations of the environmental risk assessment methodology, such as
(1) PNEC values based on toxicity tests using model organisms or systems not taking into
account the high complexity of ecosystems and species interactions [4,83,93,108]; (2) the ne-
glection of the behavior of compounds and their mixtures in the environment [2,11,75,109];
and (3) the absence of ecotoxicological data for some compounds, this study has provided
the very first perspective of the contamination scenario for the Fervença river and the Por-
tuguese part of river Douro Basin, indicating the potential exposures, which might result
in adverse effects for environmental health. This river is contaminated with a mixture of
substances: (1) pharmaceuticals and probably their metabolites [110–113], and some, such
as ofloxacin, with bactericidal activity even after being excreted [114]; (2) HHCB and AHTN
and probably with their transformation products [12,115]; (3) caffeine, that perhaps might
need more attention, when associated with other contaminants such as paracetamol [15],
which is present herein; (4) endocrine disruptors (BPA and some PCBs) and (5) those with
toxic, mutagenic, carcinogenic, and teratogenic potential (PAHs and PCBs).

It is expected that the measured concentrations and HQ values have been influenced
by the extended dry period. It is general knowledge that the contaminants’ concentrations
can increase several times more than the average mean values during the low flow periods.
Nevertheless, considering the climate change scenario, low flow periods are expected to
be more frequent [116]. Therefore, the concentrations and HQ obtained during these low
flow periods can be more relevant for implementing decision-maker tools for promoting
preventive river management measures, such as habitat restoration and the improvement
of WWTP efficiency.

4. Conclusions

We have determined and quantified a variety of compounds and evaluated their
potential environmental risk, thus generating the first picture of the Fervença chemical
status and contributing new relevant information on the occurrence of several compounds
in freshwater sediments, since the available data concerning these issues is still fragmented,
dispersed, and almost non-existent. The obtained data suggest the potential existence
of the environmental risk for freshwater organisms. Nevertheless, further information
of the impact of these substances on autochthonous biota is needed to develop more
accurate methodologies of risk assessment. Therefore, future approaches allowing one
to understand the real environmental effects should include the use of environmental,
community, molecular, and cellular markers. Moreover, surveys should be extended in a
regularly way, in the future, to other aquatic ecosystems located both in Portuguese and
Spanish sides of the International River Douro Basin to broaden the available information
for an efficient implementation of Basin Management Plans, leading to the achievement of
the Good Ecological Status (“sensu” WFD) of these aquatic ecosystems, either considering
regional, national, or global levels.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13010146/s1, Refs. [117–176] are cited in Supplementary
file. Table S1: CECs’ concentrations reported in surface waters and sediments in different European
countries; Table S2: PAHs’ and PCBs’ concentrations reported in sediments in different European
countries; Table S3: Toxicological data ng L−1 in literature and values of Predicted non Observed
Effect Concentrations (PNEC) for the selected CECs dissolved in freshwater; Table S4: PAHs’ PNEC
freshwater, Koc values, and PNEC sediment; Table S5: PNEC freshwater, Koc values used to derived
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PNEC sediment of PCBs and TEF values; Table S6: CAS number and main physical–chemical
properties of CECs analyzed, in the present study of water and in lixiviates from sediment; Table
S7: CAS number and main physical–chemical properties of the PAHs analyzed in the sediments
of the sampling sites; Table S8: CAS number and main physical–chemical properties of the PCBs
analyzed in the sediments of the sampling sites; Figure S1: Precipitation during the hydrological
years 2016/2017 and 2017/2018 in Bragança.
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Endocrine Disrupting Compounds in Drinking, Surface and Wastewaters in Serbia. Environ. Pollut. 2020, 262, 114344. [CrossRef]

78. Kondor, A.C.; Molnár, É.; Jakab, G.; Vancsik, A.; Filep, T.; Szeberényi, J.; Szabó, L.; Maász, G.; Pirger, Z.; Weiperth, A.; et al.
Pharmaceuticals in Water and Sediment of Small Streams under the Pressure of Urbanization: Concentrations, Interactions, and
Risks. Sci. Total Environ. 2022, 808, 152160. [CrossRef]

79. Fairbairn, D.J.; Karpuzcu, M.E.; Arnold, W.A.; Barber, B.L.; Kaufenberg, E.F.; Koskinen, W.C.; Novak, P.J.; Rice, P.J.; Swackhamer,
D.L. Sediment–Water Distribution of Contaminants of Emerging Concern in a Mixed Use Watershed. Sci. Total Environ. 2015, 505,
896–904. [CrossRef]

80. Scheytt, T.; Mersmann, P.; Lindstädt, R.; Heberer, T. Determination of Sorption Coefficients of Pharmaceutically Active Substances
Carbamazepine, Diclofenac, and Ibuprofen, in Sandy Sediments. Chemosphere 2005, 60, 245–253. [CrossRef] [PubMed]

81. Krascsenits, Z.; Hiller, E.; Bartal’, M. Distribution of Four Human Pharmaceuticals, Carbamazepine, Diclofenac, Gemfibrozil, and
Ibuprofen Between Sediment and Water. J. Hydrol. Hydromech. 2008, 56, 237–246.

http://doi.org/10.1016/j.scitotenv.2020.142344
http://www.ncbi.nlm.nih.gov/pubmed/33254885
https://www.ecetoc.org/wp-content/uploads/2014/08/ECETOC-TR-092.pdf
http://doi.org/10.1002/etc.5620170501
http://doi.org/10.1016/j.envpol.2011.10.025
http://doi.org/10.1016/j.scitotenv.2014.01.065
http://doi.org/10.1007/s10661-015-4823-9
http://doi.org/10.1016/j.microc.2018.02.007
http://doi.org/10.1016/j.microc.2014.06.020
https://Circabc.Europa.eu
http://doi.org/10.1016/j.toxlet.2004.01.028
http://www.ncbi.nlm.nih.gov/pubmed/15177640
http://doi.org/10.1007/s00128-015-1563-z
http://www.ncbi.nlm.nih.gov/pubmed/26017623
http://doi.org/10.1093/toxsci/kfl055
http://www.ncbi.nlm.nih.gov/pubmed/16829543
https://ccme.ca/en/current-activities/canadian-environmental-quality-guidelines
http://doi.org/10.2166/wst.2010.985
http://doi.org/10.1016/j.yrtph.2014.04.006
http://doi.org/10.1016/j.scitotenv.2018.10.027
http://doi.org/10.1016/j.envpol.2020.114344
http://doi.org/10.1016/j.scitotenv.2021.152160
http://doi.org/10.1016/j.scitotenv.2014.10.046
http://doi.org/10.1016/j.chemosphere.2004.12.042
http://www.ncbi.nlm.nih.gov/pubmed/15914244


Appl. Sci. 2023, 13, 146 19 of 22

82. Peteffi, G.P.; Fleck, J.D.; Kael, I.M.; Rosa, D.C.; Antunes, M.V.; Linden, R. Ecotoxicological Risk Assessment Due to the Presence of
Bisphenol A and Caffeine in Surface Waters in the Sinos River Basin—Rio Grande Do Sul—Brazil. Braz. J. Biol. 2018, 79, 712.
[CrossRef] [PubMed]

83. López-Doval, J.C.; Montagner, C.C.; de Alburquerque, A.F.; Moschini-Carlos, V.; Umbuzeiro, G.; Pompêo, M. Nutrients, Emerging
Pollutants and Pesticides in a Tropical Urban Reservoir: Spatial Distributions and Risk Assessment. Sci. Total Environ. 2017, 575,
1307–1324. [CrossRef] [PubMed]
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106. Urbaniak, M.; Zieliński, M.; Kaczkowski, Z.; Zalewski, M. Spatial Distribution of PCDDs, PCDFs and Dl-PCBs along the Cascade
of Urban Reservoirs. Hydrol. Res. 2012, 44, 614–630. [CrossRef]

107. Megson, D.; Benoit, N.B.; Sandau, C.D.; Chaudhuri, S.R.; Long, T.; Coulthard, E.; Johnson, G.W. Evaluation of the Effectiveness of
Different Indicator PCBs to Estimating Total PCB Concentrations in Environmental Investigations. Chemosphere 2019, 237, 124429.
[CrossRef]

108. Boix, C.; Ibáñez, M.; Sancho, J.V.; Parsons, J.R.; de Voogt, P.; Hernández, F. Biotransformation of Pharmaceuticals in Surface
Water and during Waste Water Treatment: Identification and Occurrence of Transformation Products. J. Hazard. Mater. 2016, 302,
175–187. [CrossRef] [PubMed]

http://doi.org/10.1590/1519-6984.189752
http://www.ncbi.nlm.nih.gov/pubmed/30427383
http://doi.org/10.1016/j.scitotenv.2016.09.210
http://www.ncbi.nlm.nih.gov/pubmed/27745929
http://doi.org/10.3390/jmse8070480
http://doi.org/10.1016/j.chemosphere.2014.04.046
http://doi.org/10.1007/s11356-019-06998-8
http://doi.org/10.1007/s11368-015-1077-7
http://doi.org/10.1002/esp.3395
http://doi.org/10.3390/w12041145
http://doi.org/10.1016/j.ecoleng.2008.09.014
http://doi.org/10.3390/molecules25020424
http://doi.org/10.1007/s13201-016-0415-2
http://doi.org/10.1016/j.scitotenv.2017.08.036
http://doi.org/10.1021/acs.est.0c04393
http://www.ncbi.nlm.nih.gov/pubmed/33104348
http://doi.org/10.1016/j.scitotenv.2013.08.079
http://doi.org/10.1016/j.chemosphere.2021.131849
http://doi.org/10.1016/j.envadv.2021.100164
http://doi.org/10.1016/j.scitotenv.2018.08.309
http://doi.org/10.1039/C8EM00341F
http://doi.org/10.1021/es0300721
http://doi.org/10.1016/j.atmosenv.2011.12.013
http://doi.org/10.1016/j.scitotenv.2018.07.442
http://doi.org/10.1016/j.watres.2012.05.029
http://doi.org/10.1016/j.watres.2011.10.039
http://www.ncbi.nlm.nih.gov/pubmed/22078253
http://doi.org/10.1016/S0304-4203(03)00111-7
http://doi.org/10.2166/nh.2012.236
http://doi.org/10.1016/j.chemosphere.2019.124429
http://doi.org/10.1016/j.jhazmat.2015.09.053
http://www.ncbi.nlm.nih.gov/pubmed/26476304


Appl. Sci. 2023, 13, 146 20 of 22

109. Backhaus, T.; Faust, M. Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environ. Sci.
Technol. 2012, 46, 2564–2573. [CrossRef]

110. Forrest, J.A.; Clements, J.A.; Prescott, L.F. Clinical Pharmacokinetics of Paracetamol. Clin. Pharmacokinet. 1982, 7, 93–107.
[CrossRef]

111. Bahlmann, A.; Brack, W.; Schneider, R.J.; Krauss, M. Carbamazepine and Its Metabolites in Wastewater: Analytical Pitfalls and
Occurrence in Germany and Portugal. Water Res. 2014, 57, 104–114. [CrossRef] [PubMed]

112. Mazaleuskaya, L.L.; Sangkuhl, K.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB Summary: Pathways of
Acetaminophen Metabolism at the Therapeutic versus Toxic Doses. Pharmacogenet. Genom. 2015, 25, 416–426. [CrossRef]

113. Altman, R.; Bosch, B.; Brune, K.; Patrignani, P.; Young, C. Advances in NSAID Development: Evolution of Diclofenac Products
Using Pharmaceutical Technology. Drugs 2015, 75, 859–877. [CrossRef] [PubMed]

114. Naber, C.K.; Hammer, M.; Kinzig-Schippers, M.; Sauber, C.; Sörgel, F.; Bygate, E.A.; Fairless, A.J.; Machka, K.; Naber, K.G. Urinary
Excretion and Bactericidal Activities of Gemifloxacin and Ofloxacin after a Single Oral Dose in Healthy Volunteers. Antimicrob.
Agents Chemother. 2001, 45, 3524–3530. [CrossRef]

115. Törneman, N.; Johansson, M. Temporal variation of WFD priority substances. SWECO Environ. Screen. Rep. 2008, 37, 1–53.
116. Vlach, V.; Ledvinka, O.; Matouskova, M. Changing Low Flow and Streamflow Drought Seasonality in Central European

Headwaters. Water 2020, 12, 3575. [CrossRef]
117. Wilkinson, J.L.; Hooda, P.S.; Swinden, J.; Barker, J.; Barton, S. Spatial Distribution of Organic Contaminants in Three Rivers

of Southern England Bound to Suspended Particulate Material and Dissolved in Water. Sci. Total Environ. 2017, 593, 487–497.
[CrossRef]

118. White, D.; Lapworth, D.J.; Civil, W.; Williams, P. Tracking Changes in the Occurrence and Source of Pharmaceuticals within the
River Thames, UK; from Source to Sea. Environ. Pollut. 2019, 249, 257–266. [CrossRef]

119. Nannou, C.I.; Kosma, C.I.; Albanis, T.A. Occurrence of Pharmaceuticals in Surface Waters: Analytical Method Development and
Environmental Risk Assessment. Int. J. Environ. Anal. Chem. 2015, 95, 1242–1262. [CrossRef]

120. Niemi, L.; Landová, P.; Taggart, M.; Boyd, K.; Zhang, Z.; Gibb, S. Spatiotemporal Trends and Annual Fluxes of Pharmaceuticals in
a Scottish Priority Catchment. Environ. Pollut. 2022, 292, 118295. [CrossRef] [PubMed]

121. González-Gaya, B.; Lopez-Herguedas, N.; Santamaria, A.; Mijangos, F.; Etxebarria, N.; Olivares, M.; Prieto, A.; Zuloaga, O.
Suspect Screening Workflow Comparison for the Analysis of Organic Xenobiotics in Environmental Water Samples. Chemosphere
2021, 274, 129964. [CrossRef] [PubMed]

122. Llamas-Dios, M.I.; Vadillo, I.; Jiménez-Gavilán, P.; Candela, L.; Corada-Fernández, C. Assessment of a Wide Array of Contami-
nants of Emerging Concern in a Mediterranean Water Basin (Guadalhorce River, Spain): Motivations for an Improvement of
Water Management and Pollutants Surveillance. Sci. Total Environ. 2021, 788, 147822. [CrossRef] [PubMed]

123. Ginebreda, A.; Muñoz, I.; de Alda, M.L.; Brix, R.; López-Doval, J.; Barceló, D. Environmental Risk Assessment of Pharmaceuticals
in Rivers: Relationships between Hazard Indexes and Aquatic Macroinvertebrate Diversity Indexes in the Llobregat River (NE
Spain). Environ. Int. 2010, 36, 153–162. [CrossRef]

124. Gracia-Lor, E.; Sancho, J.V.; Hernández, F. Multi-Class Determination of around 50 Pharmaceuticals, Including 26 Antibiotics, in
Environmental and Wastewater Samples by Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry. J.
Chromatogr. A 2011, 1218, 2264–2275. [CrossRef]

125. Osorio, V.; Marcé, R.; Pérez, S.; Ginebreda, A.; Cortina, J.L.; Barceló, D. Occurrence and Modeling of Pharmaceuticals on a
Sewage-Impacted Mediterranean River and Their Dynamics under Different Hydrological Conditions. Sci. Total Environ. 2012,
440, 3–13. [CrossRef] [PubMed]

126. Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and Ecological Risks of Pharmaceuticals in a
Mediterranean River in Eastern Spain. Environ. Int. 2020, 144, 106004. [CrossRef] [PubMed]

127. Malnes, D.; Ahrens, L.; Köhler, S.; Forsberg, M.; Golovko, O. Occurrence and Mass Flows of Contaminants of Emerging Concern
(CECs) in Sweden’s Three Largest Lakes and Associated Rivers. Chemosphere 2022, 294, 133825. [CrossRef]

128. Marsik, P.; Rezek, J.; Židková, M.; Kramulová, B.; Tauchen, J.; Vaněk, T. Non-Steroidal Anti-Inflammatory Drugs in the
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