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Abstract: Precision aquaculture deploys multi‑mode sensors on a fish farm to collect fish and envi‑
ronmental data and form a big collection of datasets to pre‑train data‑driven prediction models to
fully understand the aquaculture environment and fish farm conditions. These prediction models
empower fish farmers for intelligent decisions, thereby providing objective information to monitor
and control factors of automatic aquaculture machines and maximize farm production. This paper
analyzes the requirements of a digital transformation infrastructure consisting of five‑layered digital
twins using extensive literature reviews. Thus, the results help realize our goal of providing efficient
management and remote monitoring of aquaculture farms. The system embeds cloud‑based digital
twins using machine learning and computer vision, together with sensors and artificial intelligence‑
based Internet of Things (AIoT) technologies, to monitor fish feeding behavior, disease, and growth.
However, fewdiscussions in the literature concerning the functionality of a cost‑effective digital twin
architecture for aquaculture transformation are available. Therefore, this study uses themodified an‑
alytical hierarchical analysis to define the user requirements and the strategies for deploying digital
twins to achieve the goal of intelligent fish farm management. Based on the requirement analysis,
the constructed prototype of the cloud‑based digital twin system effectively improves the efficiency
of traditional fish farm management.

Keywords: digital twin; digital transformation; AIoT technology; machine learning; big data analyt‑
ics in aquaculture; analytic hierarchical process

1. Introduction
The primary aims of fish farm management include operation cost reduction, profit

maximization, fish quality augmentation, and harvest efficiency optimization. To achieve
these goals, large and modern aquaculture farms incorporate technological innovations to
maximize fish production andminimize fish food, action prediction to optimize the control
factors of aquaculture machines, and order management based on the optimal harvest pol‑
icy. The core functionality of intelligent fish farming is to monitor the status of fishes’ life
stages, from brood‑stock/eggs to fully‑grown adults [1]. However, one of the challenges is
the different environments for each stage of fish farming. For example, indoor tanks under
controlled conditions are typical environments in the hatchery phase to minimize the risk
of external factors affecting the fish. For the final growing phase, they are transferred to
outdoor ponds or sea cages and grown up until their marketable size. Since the volume
water requirement of the fish is often proportional to its size, there is a need to monitor
their crowding population during different growth stages. The fish schools’ density can‑
not be too high when the fish are of greater sizes. Otherwise, the possibility of depleted
oxygen intake due to overcrowding will be a significant risk to their health.
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Outdoor ponds or sea cage farming can quickly fulfill these requirements compared
with indoor tanks. However, in this environment, fish are exposed to natural fluctuations,
which are essential factors in the production environment, e.g., water flow, temperature,
salinity, and light intensity. However, with these exposures, additional challenges bur‑
den the farmers to control the production conditions because sea‑based farming increases
the chance of stressors such as pollutants, pathogens, and parasites in the population [1].
This study then analyzes the key requirement factors of intelligent fish farming to guide
the production process and fully understand the aquaculture farm’s environmental and
fish conditions.

The first step to the digital transformation of fish farm management is to deploy sen‑
sors on fish ponds or offshore sea cages to collect fish and environmental data to establish
data‑driven prediction models. The digital transformation of aquaculture is also defined
as Aquaculture 4.0, which follows the concept of Industry 4.0 technologies [2,3] to achieve
the goal of precision aquaculture by supporting decision‑making based on the utilization
of artificial intelligence (AI) and the Internet of Things (IoT) [1,4]. AI technologies, such
as information‑based management with big data and models, guide the production pro‑
cess and fully understand aquaculture farms’ environmental and fish conditions. On the
other hand, IoT technologies characterize intelligent fish farms with surveillance cameras,
water inspecting devices, andworking sensors to store and serve data to a fog or cloud sys‑
tem through interconnection networks. This digital transformation of aquaculture based
on the implementation of the AIoT system facilitates fish farms to optimize operations of a
precision aquaculture framework. Therefore, including sensor deployment, cloud big data
management, and AI analytics in this framework enables real‑time, data‑driven decision‑
making [5].

In industrialized aquaculture, where many farms are situated on open seas, regular
visits to the site for monitoring pose a big challenge, especially in its cost and the time re‑
quirement and safety of the workers. Traditional data collection approaches involve using
pen and paper to manually write the observations made by the workers and farm own‑
ers on their observations of the current status and welfare of the aquatic animals on the
site. These written observation data are then transferred to spreadsheet applications for
data analysis. However, such a mechanism is often incomplete, inconsistent, and poorly
formatted. The presence of big data and big data analytics infrastructure transformed the
aquaculture industry for data‑driven decision‑making. More and more aquaculture farm‑
ers are turning to data to support their farmmanagement and operation procedures. Many
are now investing in new technologies for sustainability and to increase profitability. With
these influences, automatic collection, processing, and the advanced analysis of data can
be translated into an accessible and readable format that the fish farmers can understand.
Low‑cost sensors allow them to collect data remotely from far and hard‑to‑reach locations.
Unlimited data acquisition can now be sent via wireless network technologies to the cloud
for storage and data analytics. Such mechanisms provide automatic and higher‑quality
data collection.

Intelligent fish farm management aims to optimize and automate the fish farm com‑
puterization by the intelligent networking of smart sensors, aquaculture machines, and AI
processes using an AIoT system. The implementation of an AIoT system integrates previ‑
ously existing concepts such as the Internet of things (IoT), cloud computing, artificial intel‑
ligence (AI), machine learning (ML), big data analytics, and cognitive services and applies
them to fish production. Figure 1 shows the AIoT system design for intelligent fish farm‑
ing based on the fusion of three vital design principles, i.e., interconnection, information
transparency, and decentralized decisions. The underlying IoT system facilitates the inter‑
connection amongmachines, devices, sensors, and people so they can communicate via the
Internet. Information transparency’s relevance relies on implementing an AI‑empowering
cloud system that can automatically collect, manage, and organize the vast amount of data
from connected machines, devices, and sensors. These virtualized technologies represent
the physical objects of the AIoT system as logical objects or digital twins (DTs). Each ob‑
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ject is described as a formal digital representation of some asset, process, or system that
captures attributes and behaviors of that entity suitable for communication, storage, inter‑
pretation, or processingwithin a specific context [6]. TheAIoT system is also required to in‑
corporate AI andML farm operations to meet the requirements of decentralized decisions.
Thus, it facilitates DTs to provide intelligent services, enabling better decision‑making and
increasing automation and overall productivity. DTs with enhanced capabilities are called
cognitive twins (CT) [7].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 20 
 

vast amount of data from connected machines, devices, and sensors. These virtualized 

technologies represent the physical objects of the AIoT system as logical objects or digital 

twins (DTs). Each object is described as a formal digital representation of some asset, pro-

cess, or system that captures attributes and behaviors of that entity suitable for communi-

cation, storage, interpretation, or processing within a specific context [6]. The AIoT system 

is also required to incorporate AI and ML farm operations to meet the requirements of 

decentralized decisions. Thus, it facilitates DTs to provide intelligent services, enabling 

better decision-making and increasing automation and overall productivity. DTs with en-

hanced capabilities are called cognitive twins (CT) [7]. 

 

Figure 1. Schematic view of the proposed AIoT system for intelligent fish farming [8]. 

This study aims to construct an AIoT system that addresses all the key operations of 

fish farm management. As shown in Figure 2, the system’s functionality can be imple-

mented using a five-layer digital twin architecture to facilitate the digital transformation 

for precision aquaculture. The first step of the digital transformation of fish farm manage-

ment is the virtualization of physical sensors, machinery controllers, and fish ponds or 

offshore cages. In this phase, every physical object is transformed into the corresponding 

logic object, also defined as a digital twin. The features, states, prediction models, and 

action sequences of the physical object are stored in this stage. However, the characteris-

tics of individual physical objects might be very different and thus very difficult to be 

represented by a generic digital twin template. For instance, both the optical and the sonar 

cameras could be used to automatically acquire environmental or fish data for monitoring 

the status of the fish. However, different machine learning tools are often used to analyze 

their respective captured videos. Next, these logic objects send sensor data which are often 

fused and integrated into the cloud. The cloud is equipped with machine learning or deep 

learning prediction models to offer basic services, including water quality prediction 

models, fish metrics estimation models, and fish food requirements for daily feeding. The 

basic services provide AI functions to transform unstructured sensor data into structured 

fish farm information, which is further inputted into the succeeding decision-making pro-

cesses to establish fish farm data applications. In this system, the fish farm manager uses 

web interfaces to connect to these data applications for precision aquaculture. Advanced 

technologies integrating IoT and cloud virtualization techniques facilitate the construction 

of an AIoT system based on digital twin modeling. Despite this development, the existing 

industrially available sensors are insufficient to address the issues of low power consump-

tion, high bandwidth networking, waterproofing, and end-computing AI functions. These 

Figure 1. Schematic view of the proposed AIoT system for intelligent fish farming [8].

This study aims to construct an AIoT system that addresses all the key operations
of fish farm management. As shown in Figure 2, the system’s functionality can be imple‑
mented using a five‑layer digital twin architecture to facilitate the digital transformation
for precision aquaculture. The first step of the digital transformation of fish farm man‑
agement is the virtualization of physical sensors, machinery controllers, and fish ponds or
offshore cages. In this phase, every physical object is transformed into the corresponding
logic object, also defined as a digital twin. The features, states, prediction models, and
action sequences of the physical object are stored in this stage. However, the character‑
istics of individual physical objects might be very different and thus very difficult to be
represented by a generic digital twin template. For instance, both the optical and the sonar
cameras could be used to automatically acquire environmental or fish data for monitoring
the status of the fish. However, different machine learning tools are often used to analyze
their respective captured videos. Next, these logic objects send sensor data which are of‑
ten fused and integrated into the cloud. The cloud is equipped with machine learning or
deep learning prediction models to offer basic services, including water quality prediction
models, fish metrics estimation models, and fish food requirements for daily feeding. The
basic services provide AI functions to transform unstructured sensor data into structured
fish farm information, which is further inputted into the succeeding decision‑making pro‑
cesses to establish fish farm data applications. In this system, the fish farm manager uses
web interfaces to connect to these data applications for precision aquaculture. Advanced
technologies integrating IoT and cloud virtualization techniques facilitate the construction
of an AIoT system based on digital twin modeling. Despite this development, the exist‑
ing industrially available sensors are insufficient to address the issues of low power con‑
sumption, high bandwidth networking, waterproofing, and end‑computing AI functions.
These physical sensors need further improvement before implementing the corresponding
logic objects.
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Moreover, the knowledge management of conventional fish farming is the core tech‑
nology for aquaculture transformation using emerging AIoT technologies. In this study,
we exploit the effective knowledge management methodology by representing the knowl‑
edge of traditional fish farming as a set of digital twins using the modified analytical hi‑
erarchical process [9,10]. Based on the analysis results, we constructed an AIoT prototype
system to verify the effectiveness of intelligent fish farming.

The remainder of this paper is organized as follows. Section 2 presents the litera‑
ture reviews of intelligent fish farming. Section 3 presents the research methodology. The
empirical results and discussions of our research findings in comparison with previous
studies are detailed in Section 4. Finally, the conclusions and future work for the digital
transformation based on digital twins are presented in Section 5.

2. Literature Reviews
Digital twins for intelligent fish farming involve a variety of sensors to extract essen‑

tial features of the farm environment for decision‑making to optimize fish health, growth,
and economic return and reduce risk to the environment. However, the cost to establish
a complete digital twin platform that solves all intelligent fish farming management con‑
cerns is too high for small‑scale fish farms. Instead, we can focus on studying how a digital
twin behaves under specific conditions. Despite its complexity, the application‑oriented
fish farming system is easier to develop with controllable costs. Jones et al. performed
a systematic literature review to characterize the benefits of using digital twins [11]. The
said study divided the previous digital twins to support smart manufacturing to reduce
costs [12–15], risks [15], and complexity [16]. At the same time, it can improve after‑sales
service [17,18], efficiency [19], maintenance decisions [20], security [21], safety and relia‑
bility [22], manufacturing processes [23,24], enhance flexibility and competitiveness [23],
and foster innovation [12]. Although the digital twin behavior for intelligent fish farming
is more challenging, following a similar approach to define the key factors of fish farm
management for the corresponding digital twins to implement is possible.

Digital twins facilitate the implementation of digital aquaculture employing smart
technologies to perform data acquisition, analysis, and complex decision‑making from
fish ponds or sea cages [25,26]. As the fusion of big data, real‑time information from
the individual farm, and AI, digital twins enhance the efficiency of fish farming, maxi‑
mize production, reduce cost, and optimize the decision‑making process. Furthermore,
the AIoT tools facilitate intelligent farm management, improve aquaculture operation effi‑
ciency, control production quality, and link with the food supply chain and decision sup‑
port tools [27]. Underwater cameras or sonar imaging devices are essential sensors to cap‑
ture underwater images, inputted to specific AI functions, and big data analytics to extract
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management knowledge from fish farms [28–32]. For instance, fish health, growth, and
behavior detection can be monitored and controlled using advanced AI and deep learning
techniques [33,34]. Data‑driven approaches augment on‑farm decision‑making capabili‑
ties, improve fish production, and reduce losses, benefiting farmers. The IoT and wireless
technologies enable real‑time data transmission and monitoring in digital farming [35,36].
The cloud‑based IoT systems facilitate communication between software platforms, sen‑
sors, farmers, and aquaculture machinery in digital farming. However, cameras for data
collection on fish ponds in rural areas or offshore cages contain large amounts of data,
causing a high load on the wireless networks and increasing the latency of data communi‑
cation. Because of this, the subsequent decision‑making process’s response time becomes
unreliable due to the delay in transmission. Such limitations can be addressed by a recent
smart farming approach, such as edge computing, to enable computation or processing
at the network’s edge [36] by reducing the network load and supporting real‑time data
processing. However, the power supply demand of sensors and edge systems is always a
severe issue in digital aquaculture, especially for offshore cages. Although cyber‑physical
systems have been widely introduced in smart farming systems to develop hardware and
software to improve the adaptability, safety, and security of computer‑based algorithms
and systems [37], only very few digital aquaculture systems are discussed in the litera‑
ture [38]. With this inadequacy, further studies of how to architect digital twins that sup‑
port the adaptability, practicality, security, and safety of collected information for better
management of aquaculture farms are necessary.

In 2019, Garner, a well‑known global research and advisory institution, listed DTs as
one of the top ten strategic technology trends impacting modern society [38,39]. The pro‑
posed AIoT architecture can be considered the container of DTs, each corresponding to
a physical sensor, a statistic model, a user, or an aquaculture machine. The digital trans‑
formation of fish farm management based on the use case analyses of the AIoT software
system is to transform the expertise of precision aquaculture into multiple keymodels that
implement individual intelligent aquaculture operators. In this paper, we prioritize these
key models based on the planning, execution, and results of a systematic mapping study
on architectingDTs. First, the study captures crucial factors of intelligent fish farmmanage‑
ment for specifying the required digital twins tailored to their specific needs of precision
aquaculture. Starting from an initial set of potentially relevant 1630 peer‑reviewed pub‑
lications, we selected 140 primary studies of smart and precision aquaculture. Then, we
analyzed the various primary studies using thorough data extraction, analysis, and key
factors extraction. Finally, to compensate for single method limitations and reduce possi‑
ble threats to conclusion validity, we discussed the results of our study with experts in the
aquaculture community following the approach of the well‑known analytical hierarchy
process [40]. Hence, the systematic mapping constructs use cases of the AIoT system by
architecting DTs based on the evaluating results of AHP. The field of software architecture
for digital twins is lively, and an increasing number of architectural solutions are being
proposed. Although there is a lack of widely accepted reference architectural solutions for
digital twins, most are built using a combination of layered and service‑oriented patterns
and address maintainability, performance efficiency, and compatibility quality attributes.
To the best of our knowledge, this study is the first case to analyze the user requirements
of a complete AIoT system for precision aquaculture based on the digital twin concept.

3. Methodology
This study aims to create an analysis framework based on the Industrial Internet of

Things (IIoT) [41] analysis for aquaculture transformation by providing a means of char‑
acterizing entities described as digital twins. The following questions should be answered
through the literature reviews: (a) What major functions should be included in managing
a fish farm? (b) What necessary physical objects should be designed to support intelli‑
gent fish farming? (c) What functional components can support fish farming operators in
the digital twin? (d) What are the typical digital twins for intelligent fish farming? We
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adopted a two‑phase approach to address the research questions, as mentioned earlier.
The first phase focuses on questions (a), (b), and (c), seeking to obtain an overview of rele‑
vant existing literature that reviewed and/or characterized digital twins for intelligent fish
farming. The second phase focused on question (d), exploring relevant literature related
to the priority evaluation of the architectures of digital twins using the modified AHP.

3.1. Architecting Digital Twins Using Literature Reviews
User requirement analysis of digital aquaculture is the first step to achieving the dig‑

ital transformation of fish farm management goals. In this subsection, the software sys‑
tem’s key use cases that enable intelligent fish farming are extracted by an extensive re‑
view of published literature. However, each of these published digital twin solutions only
focuses on a specific aquaculture operation and is far from providing a complete system
for intelligent fish farming. Therefore, we consider the digital twin solution sufficiently
discussed by published literature to be an important key factor supporting digital aqua‑
culture. Next, these key requirements and their details are presented to aquaculture re‑
searchers, fish farmers, and experts from the fish agency in Taiwan to specify the impor‑
tance of these factors.

In seeking the answer to questions (a), (b), and (c) regarding the major components
of intelligent fish farming, 1630 potentially relevant peer‑reviewed publications were an‑
alyzed, and eight were selected for architecture comparison. The common characteristics
of these papers suggest that the usage of AIoT technology is the key to successfully achiev‑
ing the goal of precision aquaculture or intelligent fish farming. However, the presented
physical objects and prediction models to construct individual AIoT solutions are very dif‑
ferent. Most of the sensors and types of machinery for operating fish farms are far from
being highly reliable or cost‑effective, mainly when applied to operate an offshore cage.
Moreover, the power‑supply problem often results in severe challenges, though these can
be solved by setting a set of batteries that is rechargeable by a solar panel. For each physical
object or digital twin service, we also use two indexes, the Importance (I) and the Easiness
(E), which are normalized to be within the interval [0,1]. The higher index value signifies
the digital twin’s higher importance. If a digital twin is mentioned in a reviewed paper,
the importance of the object will be set regarding the paper’s impact factor (IF). Thus, the
definition of the importance index I of an object O is

I(O) =
∑j∈ΩO

IF(j)

∑i∈Ω IF(i)
(1)

where Ω and ΩO are the set of all the reviewed papers and the set of papers that mentioned
object O, respectively.

Similarly, the value of the easiness index of an object O is computed as

E(O) = 1 − (c − cmin)/(cmax − cmin) (2)

where c, cmax, and cmin are the cost of object O, which is the maximal cost value among
all the objects and the minimal cost value among all the objects. The cost to implement an
object affects the easiness of a fish farm to invest in the digital twin. Furthermore, the cost to
construct an object is defined based on the development experiments of our AIoT systems
for intelligent fish farming. It is difficult to obtain the correct values of these two indexes
for an object because few fish farms in Taiwan have adopted AIoT systems to manage
fish production.

Tables 1–4 summarize the values of the importance and easiness indexes regarding
the sensors, machinery, aquaculture environments, data‑driven prediction models, and
decision‑making models, which are the major entities used to construct our five‑layered
AIoT models for intelligent fish farming. The literature reviews give the initial values
of these two indexes for all the components. These analyses are based on the results of
the selected 12 reviews of intelligent fish farming. Furthermore, these initial values are
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then quantized by being presented to the expert team comprising nine cross‑discipline re‑
searchers: three have expertise in big data analytics, one is an expert in the field of data
visualization, three are experts in designing aquaculturemachines, sensor networking, and
power‑supply systems, two are experts from the aquaculture field, and one has a rich ex‑
periment background in fish farm management. The resulting importance and easiness
indexes for each component are then used to compute the corresponding importance and
easiness of individual criteria of the analytic hierarchy that specifies the key factors to con‑
struct an AIoT information system for intelligent fish farming.

Table 1. Layer 1 physical objects used in fish farm management and their feasibility evaluation in
terms of indexes I and E.

Layer 1: Physical Object I E

 Data collection (D)

D1. water quality 0.8 0.8
D2. optical RGB camera 0.8 0.8
D3. sonar camera 0.8 0.6
D4. acoustic sensor 0.6 0.8
D5. climate open data 0.5 0.8

 Machinery (M)

M1. fish feeding machine 0.8 0.2
M2. net cleaner 0.6 0.2
M3. sorting machine 0.5 0.2
M4. heater/colder 0.8 0.5
M5. oxygen pump 0.8 0.5
M6. drone 0.5 0.2
M7. underwater drone 0.4 0.2

 Environment (E)
E1. indoor fish pond 0.8 0.8
E2. outdoor fish pond 0.8 0.7
E3. offshore cage 0.8 0.3

Table 2. Layers 2 and 3 of the Digital Twins send sensor data to the cloud storage or execute actions
defined by decision‑making models.

Layers 2 and 3: End‑System Digital Twin Network
Communications I E

Data networking (N)

 N1. water quality LoRa, NB‑IoT 0.8 0.8
 N2. optical RGB camera 4G/5G/WiFi 0.8 0.7
 N3. sonar camera 4G/5G/WiFi 0.8 0.7
 N4. acoustic sensor 4G/5G/WiFi 0.8 0.7
 N5. climate open data 4G/5G/WiFi 0.8 0.8

Action Execution (A)

 A1. fish feeding LoRa, NB‑IoT 0.8 0.8
 A2. food usage LoRa, NB‑IoT 0.8 0.8
 A3. net cleaning LoRa, NB‑IoT 0.8 0.8
 A4. fish sorting LoRa, NB‑IoT 0.8 0.8
 A5. heater LoRa, NB‑IoT 0.8 0.8
 A6. air pumper LoRa, NB‑IoT 0.8 0.8
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Table 3. Layer 4 of the Digital Twins as a basic services provider.

Layer 4: Basic Service Digital Twin Deep Learning Model I E

Environmental conditions
prediction (C)

 C1. water quality prediction LSTM [42] 0.8 0.8
 C2. climate prediction LSTM [42] 0.8 0.8
 C3. net hole detection YoLoV4 [43] 0.8 0.8
 C4. aquatic plants detection YoLoV4 [43] 0.8 0.8

Fish metrics estimation (F)

 F1. fish length/height/weight estimation Mask‑RCNN [44], U‑Net [45] 0.8 0.8
 F2. fish classification YoLoV4 [42] 0.8 0.8
 F3. fish count estimation ANN regression [46] 0.8 0.8
 F4. fish density estimation U‑Net [45] 0.8 0.8

Fish behavior recognition (B)
 B1. fish feeding intensity Activity recognition CNN [32], 0.8 0.8
 B2. fish vitality recognition Optical flow detection CNN [32] 0.8 0.8
 B3. fish diseases detection DBSCAN [47] 0.8 0.8

Table 4. Layer 5 of the Digital Twins as a provider of fish farm data applications based on the asso‑
ciated user interface.

Layer 5: Data Application
Digital Twin Component Functions I E

Water quality prediction (WQP) D1, D5, N1, N5, E1, E2 0.8 0.6

Underwater video surveillance (UVS) D2, D3, D5, N2, N3, N5, F1, F2, F3,
F4, B1, B2, B3 0.8 0.6

Water surface monitoring (WSM) D2, D3, N2, N3 0.8 0.6
Fish food prediction (FFP) WQM, UVS, A2 0.8 0.8
Smart fish feeding (SFF) FFP, WSM, UVS, M1, B1, A1, A2 0.8 0.5
Fish growth model (FGM) WQM, UVS, A2 0.8 0.8
Weight conversion ratio (WCR) UVS, A2 0.8 0.6
Fish food tracking (FFT) FFP, A2 0.8 0.6
Water quality alarming (WQA) E1, E2 0.8 0.6
Fish disease detection (FDD) WQM, UVS 0.8 0.6
Fish feeding policy evaluation (FFP) FGM, Q‑learning [48], FFP 0.8 0.6
Fish pond scheduling (FPS) UVS 0.8 0.8
Fish in‑stock evaluation (FIE) UVS 0.8 0.8
Fish harvest scheduling (FHS) UVS, SFF 0.8 0.8

Next, the virtualization technique is applied to implement physical objects as end‑
system digital twins, which take the responsibility of sending sensor data to the cloud
storage or executing actions defined by decision‑making models. The cloud plays a vital
role in managing the collected big datasets and performing embedded AI functions to de‑
termine the feedback actions for operating aquaculture tasks, e.g., fish feeding processes.
Table 2 shows the importance and easiness evaluation results for the digital twins (logic
objects) in Layers 2 and 3.

The fourth layer of our AIoT model is the basic services that use pre‑trained machine
learning or deep learning models to analyze the sensor data for predicting environmental
conditions, fish metrics estimation, and fish behavior recognition. Again, the cloud archi‑
tecture facilitates the implementation of plug‑in services because all the AI functions are
maintained at the server site. Furthermore, such a mechanism increases the possibility
of offering on‑the‑fly services when the farm manager sends a new requirement. Table 3
shows the digital twins for basic services and their AI functions.

Finally, the last layer of the fish farm data applications is the user interface. The fish
farmer can use the user interface to access the decision‑making results to efficiently and
effectively manage the fish farm. Individual decision‑making models access different re‑
sults of basic services to optimize the action sequence for a specific aquaculture manage‑
ment task. Figure 3 shows the proposed reinforcement learning‑based digital twin for
controlling the smart feeding machine to minimize fish food usage. With the water veloc‑



Appl. Sci. 2023, 13, 141 9 of 19

ity, temperature, fish weight, and fish count as the inputs, the digital twin generates the
daily food amount, which is an action for our automatic feeding machine to execute.
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Furthermore, the amount of fish food can be separated into multiple actions executed
by our automatic fish‑feeding machine. For each action execution, the fish feeding inten‑
sity evaluation function (B1) is also used to simultaneously observe the fish feeding status.
If the current feeding status is ‘weak’, the remaining actions will be skipped to avoid over‑
feeding. Table 4 shows the summaries of the digital twins belonging to Layer 5.

3.2. Digital Twin Architecture Evaluation Using Modified AHP
As shown in Figure 4, the individual physical operation of a physical farm would

have a corresponding logical object in the virtual farm based on the digital twin concept.
A logical object (digital twin) is a virtualization of a physical object consisting of a sensor
to capture data and a wireless communication end system to send data to a fog, an end,
or a cloud system for further fish or environment status detection. The logical object also
uses a prediction model to make a decision that enables an action sequence to control the
machinery and bring benefits to the farmer. For example, as seen in Figure 4, our logical ob‑
ject for smart feeding scheduling uses multiple logical sub‑objects to predict the amount of
fish food for daily feeding. Thus, the smart fish‑feeding digital twin might contain several
sub‑objects to prevent the fish from over‑feeding or underfeeding.

To achieve the goal of intelligent fish farming, this study analyzes the user require‑
ments of the cloud‑based information system, comprising six sub‑systems to manage the
sensors, aquaculture machinery and fish ponds, end system management, live data moni‑
toring, production planning, and value‑added services. These sub‑systems form the first‑
tier key factors of the analytic hierarchy. Asmentioned in the previous sub‑section, we use
the digital twins to implement each sub‑system. The resulting analytic hierarchy is thus
of two tiers, as shown in Figure 5. Although all the sub‑systems should be included to
address the issues of intelligent fish farming, the digital twins supporting individual fish
farms could be very different due to the limitation of resource investment.
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farm management.

Consequently, the analytic hierarchy process (AHP) could be adopted to locate each
digital twin’s important weight (priority) in the AIoT information system. The hierarchical
network also represents the decision problem of our intelligent fish farming. The overall
objective, with the details defined by the next two lower levels, represents the criteria and
sub‑criteria. With comparative judgments, users are requested to set up a comparison
matrix at each hierarchy by comparing pairs of criteria or sub‑criteria. Generally, AHP
uses a scale of values ranging from 1 (indifference) to 9 (extreme preference) to express the
user’s preference. Finally, in the synthesis of the priority stage, each comparison matrix is
solved by an eigenvector method for determining the criteria importance.

In this study, the AHP should be modified for two reasons. First, the number of the
second‑tier criteria is often larger than 9; thus, it exceeds the limits of the AHP. Second,
it is difficult to construct the comparison matrices using questionnaire surveys since real‑
world fish farm managers have very few experiences operating an intelligent fish farming
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management system. To deal with these two difficulties, in this study, we use the impor‑
tance and easiness indexes defined in Equations (1) and (2), respectively, to synthesize the
importance and easiness of all the criteria of the analytic hierarchy.

Figure 6 shows the workflow of the AIoT system for intelligent fish farming. The
first step is the design of the fish production environment, such as an indoor fish pond,
outdoor fish pond, or offshore cage, which might also be equipped with devices for qual‑
ity improvement. Next, the sensors set in the aquaculture environment captures sensor
data which are then automatically uploaded to the cloud system for storage using a data
networking end system. Once the cloud detects the newly arrived data, the orchestration
module triggers the pre‑trained AI prediction models to estimate fish metrics or detect ab‑
normal environmental events. Note that the method to process the sensor data depends
on the data type.
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Figure 6. The automatic workflow of the AIoT information system for intelligent fish farm manage‑
ment.

Furthermore, the sensor‑specificAI function is vital in transforming the non‑structured
sensor data into well‑organized structured information often stored and managed by a
relational database system. This essential information is then inputted into the decision‑
makingmodels to generate optimal actions for controlling the aquaculturemachines, which
increases the automation degree of routine work to improve the efficiency of fish farm
management. Moreover, the decision‑making models for detecting the issues of the aqua‑
culture environment activate the environmental improvement devices to decrease the risk
of an aquaculture operation. Finally, the value‑added services facilitate an understand‑
ing of the states of fish farms which might initiate abnormal event handling to minimize
the risk of the aquaculture operation. Basically, all the sub‑systems are equally important
in achieving the goal of reducing the aquaculture risk based on the information system
for intelligent fish farm management. Although there exists a few alternative AIoT solu‑
tions that address partial user requirements suggested by the analyses in the literature, it
is difficult to evaluate the priorities of these suggested alternative solutions since the risk
levels introduced by the individual solutions are very different. Moreover, to the authors’
best knowledge, the literature reviewers lack complexity analyses of the physical objects,
including sensors, aquaculture machines, fish ponds, and offshore cages, which are the
core IoT devices to construct the AIoT information system. The priority evaluation of the
physical objects, the corresponding digital twins, and decision‑making models using our
modified AHP spans a new systematic methodology for designing a cost‑effective AIoT
system based on the requirements of a fish farm.
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Level 1 reciprocal matrices
[
MI

1 ∈ R8×8, ME
1 ∈ R8×8] for judging the relative impor‑

tance of the seven sub‑systems in terms of importance and easiness indexes are computed
as

[MI
1, ME

1 ] =


I I

1/I I
1 · · · I I

1/I I
6

...
. . .

...
I I
6/I I

1 · · · I I
6/I I

6

,

IE
1 /IE

1 · · · IE
1 /IE

6
...

. . .
...

IE
6 /IE

1 · · · IE
6 /IE

6


 (3)

where I I
i and IE

i are the important and easiness indexes of the i‑th sub‑system, respectively.
The values of these two indexes are defined as

[I I
i , IE

i ] =

[
1

|NCi| ∑j∈NCi
I I
j ,

1
|NCi| ∑j∈NCi

IE
j

]
(4)

where NCi is the set of objects (physical or logical) selected to implement the i‑th criterion;
|NCi| is the cardinality of NCi. The underlying concept of (4) is to represent the importance
and easiness indexes of a composite object by the averages of those of the next‑level sub‑
objects. Level 1 weightings of the eight digital twin architectures are then obtained from
MI

1 and ME
1 .

Without loss of generality, letm and n be the number of Level 1 criteria and the number
of Level 2 criteria for each Level 1 criterion, respectively. For each row of Level 1 reciprocal
matrices MI

1 and ME
1 , we can define weighting measurements as

[
rI,1

i , rE,1
i

]
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, i = 1, . . . , m (5)

where aI,1
i (aE,1

i ) is the relative importance (easiness) value of the i‑th Level 1 criterion. Then,
Level 1 weightings are determined by

w1
i =

1
2
(rI,1

i /∑m
j=1 rI,1

j + rE,1
i /∑m

j=1 rE,1
j ), i = 1, . . . , m (6)

Similarly, we can compute Level 2 weightings w2
i,j, j = 1, . . . , n for the i‑th Level 1

criterion. Finally, the resulting weighting of the p‑th leave node of the analytic hierarchy
is computed as

wp=(i−1)×m+j = w1
i × w2

i,j (7)

4. Experimental Results and Discussion
As mentioned above, the proposed methodology consists of two phases. In the first

phase, each component’s values of importance and easiness are obtained using the litera‑
ture reviews of intelligent fish farming and related topics. The expert team also validated
the results shown in Tables 1–4. Then, they are inputted into the modified AHP for the
weighting computing of each criterion in the analytic hierarchy. Table 5 shows the eval‑
uation results of Level 1 criteria. Accordingly, the software criteria, including real‑time
monitoring, basic services, production planning, and value‑added services, have the high‑
est global weighting values because these are AI functions that are repeatable and easy
to maintain on the server site. On the contrary, the aquaculture machinery criterion has
the lowest weighting values because the cost of the automatic machines used for the per‑
formance improvement of fish farm management is often very expensive. Thus, the cost
reduction issues of aquaculture machines are significant considerations in applying the
system on a small fish farm.
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Table 5. The priority evaluation of Level 1 criteria using the modified AHP.

Level 1 Criteria Importance (I) Easiness (E)
Relative Importance Local

Weighting
Global

WeightingI E

Environment 0.8 0.6 0.12887679 0.10411144 0.116494114 0.116494114
Sensors 0.74 0.74 0.11921103 0.12966155 0.124436288 0.124436288

Data networking 0.8 0.77 0.12887679 0.13033199 0.129604392 0.129604392
Real‑time monitoring 0.8 0.8 0.12887679 0.13881525 0.13384602 0.13384602

Basic services 0.8 0.8 0.12887679 0.13881525 0.13384602 0.13384602
Production planning 0.8 0.8 0.12887679 0.13881525 0.13384602 0.13384602

Aquaculture machinery 0.67 0.43 0.11035358 0.08063402 0.095493802 0.095493802
Value added services 0.8 0.8 0.12605144 0.13881525 0.132433345 0.132433345

Tables 6–13 show the priority evaluation results of Level 2 criteria for individual Level
1 criteria using the modified AHP. All the types of fish farms are important, according to
the evaluation results shown in Table 5. The sonar imaging device is of smaller weight‑
ing value than other sensors since the cost and the power supply requirement of a sonar
device for image capturing are more expensive than other devices. However, the sonar
device monitors the fish farm even when the events of water turbidity happen. In our sys‑
tem, the end systems upload the sensor data to the cloud storage and are further processed
by the big data analytics in the cloud. Since the LoRa data communication consumes low
power, the battery set and the sonar panel can supply sufficient power to the water quality
sensing devices, offering real‑time water quality minoring. The camera is shot off as an
additional power‑saving mechanism when no specific underlying events happen. There‑
fore, our system can provide live data monitoring to help the fish farmers understand the
real‑time status of the fish and the farm environment. The evaluation results are shown in
Table 9. Tables 10–13 show that all the AI functions, including ‘Basic Services’, ‘Production
Planning’, and ‘Value Added Services’ as equally important to complete the functionality
of the AIoT information system for precision aquaculture.

Table 6. Level 2 priority evaluation results for Level 1 ‘environment’ criterion using the modified
AHP.

Level 1 Criterion Level 2 Criterion Local Weighting Global Weighting

Environment
Indoor fish pond 0.38888889 0.04530327
Outdoor fish pond 0.36111111 0.04206732
Offshore cage 0.25 0.02912353

Table 7. Level 2 priority evaluation results for Level 1 ‘sensors’ criterion using the modified AHP.

Level 1 Criterion Level 2 Criterion Local Weighting Global Weighting

Sensors

Water quality 0.21337127 0.02655113
Underwater RGB camera 0.21337127 0.02655113

Sonar camera 0.18705548 0.02327649
Water surface RGB camera 0.21337127 0.21337127

Climate open data 0.17283073 0.17283073

Table 8. Level 2 priority evaluation results for Level 1 ‘data networking’ criterion using the modified
AHP.

Level 1 Criterion Level 2 Criterion Local Weighting Global Weighting

Data networking
Water quality + LoRa 0.34291493 0.04444328
Video + 4G/5G/WiFi 0.31417014 0.04071783

Climate data + 4G/5G/WiFi 0.34291493 0.04444328
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Table 9. Level 2 priority evaluation results for Level 1 ‘real‑time monitoring’ criterion using the
modified AHP.

Level 1 Criterion Level 2 Criterion Local Weighting Global Weighting

Real‑time
monitoring

Water quality 0.33333333 0.04461534
Climate data 0.33333333 0.04461534

Underwater video 0.33333333 0.04461534

Table 10. Level 2 priority evaluation results for Level 1 basic services criterion using the modified
AHP.

Level 1 Criterion Level 2 Criterion Local Weighting Global Weighting

Basic services

 Fish length/height/
 weight estimation 0.125 0.016730753

 Fish classification 0.125 0.016730753
 Fish count estimation 0.125 0.016730753
 Fish density estimation 0.125 0.016730753
 Fish vitality recognition 0.125 0.016730753
 Fish disease detection 0.125 0.016730753
 Fish feeding intensity evaluation 0.125 0.016730753
 Fish food prediction 0.125 0.016730753

Table 11. Level 2 priority evaluation results for the Level 1 ‘production planning’ criterion using the
modified AHP.

Level 1 Criterion Level 2 Criterion Local Weighting Global Weighting

Production
planning

 Fish feeding policy evaluation 0.225 0.03011535
 Smart fish feeding 0.25833333 0.03457689
 Fish pond scheduling 0.25833333 0.03457689
 Fish harvest scheduling 0.25833333 0.03457689

Table 12. Level 2 criteria priority evaluation results for Level 1 ‘aquaculture machinery’ criterion
using the modified AHP.

Level 1 Criterion Level 2 Criterion Local Weighting Global Weighting

Aquaculture
machinery

 Fish feeding machine 0.39230769 0.03746295
 Net cleaner 0.34230769 0.03268826
 Fish sorting machine 0.26538462 0.02534259

Table 13. Level 2 criteria priority evaluation results for Level 1 ‘value added services’ criterion using
the modified AHP.

Level 1 Criterion Level 2 Criterion Local Weighting Global Weighting

Value added
services

 Fish growth model 0.16666667 0.02207222
 Fish in‑stock evaluation 0.16666667 0.02207222
 Weight conversion ratio 0.16666667 0.02207222
 Net hole detection 0.16666667 0.02207222
 Aquatic plants detection 0.16666667 0.02207222
 Water quality alarming 0.16666667 0.02207222

Different solutions to improve fish farm management each have an appropriate set
of modules or functionalities with a priority value. The computed priority value of each
module determines its level of importance, wherein the higher the value, the higher the
importance attributed to it, which reflects the necessity of its inclusion in the digital twin
component. To determine the impact of the variables used in the requirement analysis for
fish farm management, we use our current results to provide function‑specific fish farm
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management, such as the fish feed prediction as an example. This solution can add or in‑
tegrate multiple functionalities by integrating water quality inspection, the camera system
(sonar or RGB camera), and the cloud system. We build a function for the fish feed pre‑
diction for each component, and each module has a priority value based on the analysis
result. Since there are different solutions for different functions for intelligent fish farm
management, their priority value may differ. For example, if all modules were included in
the system, the priority should be 1, where the priority is the sum of the underlying mod‑
ules. Basically, the results of our analysis provide suggestions, solutions, or architecture
on what kind of system features should be constructed as part of the physical objects in
the cloud to provide function‑specific fish farm management. Higher priorities are given
higher regard or inclusion into the system.

Although we only have a prototype in terms of implementation, we were able to test
the transmission speed and several of our sensors in one of our aquaculture farm sites in
Penghu, Taiwan. Our transmission speed depends on the services or capacity of ourmobile
network. Using 4G (5G is prioritized if available), the camera sensors can perform image
transmissions with an uplink bandwidth of 8 megabits per second. For complete video
surveillance, half an hour of video is required, and it will take around 30 min to transmit
the data from the aquaculture site to the cloud. The architecture for the wireless communi‑
cation network depends solely on the commercially available network in the aquaculture
site. In our case, a 4G communication network is utilized, which uses a standard commu‑
nication network to send data packets, which is Internet Protocol (IP) based.

Our system followed the event‑driven type of monitoring. Our land‑based monitor‑
ing system sends a command to activate our sensors (e.g., RGB or sonar camera devices) to
perform surveillance by enabling our camera sensor device, primarily if we perform fish
feeding, metric estimation, environment monitoring, or if the temperature is beyond the
specified threshold tomake sure that the fish are still at their best or have good vitality. The
event‑driven type is adopted due to two reasons. First, aquaculture farms located offshore
don’t have an unlimited or continuous power supply, and they solely depend on battery
packs as their power source. Therefore, performing surveillance when only needed is a
form of power‑saving mechanism. Second, the transmission system depends most of the
time on the 4G network, and it will take time to transmit data, especially video surveillance
data, to the cloud. Although for water quality monitoring, users can specify the interval
of sending the water quality data to the cloud since it does not require a large amount of
data to be transmitted over the network; thus, periodical data sending can be scheduled
any time of the day.

The architecture of the DT‑based intelligent fish farm management system that ful‑
fills the requirements of precision aquaculture is shown in Figure 7. The system has been
divided into three sections: (1) Fish Farm Information, (2) Real‑time CageMonitoring, and
(3) Data Analysis and DecisionMaking. The AIoT system has been integrated and utilized
for offshore cage monitoring at Pingtung and Penghu in Taiwan. However, our proposed
digital twin architecture is enriched with information that is difficult for human senses to
accurately or objectively judge or assess (e.g., water quality sensors in terms of PH level
and salinity). Therefore, even the data provided by the fish farmers and workers is not
sufficient to optimize farm production.
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Figure 7. The web‑based user interface for fish farm managers offering intelligent fish farming is
based on our AIoT prototype system [8]. The Chinese titles “箱網養殖監控系統,” “水下影像,” “聲納,”
“水質,” “水面掃描,” and “恆春海洋” are “Aquaculture cage monitoring system,” “Underwater im‑
age,” “Sonar image,” “Water quality,” “Water surface scanning”, and “Ever SpringMarineCo., Ltd.”.

A prototype has been devised for the AIoT system. We tested the accuracy of some of
the digital twin objects to ensure that the system was reliable and accurate. The fish feed‑
ing machine is integrated to ensure that feeding is optimized and the cost of the feeding
is reduced. Based on our experiment conducted in the Hengchun aquaculture farm, inte‑
grating the smart feeding machine as part of the feeding process can save about 20–27% of
feed cost. For workforce reduction, we can reduce one‑third of the workforce requirement.
Table 14 shows our prototype system’s evaluation results of various digital twin objects.

Table 14. Evaluation results of various digital twin objects.

Digital Twin Object Error Percentage Results

Fish vitality evaluation 5%
Fish count estimation 3.44%
Fish weight estimation 8.7%
Body length estimation 5.1%
Body height estimation 8.9%
Fish disease detection 15%

Water quality inspection 1%
Net hole detection 2%
Net hole prediction 17.3%
Fish net cleaner Less than 20%
Sorting machine Less than 10%

Feeding amount prediction 8.3%
Fish size grading 10%

Table 15 shows the characteristics of the IoT devices, data communication systems,
and aquaculture machinery to achieve the goal of precision aquaculture based on the AIoT
system. Our AIoT prototype system meets the requirements of intelligent fish farming
compared with these reviewed system models.
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Table 15. Summary of findings regarding the construction of the AIoT for intelligent fish farming
with columns (a) physical objects; (b) network communication; (c) basic service model; (d) fish farm
data application; (e) user interface; (f) number of readers; (g) number of papers reviewed.

Source
AIoT Requirements Analysis Parameters

(a) (b) (c) (d) (e) (f) (g)

Agossou and
Toshiro [49]

Water
quality

inspection
LoRa Issues

detection and alerting
Fish diseases
detection

Web‑based
dashboard 198 16

Chiu et al. [50]
Water
Quality

inspection
Wifi Issues

detection and alerting Fish growth status Web‑based
dashboard 16 34

Chen et al. [51]
Water
quality

inspection
LoRa Issues

detection and alerting x Web‑based
dashboard 673 26

Wang et al. [3] Multi‑mode sensors
suggestion LoRA/4G/5G Live data monitoring Production planning Data

visualization 1 77

Zhao et al. [52] Underwater camera x Computer
vision‑based fish behavior analysis x x 5 183

Sun et al. [53] Water quality sensors,
RGB Camera x

Deep l
earning‑based fish behavior

analysis
x x 40 117

O’Donncha and
Grant [4]

Multi‑mode sensor
data x Fish behavior analysis Production planning Visualization,

dashboard 28 14

Føre et al. [1] Sonar, acoustic data,
optical camera, ROV x Machine Learning‑based models Models for farm

operation
Visualization,
dashboard 267 71

5. Conclusions
In this study, we have proposed a systematical way to analyze the user requirements

of the AIoT information system for intelligent fish farming. Furthermore, the techniques to
represent physical objects as digital twins have been discussed. The contributions of this
work are (1) we proposed a methodology of a DT‑based AIoT system design for precision
aquaculture; (2) we integrated the proposedmodifiedAHP as the evaluationmethodology
of DT architectures comprising the AIoT information system; (3) we implemented and
applied the prototype system to monitor fish farms; (4) we designed the power supply
and data communication system for offshore cages; and (5) we implemented the cloud‑
based AI functions to solve the issues of smart caging. Further studies would focus on risk
management by implementing more decision‑making and alarm functionalities.
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