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Abstract: Laser Powder Directed Energy Deposition (LP-DED) is a very powerful Additive Manufac-
turing process for different applications, such as repair operations and the production of functionally
graded material. However, the application is still limited, and one of the main reasons is related to
the lack of knowledge of the process mechanisms. Since the mechanisms involved in the process,
which are mutually related to each other, directly influence the properties of the produced part, their
knowledge is crucial. This paper presents a review of the LP-DED mechanisms and the relationship
between the input process parameters and related outcomes. The main mechanisms of the LP-DED
process, which are identified as (i) laser irradiation and material addition, (ii) melt pool generation,
and (iii) subsequent solidification, are discussed in terms of input parameters, with a focus on their
effects on the deposition effectiveness, and interrelation among the mechanisms of the deposition
process. The results highlight the complexity of the mechanisms involved in the LP-DED process
and guide engineers in navigating the challenges of the deposition process, with a specific focus on
the critical parameters that should be investigated when new materials are developed, or process
optimization is carried out.

Keywords: additive manufacturing; directed energy deposition; laser metal deposition; powder
stream; melt pool; microstructure; residual stress

1. Introduction

Additive Manufacturing (AM) technologies emerged in the late 1980s as useful pro-
cesses for producing prototypes more quickly and economically than conventional pro-
duction systems [1]. The basic idea of the AM processes is that a component characterized
by a complex shape can be produced directly from a three-dimensional model by adding
the material layer upon layer without using expensive tools or external equipment [2,3].
Nowadays, considering processes using metal alloys as feedstock material, according to
ISO/ASTM 52900:2021 [2], the main metal AM processes are Powder Bed Fusion (PBF)
processes, which include Laser Powder Bed Fusion (L-PBF) and Electron Beam Powder
Bed Fusion (EB-PBF), and Directed Energy Deposition (DED) processes. Figure 1 illustrates
the number of metal AM systems sold from 2003 to 2021 [4]. The graph refers to all the AM
systems without distinguishing the process. A sharp increase in the number of systems
sold from 2016 to 2018 can be observed, and this number is expected to grow in the coming
years. This trend confirms the growing interest of the manufacturing industry in the AM
processes [5].

The main PBF and DED systems are listed in Table 1, showing the building volume.
Nowadays, the applications of AM processes cover a wide range of industries. PBF pro-
cesses are mainly used for the production of components characterized by high geometric
complexity and custom design. Examples include the production of turbine blades [6,7],
microwave waveguides [8,9], prostheses [10], and dental implants [11]. It is possible to
observe that although PBF processes dominate the market [12], they can only be used to
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produce components with a maximum size of 400 mm. DED processes, on the other hand,
do not use a closed chamber, and as a result, the deposited dimensions can reach 3000 mm.
Another advantage of DED processes over PBF processes is that an existing surface of
a component could be used as a building platform. This feature is important for repair
applications. Moreover, it is possible to change the material during the deposition process,
thus obtaining components characterized by different properties in different areas. Based
on these advantages, examples of the applications of DED processes are the production
of large components [12,13], the repairing of high-value components [14,15], and surface
remanufacturing [16,17].
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Table 1. Metal AM systems and their building volumes [18].

Process Category System Process Name Build Volume (mm3)

Powder Bed Fusion
(PBF)

GE Additive Arcam (A2x) EBM 200 × 200 × 380
GE Additive Arcam (Spectra H) EBM Φ250 × 430
GE Additive Arcam (Spectra L) EBM Φ350 × 430

EOS (M400) DMLS 400 × 400 × 400
Concept laser cusing (M2) SLM 300 × 350 × 300

MTT (SLM 250) SLM 250 × 250 × 300
Renishaw (AM 250) SLM 245 × 245 × 360
Realizer (SLM 250) SLM 250 × 250 × 220

Matsuura (Lumex Advanced 25) SLM 250 × Φ250

Directed Energy Deposition
(DED)

Prima Additive (LaserNext 2141) DED 4140 × 2100 ×1020
POM DMD (66R) DMD 3200 × 3670 × 360◦

Optomec (LENS 850-R) LENS 900 × 1500 × 900
POM DMD (66R) DMD 3200 × 3670 × 360◦

Trumpf LD 600 × 1000 long
Sciaky (NG1) EBFFF EBDM 762 × 483 × 508

DED processes can be classified according to feedstock material and energy source [19].
Among the different DED processes, those using laser as the energy source and powder as
the feedstock material are the most commonly used [20]. Different technologies that
refer to the same process are developed and labeled differently, such as Laser Metal
Deposition (LMD), Laser Cladding, Laser Engineering Net Shaping (LENS®), Directed
Light Fabrication (DLF), and Direct Metal Deposition (DMD™). In this paper, the term
Laser Powder Directed Energy Deposition (LP-DED) refers to this process.

In the LP-DED process, a deposition head delivers metal powder into the melt pool
generated by a focused laser beam. Due to the localized thermal energy and the rapid move-
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ment of the laser, almost instantaneous solidification of the molten material is obtained. The
characteristics of the deposited part depend on a large number of parameters. According
to Qi, et al. [21], up to 14 parameters can be identified: laser power, laser beam diameter,
spatial distribution, shielding gas flow rate, carrier gas flow rate, travel speed, powder flow
rate, powder, and building platform material properties, powder characteristics, powder
feeding method, layer thickness, overlap percentage deposition strategy. These parameters
define the mechanisms of the LP-DED process [22–24]. The three main mechanisms that
can be identified are (i) laser irradiation and material addition, (ii) melt pool generation,
and (iii) the solidification process. Moreover, complex parameter interactions are observed
during the process.

An in-depth description of the LP-DED process, enabling an understanding of the
physics of the process, must consider the mechanisms and parameters of the process that
are closely related to each other. Figure 2 shows the three mechanisms of the LP-DED
process and the relationships among mechanisms, input parameters, and outputs.
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However, the process is generally analyzed by considering each mechanism indepen-
dently, and, as a result, the interactions among the various process parameters are neglected.
Therefore, a sequential approach is used to study the process, in which the output obtained
as a result of each mechanism is used as an input variable for the following mechanism.
Several reviews are available in the literature, and most of them focus on the applications
of the LP-DED process [12,25], modeling techniques [23], powder feeder equipment [26,27],
monitoring techniques [28], and the feasibility of different alloys [29–34]. In contrast, no
review in the literature focuses on a comprehensive overview of the mechanisms involved
in the LP-DED process.

This work aims to describe the main mechanisms involved in the LP-DED process.
At first, the laser irradiation and material addition processes are described, highlighting
the main results in terms of powder distribution and laser-powder interaction. Then, the
description focuses on the melt pool generation and the effect of process parameters on the
temperature distribution into the melt pool. In addition, the main forces acting in the melt
pool and their influence on the melt pool morphology are analyzed. Finally, the description
focuses on the solidification phase with a description of the resulting microstructure, the
residual stresses generation, and the analysis of the surface quality.
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2. Laser Irradiation and Material Addition Mechanisms

The study of the powder stream process is of paramount importance as it defines
the initial conditions for the generation of the melt pool [35,36]. In the LP-DED process,
powders with a particle size between 30–150 µm are used [37]. Powders for AM can be pro-
duced mainly by three different technologies: Gas-Atomization (GA), Water-Atomization
(WA), and Plasma Rotating Electrode Process (PREP) [38]. Powder particles produced
by WA are characterized by an irregular shape elongated along a direction and dimpled
surface textures [39,40]. Instead, powder particles produced by GA are characterized by a
predominantly spherical shape with smooth surface textures and some satellites [40,41].
Finally, powder particles producd by PREP are characterized by an extremely spherical
shape without satellites or defects [42]. Figure 3 compares the morphology of 4130 steel
powder produced via GA and WA, respectively.
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Different experiments have been conducted to analyze the effect of powder production
technologies on the characteristics of the produced parts. For instance, Pinkerton and
Li [44] compared the effect of WA and GA 316L stainless steel powder on LP-DED walls.
The results showed that although the use of WA powder significantly reduces the efficiency
of the LP-DED process, a finer microstructure and smoother surfaces are observed. As
a consequence, WA powder can be considered a viable and cheaper alternative for pro-
duction [39]. Later, the same authors, during the deposition of WA and GA H13 tool steel
powders, demonstrated that using GA powders resulted in higher values of deposition
rate and hardness [41,45]. Zhong, et al. [46] and Ahsan, et al. [47] compared the use of GA
and PREP powder particles, respectively, for the production of IN718 and Ti6Al4V samples.
They revealed a higher porosity content and a lower deposition rate on the tracks produced
with GA powders. Further improvements in the powder production methods could open
up new opportunities for production efficiency.

As mentioned earlier, the powder particles are driven by the deposition head to
produce a powder stream that interacts with the melt pool generated by the laser. Therefore,
the importance of the deposition head is evident. The deposition head is mainly composed
of laser optics, powder feed nozzles, shielding gas nozzles, and sensors [20]. Several
deposition head configurations have been developed so far [22]. The first deposition head
was the lateral one (Figure 4a), which uses a single off-axis nozzle. However, this type of
deposition head has some limitations. The most important limitation is that during the
deposition process with this configuration, the geometry and the characteristics of deposited
tracks are direction dependent. To overcome this limitation, the coaxial configuration was
introduced. Two types of coaxial deposition heads have been developed. The first uses a
discrete number of symmetrically positioned nozzles (Figure 4b), while the second uses a
conical nozzle (Figure 4c). The coaxial deposition head configuration is the most widely
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used [37] due to its high powder capture efficiency and independence of deposited tracks
from the deposition direction [48]. However, it should be considered that the lateral
deposition head is more economical due to the simplicity of the equipment. Moreover, it is
possible to deposit into small locations, such as inside tubes and channels [20]. Deposition
head configurations are illustrated in Figure 4. Table 2 summarizes the main advantages
and disadvantages of the different deposition head configurations.
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Table 2. Advantages and disadvantages of deposition head configurations [48].

Configuration Advantages Disadvantages

Lateral Part accessibility
Width of deposited track: 0.5–25 mm

Directional deposition
Less powder efficiency

Alignment between powder and laser beam
No integrated protective gas feeding

Discrete coaxial

Unidirectional deposition
Width of deposited track: 2–7 mm
Applied laser power up to 5 kW

Unrestricted 3D functionality
Integrated protective gas feeding

Restricted part accessibility
Low powder capture efficiency

(diameter of the powder-gas jet in focus:
minimum 2.5 mm)

Continuous coaxial

Unidirectional deposition
Width of deposited track: 0.3–5 mm

Applied laser power: up to 3 kW
Powder capture efficiency: maximum 90%
(diameter of the powder-gas jet in focus:

minimum 400 mm)
Integrated protective gas feeding

Restricted part accessibility
Gravity influence, no deposition for tilting

angles higher than 20◦ because of the
inhomogeneous powder density distribution

The powder stream could be analyzed considering two aspects: the powder flow and
the interaction between the powder and the laser beam. The former refers to the study of
the dynamics and the distribution of powder stream; the latter analyses the phenomena
governing the temperature increment of the powder particles and the laser attenuation.

2.1. Powder Flow

In order to optimize the LP-DED process, several studies have been conducted to
obtain an in-depth characterization of the powder flow. In general, it has been observed
that the powder flow is influenced by particle size, powder surface morphology, and
rheological properties [49]. Optimizing and understanding the powder flow could improve
the capture efficiency, that is, the fraction of powder particles entering the melt pool [50].
In the LP-DED process, the capture efficiency is relatively low, less than 30%, with a huge
amount of scattered powder [51]. Consequently, increasing the capture value results in
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improving the overall process efficiency. Among other parameters, such as powder velocity
and surface tension, the capture efficiency is mainly influenced by the distribution of the
powder flow [50,52]. As a result, several studies have been conducted to understand the
factors that significantly affect the powder flow.

Lin [52] performed one of the first experimental studies on coaxial flow during the
LP-DED process. In his work, optical sensors and image analysis were used to measure the
distribution of the powder stream. The results showed a quasi-Gaussian distribution of the
powder flow in the radial direction. Later, Pinkerton and Li [53] developed a mathematical
model to predict the spatial distribution of powder flow using a continuous coaxial nozzle.
The results were experimentally validated using optical and image analysis techniques,
which showed that it is possible to highlight two regions in the powder stream, one before
merging into a single jet and another after this point. Before the merging point, the powder
flow is characterized by an annular distribution, while after the merging point, a Gaussian
distribution is observed. In addition, Ibarra-Medina and Pinkerton [54] showed that the
powder distribution near the nozzle outlet, above the focal point of the powder stream,
does not assume a perfect uniform annular distribution, but four concentration zones
can be identified that correspond to the location of the nozzle inlets (Figure 5). Between
the nozzle outlet and the merging point, Tabernero, et al. [55] showed the presence of a
transition zone (Figure 6).
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As discussed above, the distribution of powder varies along the axial direction (z-axis).
The comparison of numerical and experimental results of the powder distribution evaluated
in different planes along the axial direction is shown in Figure 7. Before the merging
point, the powder concentration increases with the axial distance from the nozzle exit [56].
Furthermore, the peak of powder concentration shifts close to the nozzle axis as the axial
distance increases. After the focal point, the powder flow is characterized by a Gaussian
distribution of powder, with a sharp decrease in peak as the axial distance increases. The
point at which the maximum concentration is reached corresponds to the focal point located
at some distance from the nozzle exit [57]. Focal point location and distribution strongly
influence the capture efficiency and the attenuation of the laser energy. Therefore, studies
focus on evaluating the effect of variables affecting distribution, such as nozzle design,
powder and gas flow rate, and powder properties [58].
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In detail, the geometrical features of the nozzle that mainly influence the powder
flow behavior are the nozzle configuration, the injection angle, and the outlet channel
dimension [52,53,58–62]. Lin [60] developed a two-dimensional numerical model in order
to analyze the effect of the deposition nozzle configuration [60]. The results showed that
using a configuration with an inner nozzle positioned outward (Figure 8a), the powder
concentration value increases by about 50% compared with that obtained with the inner
nozzle in the inner position. In addition, the author observed that the concentration peak
was strongly influenced by the velocity of the outer shielding gas, but the axial position of
the powder stream focus plane remained almost unchanged.
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In general, it is observed that a smaller outlet size leads to a smaller powder flow
diameter at the focal point [61,62]. In addition to the outlet diameter, Li, et al. [62] showed
that the internal shape of the nozzles and their length also influence the powder distribution
and focal point position, with the best results obtained using straight and long channels. It
should also be considered that a free and undisturbed powder flow differs significantly
from a flow of powder impinging on a surface [63,64]. Hence, the substrate and its distance
from the deposition head play an important role [63]. The interaction between the substrate
and the powder flow was studied by Ibarra-Medina and Pinkerton [63]. They found that
the position of the substrate strongly influences the powder distribution. In particular, a
higher concentration was obtained when the substrate was located very close to the nozzle
(Figure 9).
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Another factor that affects the distribution of the powder stream is the velocity of
powder particles [65,66]. Ibarra-Medina and Pinkerton [54] showed that collisions within
the nozzle walls cause a reduction in the powder particle’s velocity. Then, during the
in-flight time, the powders increase their momentum due to the effect of gases, and an
increase in velocity is observed. Below the nozzle, the powder particle’s velocity (up) slightly
increases. However, a wide range of velocities was observed, with the fastest particles
having twice the velocity of the slowest particles [67]. The powder particle’s velocity
was also influenced by the interaction between powders and laser radiation. In fact, it
was observed that when the laser turned on, the particles were characterized by higher
speed [68]. This acceleration was related to the light propulsion caused by the reaction
between the material-vapor recoil and the irradiated part of the particle [69]. In addition,
Tan, et al. [70] showed that the average powder velocity increases with increasing the
shielding gas flow rate. Moreover, Kovalev, et al. [67] showed a wide velocity distribution of
powder particles, as depicted in Figure 10. This wide velocity distribution was attributed to
the complexity of the phenomena governing the gas-powder dynamics and the dispersion
of the powder size.
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The relationship between the powder stream process parameters and the correspond-
ing flow is another important aspect to consider in the optimization of the powder flow.
Kovalev, et al. [67] suggested that the optimal working area, where the powder capture coef-
ficient is maximized, is around the focal point of the powder stream. Hence, the importance
of defining the powder focus plane is evident. The relationships between powder flow
characteristics, such as powder distribution and powder focus plane distance, and process
parameters were investigated by Liu, et al. [71] using a numerical model based on gas-solid
flow. The peak of the powder stream focal point and its position were significantly affected
by the velocity of the inner gas flow. Specifically, by increasing the inner gas velocity, a
reduction in the peak and an increase in the axial distance of the focal point were observed
(Figure 11a). Moreover, it was observed that an excessive shielding gas flow leads to
defocusing of the powder flow and, as a consequence, a reduction in process efficiency [72].
The peak of powder concentration can be increased by increasing the powder flow rate [71].
It can be observed from Figure 11b that the axial distance of the focal point was unaffected
by the powder flow rate. Figure 12 shows the powder flow obtained with the observation
method by varying the powder flow rate.
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In addition, the powder focus plane is also influenced by the density of the mate-
rial [66]. Indeed, Morville, et al. [73] analyzed the particle trajectory of two different
materials, 316L stainless steel and Ti6Al4V alloy. As depicted in Figure 13, both the an-
alyzed materials exhibited a convergent trajectory of the powder stream. However, the
position of the focus plane with respect to the deposition head was farther in the case of
Ti6Al4V. This is because the axial effect of the gas flow is less important for heavier particles,
and consequently, heavier powder particles reach the axis of the deposition head closer to
the deposition head exit.
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2.2. Powder Heating and Laser Attenuation

One of the main characteristics of the LP-DED process is the melting of the powder
particles when they enter the melt pool generated by the laser. Actually, the powder parti-
cles absorb energy during the in-flight time, and their temperature increases. Depending on
specific values of process parameters, powder particles can melt during the in-flight time.
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However, to improve substrate adhesion and process stability, this condition is typically
avoided, and process parameters are selected to melt only the substrate or previously
deposited layers [20,74].

The increase in powder temperature during in-flight time is caused by the interaction
between the powder and the laser beam [75]. This interaction depends mainly on the
standoff distance, which is the distance between the deposition head and the substrate,
and the velocity of the powder particles. The laser-powder interaction is governed by the
electromagnetic and radiative properties of the powder particles and the environment. In
this interaction, in addition to the rise of powder temperature, the laser power is reduced
by the absorption, reflection, and scattering of light by the powder particles, resulting in
the attenuation of the laser’s useful power [74,76]. Figure 14 schematically illustrates the
phenomena that occur during laser-powder interaction.
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One of the first analyses of powder heating was performed by Lin [77] using a mono-
dimensional analytical model. He showed that the temperature of the powder highly
depends on the inner gas velocity and laser power. For example, increasing the gas flow
velocity from 2 m/s to 6 m/s, a variation of about 700 ◦C in the powder temperature was
observed. The model results were compared with experimental results obtained using a
pin-hole photodetector, obtaining good agreement. The experimental results showed that
the temperature of the powder particles within the stream varied by about 500 ◦C due to
the particle size distribution in the powder stream.

Transient heat transfer phenomena occur when powders interact with the laser beam.
These phenomena are essentially conduction, convection, and radiation. The increase in
powder temperature is usually calculated by means of an energy balance. An important
parameter for studying powder heating is the Biot number [78] defined as Bi = hcLp/kp
where hc is the convection coefficient, Lp is the characteristic length (for a spherical particle
with a radius of rp, Lp = rp/3), and kp is the thermal conductivity of the material. When
Bi << 1, as in most cases during the LP-DED process, the temperature gradient within each
powder particle is negligible [54,79]. Under this condition, the lumped capacitance method
can be applied, and the energy balance can be described using the following equation:

Vpρpcp
dT
dt

= Ipηpπr2
p − hc(T − T∞)4πr2

p − εrσ
(

T4 − T4
∞

)
4πr2

p (1)

where Vp is the particle volume, ρp is the particle density, cp is the particle-specific heat, T is
the actual temperature of the particle at the time t, Ip is the incident energy on the particle,
ηp is the particle absorptivity, hc is the convection coefficient, εr is the radiation coefficient,
σ is the Stefan-Boltzmann constant and T∞ is the temperature of the shielding gas.

Ibarra-Medina and Pinkerton [54] analyzed the interaction between the laser beam
and the powder particles. Figure 15 shows the comparison of numerical and experimental
increases in powder temperature versus in-flight distance for different values of laser power.
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By comparing the curves, the authors showed that the model allows the temperature
increase during the process to be analyzed from a qualitative point of view.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 37 
 

One of the first analyses of powder heating was performed by Lin [77] using a mono-
dimensional analytical model. He showed that the temperature of the powder highly de-
pends on the inner gas velocity and laser power. For example, increasing the gas flow 
velocity from 2 m/s to 6 m/s, a variation of about 700 °C in the powder temperature was 
observed. The model results were compared with experimental results obtained using a 
pin-hole photodetector, obtaining good agreement. The experimental results showed that 
the temperature of the powder particles within the stream varied by about 500 °C due to 
the particle size distribution in the powder stream. 

Transient heat transfer phenomena occur when powders interact with the laser beam. 
These phenomena are essentially conduction, convection, and radiation. The increase in 
powder temperature is usually calculated by means of an energy balance. An important 
parameter for studying powder heating is the Biot number [78] defined as Bi = hcLp/kp where 
hc is the convection coefficient, Lp is the characteristic length (for a spherical particle with 
a radius of rp, Lp = rp/3), and kp is the thermal conductivity of the material. When Bi << 1, as 
in most cases during the LP-DED process, the temperature gradient within each powder 
particle is negligible [54,79]. Under this condition, the lumped capacitance method can be 
applied, and the energy balance can be described using the following equation: 𝑉௣𝜌௣𝑐௣ 𝑑𝑇𝑑𝑡 = 𝐼௣𝜂௣𝜋𝑟௣ଶ − ℎ௖(𝑇 − 𝑇ஶ)4𝜋𝑟௣ଶ − 𝜀௥𝜎(𝑇ସ − 𝑇ஶସ)4𝜋𝑟௣ଶ (1) 

where Vp is the particle volume, ρp is the particle density, cp is the particle-specific heat, T 
is the actual temperature of the particle at the time t, Ip is the incident energy on the parti-
cle, ηp is the particle absorptivity, hc is the convection coefficient, εr is the radiation coeffi-
cient, σ is the Stefan-Boltzmann constant and T∞ is the temperature of the shielding gas. 

Ibarra-Medina and Pinkerton [54] analyzed the interaction between the laser beam 
and the powder particles. Figure 15 shows the comparison of numerical and experimental 
increases in powder temperature versus in-flight distance for different values of laser 
power. By comparing the curves, the authors showed that the model allows the tempera-
ture increase during the process to be analyzed from a qualitative point of view. 

  

(a) (b) 

Figure 15. (a) Numerical and (b) experimental temperature of the powder at different laser powers 
(reproduced with permission from [54]; Copyright © 2011 Taylor & Francis). 

Several authors have successfully applied the lumped capacitance method combined 
with a different solution approach. Pinkerton [59] solved Equation (1) analytically and 
reported that the powder was characterized by different temperatures within the flow due 
to different trajectories. In the focus plane, the maximum temperature was reached at the 
centre of the laser beam, whereas a uniform temperature distribution along the radial po-
sition was observed below the focus plane. 

In order to avoid the complex radiation problem involved in laser-powder interac-
tion, several methods were used to study the power attenuation caused by the powder 

Figure 15. (a) Numerical and (b) experimental temperature of the powder at different laser powers
(reproduced with permission from [54]; Copyright © 2011 Taylor & Francis).

Several authors have successfully applied the lumped capacitance method combined
with a different solution approach. Pinkerton [59] solved Equation (1) analytically and
reported that the powder was characterized by different temperatures within the flow
due to different trajectories. In the focus plane, the maximum temperature was reached at
the centre of the laser beam, whereas a uniform temperature distribution along the radial
position was observed below the focus plane.

In order to avoid the complex radiation problem involved in laser-powder interaction,
several methods were used to study the power attenuation caused by the powder stream.
The most used methods are (i) the Hagens-Rubens relationship, (ii) Bramson’s equation,
and (iii) the use of the Beer-Lambert attenuation model.

Using the Hagens-Rubens relationship, defined by Equation (2), or the Bramson equa-
tion, described by Equation (3), a time-space-temperature averaged coefficient is obtained
to estimate the laser attenuation. However, it should be noted that these relationships do
not consider the powder flow rate. Typical values obtained for an Nd-YAG laser are 0.36 for
Inconel 718 [80] and 0.28 for 316L stainless steel [81]. The laser-surface coupling coefficient,
A(T), and the absorption coefficient, η, are defined by the following equation:

A(T) = [8ε0ωρe(T)]
1/2 (2)

η = 0.365
(ρe

λ

)1/2
− 0.067

(ρe

λ

)
+ 0.006

(ρe

λ

)3/2
(3)

where ε0 is the permittivity of free space, ω is the angular frequency of the laser irradiation,
ρe(T) is the material temperature-variant electrical resistivity, and λ is the wavelength of
the laser beam.

Using the Beer-Lambert attenuation model, the radial distribution of the attenuated
laser beam intensity at a distance z from the nozzle can be estimated as:

I′(r, z) = I0(r)exp(−σextNz) (4)

where I′(r,z) is the attenuated laser beam intensity, I0(r) is the initial laser beam intensity,
σext is the powder extinction coefficient, and N is the number of powder particles in a unit
volume. N is proportional to the powder flow rate [74]. He and Mazumder [82] observed
that increasing the powder flow rate results in a higher value of laser beam absorption and,
consequently, a lower value of useful laser power (Figure 16).



Appl. Sci. 2023, 13, 117 13 of 37

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 37 
 

stream. The most used methods are (i) the Hagens-Rubens relationship, (ii) Bramson’s 
equation, and (iii) the use of the Beer-Lambert attenuation model. 

Using the Hagens-Rubens relationship, defined by Equation (2), or the Bramson 
equation, described by Equation (3), a time-space-temperature averaged coefficient is ob-
tained to estimate the laser attenuation. However, it should be noted that these relation-
ships do not consider the powder flow rate. Typical values obtained for an Nd-YAG laser 
are 0.36 for Inconel 718 [80] and 0.28 for 316L stainless steel [81]. The laser-surface cou-
pling coefficient, A(T), and the absorption coefficient, η, are defined by the following equa-
tion: 𝐴(𝑇) = ሾ8𝜀଴𝜔𝜌௘(𝑇)ሿଵ/ଶ (2) 

𝜂 = 0.365 ቀ𝜌௘𝜆 ቁଵ/ଶ − 0.067 ቀ𝜌௘𝜆 ቁ + 0.006 ቀ𝜌௘𝜆 ቁଷ/ଶ (3) 

where ε0 is the permittivity of free space, ω is the angular frequency of the laser irradia-
tion, ρe(T) is the material temperature-variant electrical resistivity, and λ is the wavelength 
of the laser beam. 

Using the Beer-Lambert attenuation model, the radial distribution of the attenuated 
laser beam intensity at a distance z from the nozzle can be estimated as: 𝐼′(𝑟, 𝑧) = 𝐼଴(𝑟) 𝑒𝑥𝑝( − 𝜎௘௫௧𝑁𝑧) (4) 

where I′(r,z) is the attenuated laser beam intensity, I0(r) is the initial laser beam intensity, 
σext is the powder extinction coefficient, and N is the number of powder particles in a unit 
volume. N is proportional to the powder flow rate [74]. He and Mazumder [82] observed 
that increasing the powder flow rate results in a higher value of laser beam absorption 
and, consequently, a lower value of useful laser power (Figure 16). 

 
Figure 16. Resulting laser power intensity at different values of powder flow rate (reproduced with 
permission from [82]; Copyright © 2007 AIP Publishing). 

The evaluation of laser absorption and, therefore, the absorption coefficient was also 
carried out by experimental tests. Unocic and DuPont [83] used a Thermonetics Seebeck 
envelope calorimeter to estimate the process efficiency during the deposition of H13 tool 
steel powder on a substrate of the same material and copper powder deposited on an H13 
tool steel substrate. Varying the laser power between 125 and 500 W and the powder flow 
rate between 0.08 and 0.33 g/s, they found that the efficiency varied between 0.3 and 0.5. 
Using the same experimental setup, Sears [84] showed that process efficiency was about 
0.42 during the deposition of Ti-6Al-4V on a Ti-6Al-4V substrate and about 0.34 depositing 
316L stainless steel powder on a 304L stainless steel substrate. Peyre, et al. [85] showed 
that the attenuation slightly increases by increasing the powder flow rate. 

Table 3 summarizes the main aspect involved in the powder flow process and the 
most influential factors. 
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The evaluation of laser absorption and, therefore, the absorption coefficient was also
carried out by experimental tests. Unocic and DuPont [83] used a Thermonetics Seebeck
envelope calorimeter to estimate the process efficiency during the deposition of H13 tool
steel powder on a substrate of the same material and copper powder deposited on an H13
tool steel substrate. Varying the laser power between 125 and 500 W and the powder flow
rate between 0.08 and 0.33 g/s, they found that the efficiency varied between 0.3 and 0.5.
Using the same experimental setup, Sears [84] showed that process efficiency was about
0.42 during the deposition of Ti-6Al-4V on a Ti-6Al-4V substrate and about 0.34 depositing
316L stainless steel powder on a 304L stainless steel substrate. Peyre, et al. [85] showed
that the attenuation slightly increases by increasing the powder flow rate.

Table 3 summarizes the main aspect involved in the powder flow process and the
most influential factors.

Table 3. Summary of the factors influencing laser irradiation and material addition mechanisms.

Powder Flow Distribution and
Velocity at the Substrate

Laser Power
Attenuation

Powder
Temperature

Increment

Govern the spatial
distribution of powder

particles during
in-flight time

Influence the shape of
the powder stream and
velocity at the substrate

Influence the location of
the plane of maximum
powder concentration

Cause a reduction of the
useful power due to

laser-powder
interaction

Determine the
absorption of thermal

energy by powder
particles

Deposition head design [52–55,58–62] [61,62,68] [59]
Stand-off distance [56,57] [63–68] [57,63,64] [54] [54]

Powder morphology [82]
Powder flow rate [67,70,71] [77,82,83,85]

Material properties [66,73] [80,81,84] [82]
Gas flow [67,70,71] [71]

Laser power [83]

3. Melt Pool Generation Mechanisms

The laser power available on the substrate, i.e., that which is not attenuated by the
powder flow, is focused into a small area and causes a local increase in the temperature of
the building platform, generating a melt pool [86]. Figure 17a schematically illustrates the
melt pool generation and the addition of material. When the powder enters the melt pool, it
melts very quickly, and a raised track is obtained due to the material addition [22]. Typically,
the melt pool generated during the LP-DED process is characterized by dimensions between
0.25 to 1 mm in width, 0.25 to 0.5 in height, and 0.1 to 0.5 mm in depth [20,87]. During the
melt pool generation, thousands of degrees can be reached in a few milliseconds, and the
values and distribution of temperature depend on several factors, such as laser power, laser
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beam diameter, building platform material, and travel speed [88]. Figure 17b shows the
thermal image acquired by a 12-bit digital charge-couple device camera of a moving melt
pool and the corresponding temperature obtained during the deposition of a thin wall of
316L stainless steel.
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Figure 17. (a) Schematic representation of the melt pool generation (reproduced with permission
from [74]; Copyright © 2015 Elsevier) and (b) thermal image captured during the deposition of 316 L
thin wall (reproduced with permission from [89]; Copyright © 2022 Elsevier).

Since melt pool generation is the starting point of the solid track formation, its study
is of fundamental relevance to optimizing building conditions [23,74,90]. It is, therefore,
important to understand which parameters have the most significant impact on the melt
pool and how the melt pool dynamics affect the heat transfer. The equations governing the
melt pool generation and the thermal behavior are summarized in this paragraph.

The energy available at the substrate, which generates the melt pool and overheats the
molten material, can be estimated using the following equation [74,91,92]:

I ′′ = IL − Iloss (5)

where I′′ is the useful heat flux at the substrate, IL is the heat flux at the substrate provided
by the laser beam, and Iloss is the heat loss at the melt pool-vapor interface.

Assuming a Gaussian distribution of the heat source, IL can be expressed as [74]:

IL =
2× η × P

πr2
L

exp

(
−2× r2

r2
L

)
(6)

where P is the laser power, rL is the laser beam radius, η is the absorption coefficient, and r
is the radial distance from the laser beam centre.

The heat loss at the melt pool interface includes convection, radiation, and vaporiza-
tion, and it is described by the following equation:

Iloss = hc(T(r)− T∞) + εrσ
(

T4(r)− T4
∞

)
+ ρL

∣∣∣∣∆r
∆t

∣∣∣∣
e
Lv (7)

where the first term on the right side of the equation corresponds to the heat loss due
to convection, the second term corresponds to the heat loss by radiation, and the last
term represents the heat loss due to the vaporization of the melt pool. Therefore, in
Equation (7), hc is the convection coefficient, T(r) is the temperature at the position r, εr is
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the emissivity, σ is the Stefan-Boltzmann constant, ρL is the liquid density, Lv is the latent
heat of vaporization and |∆r/∆t|e is the topology deformation rate due to evaporation. The
topology deformation rate due to evaporation can be estimated as [92]:∣∣∣∣∆r

∆t

∣∣∣∣
e
= csoundexp

(
− Lv

T(r)

)
(8)

where csound is the sound velocity in the material and Lv is the energy of evaporation per
Avogadro’s number.

3.1. Thermal Behaviour

The incident laser beam locally heats the building platform. The laser heat flux
superheats the material, and the temperature obtained in the melt pool is largely above
the melting temperature of the material [68]. For instance, Hofmeister, et al. [93] showed
that during the deposition of a 316L thin wall, the temperature of the melt pool reached the
value of about 2000 K, which is 25% higher than the melting temperature of 316L. The shape
and size of the melt pool depend on the intensity distribution of the laser beam [94], the
resulting temperature distribution, and the maximum temperature reached in the material.
Thus, it is evident that the temperature value and its distribution are key parameters that
significantly affect the melt pool. Griffith, et al. [95], during the deposition of a 316L thin
wall, showed that the maximum temperature was obtained at the centre of the laser beam
and then decreased linearly to the solidification temperature (1650 K) at a distance of
around 2 mm from the centre, as represented in Figure 18.
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Among other process parameters, it is currently well-established that the process
parameters that most influence the temperature distribution and, consequently, the melt
pool dimensions [23] are the laser power (P), the powder flow rate (Q), and the travel speed
(v) [20,23,96]. The following paragraphs describe the effect of these parameters on the
width, height, and depth of the melt pool.

3.1.1. Effects of the Laser Power

It is generally accepted that increasing the laser power results in a higher temperature
of the melt pool. Figure 19 shows the temperature distribution in the direction perpendicu-
lar to the travel speed for different values of laser power. It can be observed that, during
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the deposition of Ti6Al4V alloy, increasing the laser power from 2 kW to 5 kW increased
the maximum temperature from 1400 ◦C to 1850 ◦C, and, therefore, an enlarged melt pool
width was obtained [85,97–102].

However, contradictory results have been obtained in the literature by analyzing
the effect of laser power on the height of the melt pool. Pinkerton and Li [45] and
Peyre, et al. [85] showed that the layer height remains constant by varying laser power
values. Srivastava, et al. [99] observed that increasing the value of laser power results in a
reduction of layer height. In contrast, Lee, et al. [100] and Pinkerton and Li [102] showed
that layer height increases with laser power. These results indicate that different laser power
levels influence the behavior of track height formation differently. In fact, the laser power
strongly influences the temperature reached in the melt pool, and different laser power
levels cause different convective flows in the molten material (Marangoni flows) [103]. To
better understand this aspect, a more thorough investigation of the effect of laser power on
melt pool dimensions should be conducted.
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3.1.2. Effects of the Powder Flow Rate

The powder flow rate represents the amount of additional material introduced in
the deposition area. Contradictory results exist in the literature on the effect of powder
flow rate on the width of the melt pool. Pinkerton and Li [45], Lee, et al. [100], and
El Cheikh, et al. [105], varied the powder flow rate and demonstrated that the layer width
was not influenced by this parameter. During the deposition of Ni20 powder on 316 L
substrate, Hua, et al. [97] showed that the melt pool temperature decreases with increasing
the powder flow rate, as depicted in Figure 20. Therefore, it was found that increasing
the powder flow rate results in a smaller melt pool area [106]. The reduction of melt
pool size was confirmed by Srivastava, et al. [99] during the production of Ti-48Al-2Mn-
2Nb rectangular strips. The reduction in melt pool was attributed to the increase in laser
attenuation due to the increase in powder flow rate. Conversely, Hu, et al. [98] and
Peyre, et al. [85] observed that the melt pool width slightly increased with the powder flow
rate. Consequently, the effect of powder flow rate on melt pool width depends strongly on
the value of laser power and could not be studied independently [96].
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On the other hand, the layer height increases linearly with increasing powder flow
rate [45,98,100,107–109]. Srivastava, et al. [99] observed that the layer height increases with
the powder flow rate; however, after reaching an upper critical value of the powder flow
rate, a reduction in layer height is observed. The existence of an upper limit of the powder
flow rate that depends on the size of the melt pool should be considered. If the powder
flow rate exceeds this value, the incoming particles bounce off those particles in the melt
pool, creating the self-shielding effect [110].

3.1.3. Effects of the Travel Speed

The temperature distributions measured at the centre of the melt pool at different
travel speeds are reported in Figure 21 [97]. It is possible to observe that increasing the
travel speed results in a huge reduction in the temperature. Accordingly, by increasing the
travel speed, a smaller width of the melt pool is expected.
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Yellup [101] showed that for low values of laser power, the layer width decreases
slightly by increasing the travel speed (Figure 22). This decrease has been confirmed
by Hu, et al. [98], Wu, et al. [108], Pinkerton and Li [45], Srivastava, et al. [99], and Lee,
et al. [100]. However, at a high level of laser power, the dimension of layer width is not
significantly affected by the travel speed [101]. Hu, et al. [98] observed that after a critical
value of travel speed, the layer width is unaffected by the variation of process parameters
and is equal to the laser beam diameter. This behavior indicates that even in this case, it is
not possible to consider the travel speed as an independent parameter, but it is advisable to
indicate the laser power level to which it refers.
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Hu, et al. [98], Wu, et al. [108], and Pinkerton and Li [45] observed that the layer height
is inversely proportional to the travel speed. Yellup [101] and Srivastava, et al. [99] showed
that before a critical value, the layer height increases by increasing the travel speed. After
this critical value, a decreasing trend is observed by increasing the travel speed. The critical
value depends on the material, laser power, and z-increment of the deposition head.

3.2. Forces within the Melt Pool

In general, it has been reported that the morphology and shape of a melt pool are
mainly determined by the forces and the flows within the melt pool itself [111–113]. Two
main types of forces that can be recognized are the buoyancy forces and the Marangoni
forces [37,114,115]. The flow of the metal liquid caused by the buoyancy forces is illus-
trated in Figure 23a. Differences in material density cause the buoyancy forces due to the
temperature gradient in the melt pool. Indeed, the temperature of the melt pool is higher
in the centre and gradually decreases near the boundary. As a consequence, the density
of the metal melt pool increases from the centre (point a) to the border (point b) [114].
The Marangoni forces cause the Marangoni flows, also named surface tension-driven or
thermocapillary convection. These flows are caused by surface tension gradients. The
Marangoni number (Ma) is used to measure the magnitude of Marangoni flows as:

Ma = − ∂γ

∂T
1

µκ
tmp∇T (9)

where ∂γ/∂T is the surface tension temperature coefficient, µ is the dynamic viscosity, κ
is the thermal diffusivity, tmp is the melt pool thickness on the surface, and ∇T is the
temperature gradient [111].
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Figure 23. (a) Buoyancy forces and flows caused by the material density differences due to the
temperature gradient (adapted from [114]). Marangoni flows caused by the surface tension gradients:
(b) a negative value of surface tension temperature coefficient causes a wide and shallow melt pool
morphology instead, (c) a positive value of surface tension temperature coefficient causes a deep and
narrow melt pool morphology (adapted from [116]).

By comparing the magnitude of the flows acting in the melt pool, it is possible to
observe that Marangoni flows dominate the melt pool behavior [37,111,112], which is why
most works focus on this type of flow. The effect of Marangoni flows on the melt pool shape
has been investigated numerically by several authors [111,115,117,118], and the effect of
surface tension gradient on melt pool flows is illustrated in Figure 23. It has been shown
that with a negative surface tension temperature coefficient value (Figure 23b), melt pool
flows are directed from the centre to the boundary, resulting in a wide and shallow melt
pool morphology. On the other hand, the melt pool becomes deep and narrow with a
positive value of surface tension temperature coefficient (Figure 23c). Usually, the value of
surface tension decreases with increasing temperature, so a negative value of the surface
tension temperature coefficient is obtained [114]. However, the presence of surfactant
elements such as sulphur and oxygen changes the value of the surface tension temperature
coefficient from negative to positive [37]. Nevertheless, Marangoni flows only occur below
a critical travel speed [119]. Above this critical speed, the interaction time is too low, and
the surface-tension gradients are avoided. For a 316L stainless steel, the critical velocity is
of the order of 90 mm/s.

The main characteristic of the melt pool generation process and the most important
factors are summarized in Table 4.

Table 4. Summary of the factors influencing the melt pool generation mechanisms.

Temperature
Distribution

Melt Pool
Dimension

Melt Pool
Morphology

Influence the distribution and
the peak of temperature into

the melt pool

Determine the height,
the width and the
penetration depth

Determine the shape
of the melt pool

Laser power attenuated [88,94,104] [45,85,97–102]
Travel speed [88,101] [98–101,108]

Powder flow distribution and
velocity [97] [45,97,100,105–109]

Material properties [89,93] [97] [111–114]
Marangoni flows and buoyancy

forces [115–118]
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4. Solidification Mechanisms

In general, the high heating/cooling rates, pronounced temperature gradients, and
bulk temperature rise involved in the LP-DED process are the key factors defining the
thermal history of a component. This complex thermal history, partly produced through
the LP-DED process, results in a non-equilibrium solidification which is also known as
rapid solidification. This process, characterized by a high solidification rate, can offer sev-
eral advantages, such as the extension of solid solubility, precipitation of non-equilibrium
or metastable crystalline phases, microsegregation-free solidification, and formation of a
cellular structure with non-equilibrium morphologies, in particular in the stainless steel
alloys [120,121]. It is well documented that this complex thermal history and the solidifica-
tion process, as explained earlier, determine the final microstructure and, consequently, the
performance of the produced parts. For this reason, in the following section, the aim is to
provide an overview of the microstructure, residual stress, and surface quality of metallic
materials processed via the LP-DED process.

4.1. Microstructure

In the LP-DED process, morphology and grain size as the main microstructural fea-
tures can be significantly influenced by the thermal history of the component during the
building process. In general, it has been reported that the cooling rate and thermal gradient
can substantially define the thermal history of a part. However, it is well documented
that there are lots of process parameters/variables that significantly affect the thermal
history of the LP-DED parts. Therefore, this complex correlation between the process
variables/parameters and thermal history makes predicting the microstructural features of
LP-DED components very challenging. Nonetheless, in order to produce LP-DED parts
with superior mechanical properties, it is very important to overcome this challenge and
establish effective control mechanisms.

In the literature, several works have studied the role of specific parameters on the
microstructure and performance of the LP-DED parts with specific shapes [121–123]. How-
ever, in most of these works, the investigations have been carried out on samples with
simple geometries, such as cubes and blocks. In contrast, in the case of complex shape com-
ponents that can experience various thermal histories in different parts, it is unclear how to
apply the outcomes of these investigations. In the literature, it is reported that the as-built
microstructure depends mainly on the solidification rate within the melt pool (R) and the
thermal gradient at the solidification front (G) [124,125]. G/R and G × R, which is also
known as cooling rate, are the two critical solidification parameters that influence the shape
of the solidification front and the dimensions of the microstructure, respectively [126,127].
Columnar (elongated grain morphology), columnar-equiaxed, and equiaxed are the main
structure morphology that can be achieved at different G and R values. Figure 24 shows
the effects of G and R values on the solidified microstructure. As can be seen, the columnar
to equiaxed transition can be achieved at very high solidification rates, whereas, at high
cooling rates, a finer microstructure can be obtained in the as-built LP-DED parts. It should
be emphasized that the optimum G and R values can be determined by different factors
such as material properties, machine conditions, part geometries, and process parameters.

In general, in the LP-DED process, the cooling rate value ranges from 5 × 102 to
5 × 105 K/s [20,22,128]. The high cooling rate values, as discussed earlier, could lead to
several advantages, such as suppression of solid-state transformation, formation of non-
equilibrium phases, and very fine microstructures [20]. The G × R value at the bottom of
the deposited track is very low, then increases rapidly with the track height until it reaches
its maximum value, which is approximately equal to the travel speed near the free surface
of the melt pool. On the other hand, the maximum value of G/R is obtained at the bottom
of the melt pool and decreases as it approaches the free surface of the melt pool. As a result,
a coarse, planar microstructure is frequently obtained at the bottom of the deposited track,
which evolves into cellular, dendritic or equiaxed structures in the upper regions. The
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distribution of the microstructure is visible in Figure 25, which shows the microstructural
evolution that occurs during the deposition of a single track of Co-based alloy on steel.
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Figure 25. Experimental analysis of microstructure formation during the deposition of a single
scan of Co-based alloy on steel. At the bottom of the deposited track (point A), a coarse planar
front is observed. In the centre of the track (point B), columnar and coarse dendrite structures are
observed. At the top of the track (point C), equiaxed and finer dendrites are obtained (reproduced
with permission from [129]; Copyright © 2017 Elsevier).

Previous works have reported that epitaxial grain growth in the direction of maximum
thermal gradient is the common mechanism in most metallic materials, such as stainless
steel and titanium alloys [130,131], etc. However, various prior beta grain morphologies
have been revealed in different LP-DED titanium components. For example, in a near beta
titanium alloy (Ti-5Al-5Mo-4V-1Cr-1Fe), a “bamboo-like” grain morphology was detected
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in the building direction, which is a mixture of small columnar and equiaxed grains, as
shown in Figure 26 [132].
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Figure 26. The “bamboo-like” grain morphology in an LP-DED Ti-5Al-5Mo-5V-1Cr-1Fe alloy (repro-
duced with permission from [132]; Copyright © 2013 Elsevier).

Liu, et al. [132] studied the correlation between the microstructural evolution of a near
beta titanium alloy during the LP-DED process and the part geometry (Figure 27).
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Figure 27. Schematic illustration of the microstructural evolution during the LP-DED process, (a)
One-track, (b) Multi-track, and (c) Multi-layers (reproduced with permission from [132]; Copyright ©
2013 Elsevier).

As seen in Figure 27a, during the deposition of a single track, due to the high-
temperature gradient and rapid cooling at the bottom of the melt pool, the morphology
of the grains is columnar. Thereafter, as the height of the melt pool increases, the thermal
gradient and cooling rate decrease, resulting in a transition from columnar to equiaxed
at the top of the melt pool. Instead, in the case of multi-track deposition (Figure 27b), in
the overlapping zones, all the equiaxed grains remelt and subsequently solidified with
a columnar morphology. This transition in these areas is due to the shallower melt pool
depth in these zones, which changes the local thermal history in those locations. This
different thermal history, particularly higher thermal gradients and cooling rates, leads to



Appl. Sci. 2023, 13, 117 23 of 37

the formation of columnar grain. In the case of multi-layer deposition, shown in Figure 27c,
it is revealed that partially melted equiaxed gains of the last layer solidify and act as nuclei
for the epitaxial growth of the columnar grains, which have an identical morphology to
that of the previous layer. The grain morphology in the overlapped zones, in this case, is
also the same as in multi-track deposition. However, they revealed that a variation in the
LP-DED process parameters could change grain morphologies, so further studies on the
effect of process parameters on microstructural evolution are needed.

In another work, Wang, et al. [133] studied the effect of mass deposition rate (m) on the
nucleation and growth mechanisms during the solidification of the melt pool in the LP-DED
process. They reported that by increasing the mass deposition rate, the area fraction of
the equiaxed grains increases significantly (Figure 28). In fact, by increasing the m value,
the epitaxial growth of the parent grains is more prevented, and nucleation of the new
equiaxed grains increases significantly. Besides, it was revealed that higher mass deposition
rates result in a lower melting pool depth, and after a critical point, no penetration occurs,
which is undesirable. Therefore, they concluded that through the mass deposition rate, it
would be possible to change the morphology of the microstructure, but there is a critical
threshold that should be respected.
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(h) 55 g/min and (i) 59 g/min, as mass deposition rate (reproduced with permission from [133];
Copyright © 2015 Elsevier).

Hofmeister, et al. [93] analyzed the microstructure of 316L stainless steel thin walls. By
varying the laser power, they found that a columnar microstructure was predominant near
the interface, whereas a cellular microstructure was observed in the remaining regions. They
observed that the dimensions of the microstructures were smaller using a low value of laser
power. Mazumder, et al. [128] analyzed the microstructure obtained from the deposition of
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H13 tool steel. They observed that each deposition pass was characterized by three regions:
the interface region, the columnar grain, and the equiaxed grain region (Figure 29). The
interface region corresponds to the remelted region and is characterized by a coarser mesh
due to repeated thermal cycles. Above the interface region, the microstructures evolve into
the columnar grain and then into the equiaxed grain, which has been attributed to a lower
value of temperature gradient [128].
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Figure 29. (a) Cross-section of H13 tool steel deposit and (b) close-up of deposition pass characterized
by three-zone: interface region, columnar region, and equiaxed dendrite region (reproduced with
permission from [128]; Copyright © 1999 Springer Nature).

Mazumder, et al. [128] and Han, et al. [134] demonstrated that the microstructures
are highly influenced by the process parameters. In particular, increasing the laser power
and\or reducing the travel speed result in coarser grains. The same behavior was observed
by Wu, et al. [135] for Ti-6Al-4V alloy and by Majumdar, et al. [136] for 316L stainless steel.
Figure 30 shows the variation of grain structure dimensions obtained during the deposition
of Ti-6Al-4V thin walls by increasing the travel speed. Liu, et al. [137] deposited Inconel
718 samples on a substrate of the same material and observed that the microstructure
was mainly characterized by elongated columnar dendrites along the building direction.
They also observed that a finer grain structure was obtained in the regions of overlap
between consecutive tracks, while a coarser grain structure was obtained in the other
regions (Figure 31). This was attributed to the thermal cycles that occur during the process,
which in turn cause the grain recrystallization and coarsening.
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Figure 31. Cross-section of In718 deposit. Finer grain structure is observed in the overlapping regions,
and coarser grain structure is observed elsewhere (reproduced with permission from [137]; Copyright
© 2011 Elsevier).

Several works have illustrated that in a metal part produced via the LP-DED process,
different local thermal gradients and cooling rates can lead to the formation of various local
microstructures [120,138]. For instance, in a Ti-6Al-4V component produced via LP-DED,
the colonies of parallel and very fine lamellae are formed at the top of the sample (Figure 32);
in contrast, at the bottom of the sample, the lamellae become thicker [130].
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4.2. Residual Stress

The dynamic nature of thermal phenomena in LP-DED processes induces a high level
of residual stresses. These residual stresses develop due to the reiteration of heating/cooling
cycles and the high-temperature gradient during the process. According to Mercelis and
Kruth [139], two mechanisms are primarily responsible for the generation of residual
stresses: the Temperature Gradient Mechanism (TGM) and the cooling-down phase. The
TGM is caused by the high-temperature gradient near the laser spot, whereas in the cooling-
down phase model, the molten material shrinks during the solidification due to thermal
contraction. However, this contraction is limited by the underneath material [139–141]. The
magnitude of residual stresses is influenced by the stress-strain relationship of the material
and by the strain misfit between two adjacent regions during the cooling phase [142]. In
particular, higher residual stresses have been observed in materials characterized by a
higher modulus of elasticity (E) and higher yield strength (Ys). For example, Rangaswamy,
et al. [143] showed that residual stresses in the IN718 sample (E = 205 GPa, Ys = 1100 MPa)
were approximately 1.5 times higher than residual stresses in the 316L sample (E = 196 GPa,
Ys = 450 MPa). Residual stresses in some areas can reach very high values, even 75% of the
yield strength [143].

The strain misfit between adjacent regions is crucial during the production of Func-
tionally Graded Material (FGM), where materials with very different thermal expansion
coefficients (CTE) are used. Woo, et al. [144] studied the residual stress distribution ob-
tained in five FGM samples produced with different chemical compositions. They observed
that as the chemical composition of the samples changed, there was an abrupt variation
from tension to compression.

The presence of residual stresses affects important characteristics of the produced
components, such as tensile and fatigue strength, thus influencing component integrity
and service life [138]. Moreover, the residual stresses induce distortion [145,146] and loss
of geometrical tolerances [147]. Due to complex heating and cooling cycles, stresses in the
deposited material assume a highly non-uniform distribution. Rangaswamy, et al. [148]
measured the residual stresses of two stainless steel samples using the neutron diffraction
method. They analyzed samples with different geometries, i.e., a thin wall and a pillar with
a square cross-section. They showed that a compression state is observed at the centre of
each sample, while a tension state is obtained near the edge. Later, Rangaswamy, et al. [143]
measured the residual stress distribution of two samples with rectangular and square cross-
sections using neutron diffraction and the contour method. They observed that the stresses
were almost uniaxial along the building direction. Moat, et al. [149] analyzed the stress
distribution on parallelepiped samples using the contour method. The results, illustrated in
Figure 33, showed that near the building platform, the stresses along the building direction
were almost zero; the longitudinal stresses, on the other hand, were highly compressive.
On the contrary, the stress distribution on top layers showed tensile stresses along the
building direction, but longitudinal stresses had almost zero values. This behavior was
observed by analyzing the macroscale residual stress distribution and confirmed by several
authors [150–154]. Nevertheless, the high non-uniformity of residual stresses can also be
observed in the mesoscale and the microscale levels, which analyze the stress distribution
on the layer track length scale, respectively [137,155,156]. Strantza, et al. [155] measured
the residual stresses at the mesoscale level of Ti-6Al-4V samples produced by LP-DED
using hole drilling and slitting methods. They proved that the samples were characterized
by a tensile state on the external surface that was balanced by a compression state in the
centre. High levels of residual stresses were observed near the bottom due to the high
value of the cooling rate and the cumulative effect of successive depositions. In particular,
using the hole-drilling strain gauge method, it was observed that the residual stresses
are characterized by an oscillatory nature, in which the amplitude of the oscillation is
correlated to the layer thickness and the hatching distance [155,157]. Using the Vickers
micro-indentation method on Inconel 718 samples, Liu, et al. [137] showed that higher
stresses are obtained in the overlapping regions between two adjacent tracks.
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Since residual stresses can adversely affect the mechanical performance and function-
ality of the part, several efforts have been made to define methods to minimize residual
stresses. To this end, three main aspects were investigated: building platform temperature,
deposition strategy, and process parameters.

Based on the results gained from welding processes, Chin, et al. [158] simulated the
deposition of a single steel track. They showed that preheating the building platform
caused a reduction of the thermal gradient and residual stresses. Vasinonta, et al. [159]
proposed a thermo-mechanical model and developed a process map to predict residual
stresses. They showed that the main contribution to the reduction of residual stresses came
from the uniform preheating of the building platform. Corbin, et al. [160] used a laser
sensor to analyze the effect of preheating temperature and building platform thickness
on deformation during the deposition of Ti6Al4V alloy. They showed that the preheating
phase reduced distortion when a thin building platform is used; however, when a thick
building platform is used, the preheating phase induces more deformation. Lu, et al. [145]
used a Finite Element (FE) to simulate the deposition of Ti64Al4V samples. They analyzed
the influence of different laser paths used to increase the temperature of the building
platform locally. They showed that when local preheating was used, the residual stress
value was lower than in the nominal case without preheating. However, the distortion
increased by approximately 3 mm. Instead, by increasing the temperature of the entire
building platform to 700 ◦C, the residual stresses and distortions of the Ti64Al4V samples
were reduced by 80.2% and 90.1%, respectively, compared with the nominal case.

Optimization of the deposition strategy is another method used to achieve a reduction
in residual stresses. Saboori, et al. [121] compared two deposition strategies: the 0–90◦,
characterized by an orthogonal deposition direction between two layers, and the 0–67◦,
which is characterized by a 67◦ rotation for each new layer. They showed that the residual
stresses on the top surfaces were independent of the deposition strategy; however, higher
residual stresses were observed on lateral surfaces produced by the 0–90◦ deposition
strategy. Woo, et al. [144] measured residual stresses in FGM samples produced with
different deposition strategies. They showed that the range of stress, i.e., the difference
between the maximum and the minimum value, was reduced from 950 MPa to 680 MPa
by rotating the deposition strategy by 90◦ at each layer. The lower range value of about
430 MPa was obtained using an island deposition strategy. However, using the island
deposition strategy, a higher level of defects was observed. Dai and Shaw [161] and Nickel,
et al. [162], using a FE model analysis, showed that residual stresses and related distortions
depend significantly on the laser deposition strategy. Using a bi-directional deposition
strategy elongated along a direction, the resulting distortion was characterized by a saddle
shape (Figure 34a,c). The distortion was reduced by varying the laser deposition pattern.
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In fact, by using an offset-out deposition strategy (Figure 34b,d), the induced distortion
was reduced to about 1/3 compared to that obtained with the first deposition pattern [161].
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Mitigation of residual stresses can also be achieved by varying the process parameters.
In particular, lower residual stresses are obtained by varying the process parameters in
order to obtain a constant melt pool dimension and a uniform temperature distribution
throughout the component [143,163]. In the literature, contradictory results are found
concerning the effect of process parameters on residual stress values. All in all, it is
observed that an increase in specific energy, either through an increase in laser power or
a reduction in travel speed, leads to an increase in residual stress values [163–166]. Then,
Balichakra, et al. [167], during the deposition of a γ titanium aluminide thin wall, showed
that residual stresses were almost independent of the travel speed and laser power. On the
other hand, another author showed that residual stresses were lower when using higher
laser power [168] and lower travel speed [165,168,169].

4.3. Surface Quality

Components produced by the LP-DED process suffer from low surface quality. Hence,
post-machining operations are required in order to achieve the dimensional and geometrical
tolerances defined by the specific application. The surface quality of a component is mainly
characterized by its surface roughness and dimensional accuracy [170].

Surface roughness is one of the most challenging issues in LP-DED [20,171,172].
Smugeresky, et al. [173] performed one of the first experimental investigations on the
surface finish of samples produced by the LP-DED process. Their analysis showed that the
average surface roughness (Ra) ranges between 8 and 20 µm, and the surface roughness
value is mainly influenced by powder particle size. In particular, the lowest value of surface
roughness was obtained when the smallest powder particle size was used. This behavior
was attributed to the presence of unmelted powder particles on the analyzed surface [171].
In addition to the particle size, the literature shows that the surface roughness is highly
influenced by the powder stream [174].
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Based on the powder flow rate value, Resch, et al. [175] distinguished the surface
roughness into three categories, which are related to the low, medium, and high powder
flow rate values. In detail, using a low value of powder flow rate resulted in smoother
surfaces and the lowest values of surface roughness, but the build rate was very low. Using
a higher value of powder flow rate, the build rate increased, but the surface roughness
increased significantly. Using a medium value of powder flow rate, a good building rate
with reasonable surface roughness was observed. The surface roughness is also influenced
by other process parameters such as layer thickness, laser power, and travel speed.

Gharbi, et al. [176] noticed that if a thin additive layer is used in combination with
high laser power and high travel speed, an improvement in the surface finish is observed.
This was confirmed by Peyre, et al. [171], that showed that increasing the laser power
results in a reduction of the maximum surface roughness value; however, the average
surface roughness remains almost constant. In contrast, Mahamood, et al. [177] and Li,
et al. [172] observed that average surface roughness decreases if the laser power value
increases. Gharbi, et al. [176] identified two types of roughness along the building direction
(z-axis): micro-roughness and macro-waviness. The former was attributed to the particle
agglomeration in inter-layer areas and the solidification line and was mainly influenced by
the powder stream, while the macroscopic contribution, which was mainly influenced by
the process parameters, was related to the formation of periodic menisci, associated with
the stability of the melt pool. In general, surface roughness can be measured on the top
surface (building plane) and the lateral surfaces (along the building direction) [178].

Despite the fact that most works have analyzed the surface roughness on the lateral
surfaces [173,175,176,179], it is observed that the surface roughness on the top surfaces
is slightly higher than that measured on the lateral surfaces [168,180]. In particular, Pis-
copo, et al. [168] showed that the morphology of the lateral and the top surface is mainly
influenced by the layer thickness and the hatching distance, respectively. In addition, by
analyzing the morphology of the surface described by the kurtosis and the skewness param-
eters, they showed that the morphology of an LP-DED sample is similar to that obtained
in a milling operation. In addition to varying process parameters, different methods have
been developed to improve surface roughness. Gharbi, et al. [176] showed that the surface
finish is improved using quasi-continuous laser irradiation instead of fully continuous laser
irradiation. This was attributed to the reduction of the thermal gradient and Marangoni
flow in the melt pool.

One of the main methods used to reduce top surface roughness is surface scanning
without powder feeding. This method, in analogy with the L-PBF process, is named
remelting. Rombouts, et al. [181] studied the effect of laser remelting on surface roughness.
Figure 35 illustrates the surface profile data before and after remelting. In their work,
the surface quality was evaluated in terms of maximum profile height (Rt) along two
directions parallel (X-direction) and perpendicular (Y-direction) to the deposition path.
Before remelting, a lower value of Rt was observed in the analyzed samples. Moreover,
a clear correspondence between waviness and hatching distance was identified on the
deposited samples. This correspondence was not observed after remelting.
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Dimensional accuracy is another important factor used to describe surface quality. In
fact, based on dimensional and geometrical deviation, the post-processing operation can
be designed [168]. Izadi, et al. [182] and Piscopo, et al. [168] reported that dimensional
deviation depends on process parameters. Gruber, et al. [183], based on the dimensional
results, showed that the accuracy of the LP-DED process falls into the coarse tolerance class.
However, the accuracy can be increased by optimizing the process parameters [168,183].
For example, Piscopo, et al. [168] observed that travel speed significantly influences the
dimensional deviation, which decreases as the travel speed increases. On the other hand,
the dimensional deviation was not significantly influenced by the laser power.

Table 5 summarizes the main aspects of the solidification process and its most impor-
tant parameters.

Table 5. Summary of the factors influencing the solidification mechanisms.

Microstructure Residual Stress Surface Quality

Control the morphology and
the dimension of

the grains

Influence the internal
stress state and the

part/substrate distortions

Influence the surface
roughness and the

dimensional accuracy

Material properties [130–132,137] [143,144,148]
Thermal gradient and

solidification rate [124–127] [150–154]

Laser power [93,128,134] [143,145,168] [171,176]
Travel speed [128,134,135] [143,163] [171]

Powder flow rate [133] [174,175]
Deposition strategy [128] [121,137,144,161,162] [168,181]

Substrate temperature [158–160]

5. Conclusions

The purpose of this review is to provide a summary and analyse the main mechanisms
involved in the Laser Powder Directed Energy Deposition process (LP-DED). From the
literature review, three mechanisms are identified: laser irradiation and material addition,
the generation of the melt pool, and the solidification. For each of these mechanisms, the
most significant parameters and their effect on the deposition characteristic have been
discussed. Compared to the currently available literature, which focuses on specific aspects
of the process, this paper provides a comprehensive overview of the main mechanisms of
the LP-DED process.

The process analysis highlighted the complexity of the phenomena occurring during
the deposition process and suggested future studies are needed to improve the process.
Some possible activities should focus on the development and testing of new deposition
heads that can maximize capture efficiency, the analysis of the effect of a wider range of
process parameters and a wider range of materials, the investigation of new deposition
strategies and process parameters for residual stress mitigation, and, finally, the structured
analysis on the dimensional and geometrical capabilities of the LP-DED process.
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