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Abstract: In this study, we investigated dynamic control strategies for over-constrained cable-driven
robots. In order to control a cable-driven robot, it is essential to address issues that arise from the
restriction of cable tension, as well as to the redundancy issues that arise from an over-constrained
cable-driven system. In contrast to previous research that required consideration of the relationship
between tension constraints and computed control wrench in tension distribution problems, we
developed a tension function that incorporates the hyperbolic tangent function, which allows tension
to always satisfy tension constraints and eliminates the consideration of constraints at each step. The
gradient descent method was applied to this tension function to determine an appropriate distribution
of tension for the computed wrench. In order to manage tension distribution optimization for
achieving objectives such as energy conservation, we provide a practical method to simultaneously
realize the necessary wrench and the appropriate tension distribution. Compared with studies that
focus on the complex analysis of the structure matrix to solve the tension distribution problem, the
tension distribution issue is handled in a straightforward manner in our method, providing the
solutions to other problems, such as discontinuity in the calculated wrench, and requirements of
changing the cable’s force level during movement. The simulation results and results of comparison
with other methods show the effectiveness of the method.

Keywords: cable-driven robot; tension constraint; torque control; adaptive algorithm for Jacobian matrix

1. Introduction

A cable-driven parallel robot is a type of parallel robot that utilizes cables in place of
the conventional rigid links to drive the end-effector of the robot. Within the framework
of this system, the end-effector is linked to a number of cables that are driven by rotary
motors. The cable-driven mechanism utilized by these types of robots is advantageous for
a variety of reasons: it is lightweight, provides a large workspace, and is easy to transport
and reconfigure.

Due to these advantages, cable-driven robots are well-suited for use in a wide variety
of applications, including rehabilitation robots, camera systems, multiple cooperative
cranes, and more.

Nevertheless, in order to properly design either the controller or the structure of such
a robot, two aspects of the cable-driven robot system need to be taken into consideration.
One is that the tension of the cable must be maintained at a positive value, as the cable
can only pull the end-effector of the robot and cannot be used to push it. In addition, the
tension of the cable ought to be limited at a maximum value in order to accommodate the
saturation of the motor and the tensile strength of the cable.

The other is the requisite redundancy design implemented in such robot systems.
Although there have been are various categories proposed for cable-driven robots based on
the number of cables and the robot’s degrees of freedom, in practice, cable-driven robots
can be divided into fully constrained, over-constrained, and under-constrained robots,
denoted as m = n, m > n, m < n, respectively, where n denotes the degree of freedom of
the robot and m represents the number of cables.
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In practice, analysis and control design are challenging due cable-driven robots’ lack
of pushing capabilities. In addition to requiring that the saturation problem be factored
into the control strategy, this impacts the feasible workspace of the robot. In [1], the authors
classified the SEW (static equilibrium workspace) as the set of poses attained statically
considering the gravity. In the research of [2,3], the WCW (wrench closure workspace) is
defined as the set of poses in which cable tensions can sustain an arbitrary external wrench.
In other scenarios, such as [4,5], the workspace where cable tensions can produce any
bounded wrench in the required set is referred to as the WFW (wrench feasible workspace).

In addition to the analysis of the feasible workspace of robots, many studies have
concentrated on the control problem, that is, how to produce feasible tension to accomplish
the control objective. The primary difficulty stems from the tension limits in combination
with the issue of necessary redundancy in the over-constrained cable-robot configuration.
In [6], an optimal tension distribution law for a computed PD control input from the
viewpoint of workspace conditions was proposed. In [7], a feedback tracking control
method based on the Control Lyapunov Function for cable suspended robots was presented.
However, these approaches fail at other control aims, such as force control. In [8], an LP
(Linear Programming) and QP (Quadratic Programming) solver was used to calculate
the positive tension for a computed wrench. In [9], an LP solver for the optimal positive
solution of the tension was able to provide rapid calculation. Verhoeven [10] developed
an optimization algorithm for cable robots that minimizes the p-norm objective function,
especially for high values of p. The LP and QP methods utilized in these investigations can
achieve an optimal selection of positive tension distributions. However, the programming
method used in these studies can cause a discontinuity in the cable tension, which renders
the robot’s control unstable. Furthermore, such programming methods can require an
excessive amount of time to search for a feasible distribution in each step, making it difficult
to realize the desired real-time calculation [11].

In addition to the programming-based tension distribution approach, there exist other
studies on this issue that solve the problem by examining the relationship between the
structural equation’s solution space and the tension constraint’s hypercube. Hassan [12,13]
introduced the iterative Dykstra method, which computes tension distribution by locating
the intersection between the solution space of the structural equation and the hypercube
of the tension constraint. However, this method cannot compute force distributions that
are continuous throughout a trajectory, and the rate of convergence is slow. In order
to solve the problems of computation speed and continuous solution, Pott suggested a
closed-form method in [14], followed by an improved version in [11]. Furthermore, the
Barycentric force distribution method and its improved version, which can realize real-time
calculation for cable-driven robots with two redundant cables, are provided in [15–17].
The puncture method [18] is another real-time approach that does not require a certain
redundancy level. Although these algorithms calculate a continuous sequence of tension
distributions, they only consider a certain minimum, maximum, or medium value, which
may not be sufficient for certain applications, for example, those that require force control
of the end-effector through stiffness control (where stiffness is affected by the tension in
each cable). In addition, they only seek to solve the continuous problem by searching for
solutions in the kernel space of the structure matrix, neglecting the possible discontinuity
in the computed control wrench.

In this paper, we present a straightforward tracking control strategy for a cable-
driven robot with a hyperbolic tangent function for force distribution. The tension is
expressed here as a function with respect to a vector L ∈ Rm with a direction that is
not specified. Utilizing the bounding attribute of the hyperbolic tangent function, this
function satisfies tension requirements with user-selectable upper and lower bounds; L is
chosen in relation to the computed PID control input in the wrench space. In addition, we
propose a method for selecting an optimal tension distribution in relation to the computed
wrench in tension space in order to carry out the tension distribution optimally and thereby
achieve certain objectives, such as the minimization or maximization of the cable’s tension
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vector norm. The proposed method may address the issue of potential discontinuity in
the computed control wrench. This characteristic is highlighted in the comparison of our
method with existing methods in the discussion section. Based on the proposed tension
distribution method, we provide an algorithm that adaptively controls a cable-driven
robot with physical parameters, such as its gravity center, that are unknown. Appropriate
parameter selection in our tension distribution approach can manage adaptive tuning
parameter-induced control input vibration, resulting in continuous tension.

The rest of our paper is organized as follows: first, we introduce the problem for-
mulation in Section 2, followed by the proposed method for tension distribution to track
robot control in Section 3. A version of this method with consideration of optimization is
proposed in Section 4. In Section 5, we propose an adaptive tracking control law for cable-
driven robots to account for uncertain parameter of the structure matrix of cable-driven
robots. The efficiency of our strategy is demonstrated by the simulation results presented
in Section 6. We provide a discussion of comparisons of our method and previous methods
in Section 7. Lastly, we conclude the paper in Section 8.

2. Problem Formulation
2.1. Robot Kinematics Analysis

The general kinematics model of cable-driven parallel robots is shown in Figure 1.

Figure 1. Model of cable-driven parallel robot.

A cable-driven robot consists of n cables and one end-effector. Each cable is driven
by one motor. To explain how the robot moves, we can use the following two coordinate
systems: first, an base coordinate system Co =

{
Oo, xo, yo, zo

}
fixed at one point at the

workspace, and second, an end-effector coordinate system Cp =
{

Op, xp, yp, zp
}

attached
at one point of the end-effector.

Moreover, in Figure 1, the position of the gravity center represented in Co and Cp is
denoted as pG and p pG, respectively; boG denotes the vector from the selected origin of Cp
with the unknown gravity center pG in Co, and pboG represents the same vector in Cp. The
location of the ith motor in the original coordinate system is denoted as Ai, with i = 1, . . . ,
n in Co, and the cable anchor point at the end-effector is represented as Bi and pBi in Co
and Cp, respectively. Here, bpo represents the vector from the origin of Co to the origin of
Cp in Co, and the rotation relation between the two coordinate systems is formulated by
the rotation matrix R shown below, which is associated with the three Euler angles φ, θ, ψ,
respectively representing the roll, pitch, and yaw angles [15].

R =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ

sθ cθsφ cθcφ

 (1)
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Thus, the relationship between the time variation of cable length and the motion of
the gravity center of the end-effector can be shown as follows:

l̇ = J̄
[
ṗG

T ΩT]T (2)

where l̇ :=
[
L̇1, . . . , L̇m

]T ∈ Rm×6; here, l represents the vector of the cable length and Li
represents the cable length of the i-th cable. Here, J̄ is defined as [15]:

J̄ :=
[
ζ1 , . . . , ζm

]T (3)

where ζi :=
[
uT

i , (bGi × ui)
T]T ∈ R6×1 for i = 1, . . . , n, with bGi := Bi − pG, and ui :=

li/Li = (Bi − Ai)/Li represents the normalized cable direction; furthermore, li = Liui
represents the cable vector. Note that bGi can be rewritten as bGi = R(pboi − pboG), where
pboG is the position of the gravity center. The angular velocities can be related to the Euler
angles as follows:

Ω := Θω = Θ
[
φ̇ θ̇ ψ̇

]T (4)

with ω = [φ̇, θ̇, ψ̇]T and the matrix Θ ∈ R3×3 is calculated as follows:

Θ :=

1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

 (5)

2.2. Robot Dynamics Analysis

By introducing the generalized coordinates vector q =
[
pT

G, φT , θT , ψT] for the pose of
the end-effector, the robot dynamics can be expressed as follows [15]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = AT f (6)

where

M(q) =
[

mI3×3 03×3
03×3 ΘT IpΘ

]
(7)

C(q, q̇) =
[

03×3 03×3
03×3 ΘT IpΘ̇ + ΘT(Ω)×(IpΘ)

]
(8)

G(q) =


0
0
−mg
03×1

 (9)

Ip denotes the inertia tensor of the end-effector about point PG in Co, and A ∈ Rm×6 is the
Jacobian matrix, which is defined as follows:

A = − J̄γ (10)

with γ :=
[

I3×3 03×3
03×3 Θ

]
. The condition that applies is that the tension of the ith cable

must be fi ∈ [ fmin, fmax], where fmin and fmax denote the lower and upper boundaries
of one cable, respectively, and fmin must be positive. Furthermore, as previously noted,
because the robot’s control wrench must always satisfy the wrench closure constraint,
the number of cables n and the degree of freedom of the robot’s system n must always
satisfy the equation m > n + 1, which implies that a cable-driven system must always have
redundancy. Finding a solution to the tension distribution problem requires taking into
account both the tension constraint and the redundancy of the robots at the same time.

Previous studies have employed optimization techniques, such as linear programming,
to determine a feasible control input that satisfies the tension constraint. However, these
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approaches have limitations, such as a discontinuous solution or a complicated compu-
tation procedure. Real-time applications necessitate a technique that can both make the
tension distribution problem continuous and reduce the amount of time spent computing
the solution.

Here, we present a method for determining the appropriate control input for a cable-
driven robot that performs tension selection based on a tension function containing the
hyperbolic tangent function. Because of the boundary constraint imposed by the hyper-
bolic tangent function, the proposed tension function achieves the desired tension limits.
Adjusting the parameters within this tension function produces a change in tension that is
suitable for the desired wrench. Compared to conventional optimization approaches, this
strategy can determine the optimal tension distribution more rapidly and effectively while
preserving the continuity of the tension’s variation.

3. Tracking Control of Cable-Driven Robot with Hyperbolic Tangent Function-Based
Tension Distribution
3.1. Hyperbolic Tangent Function-Based Tension Distribution Method of Cable-Driven Robot with
Known Jacobian Matrix

We can select the desired control input of the robot system as follows in order to obtain
the tracking control of a cable-driven robot [15]:

AT f = τd = Mq̈r + Cq̇ + G (11)

where qr , the two-order time derivative of which is q̈r = kp(qd − q) + kd(q̇d − q̇) +
ki
∫ t
0 (qd − q)dt, represents the reference trajectory. From Equation (11), it is possible to

achieve PID tracking control of a cable-driven robot with nonlinear compensation by
properly adjusting the tension f in accordance with the unique Jacobian matrix J and
desired wrench τd.

We suggest a strategy for the distribution of continuous tension that utilizes a simple
computation procedure. The value f is chosen based on the function defined below:

f = fmin1+ λ[1+ Tanh(L)] (12)

where 1 ∈ Rn denotes a vector in which all elements are 1, L = [L1, . . . , Lm] f ∈ Rn

represents a vector with an unknown value and that must be adjusted in accordance with
the desired control input in wrench space, and Tanh(L) = [tanh(L1), . . . , tanh(Lm)]T and
λ represent a positive scalar related to tension constraints, calculated as λ = fmax− fmin

2 .
Consequently, considering the hyperbolic tangent function’s boundary condition (−1 6
tanhx 6 1, with x denoting any scalar), any selection of L can satisfy the tension constraints
( fi ∈ [ fmin, fmax]).

Then, using Equations (11) and (12), we can obtain

AT( fmin1+ λ[1+ Tanh(L)]) = τd (13)

This equation can be expressed as follows:

ATTanh(L) = τ̄ (14)

where τ̄ = τd−( fmin+λ)J1
λ . As a result, we can determine L to realize τ̄ and then further

realize the needed control input τd.
An error function can be constructed as E = 1

2 eTe, where the error e is defined as
e = ATTanh(L̂)− τ̄ and L̂ denotes the estimation of L.

E can be minimized by appropriately tuning L̂ using the gradient descent method.
Variations of L̂ can be presented as

˙̂L = −α
∂E
∂L̂

= −α(Um×m − Tanh2(L̂))T Ae (15)
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where Um×m represents the unit matrix in Rm×m space and α is a positive scalar; Tanh2(L̂) ∈
Rm×m represents a diagonal matrix function defined as follows:

Tanh2(L̂) :=

tanh(L1)
2 · · · 0

...
. . .

...
0 · · · tanh(Lm)2

 (16)

3.2. α Selection Condition for Convergence of the Error e

By applying the updated law in Equation (15), the error e might be minimized when the
time derivative of the desired wrench τd is zero or very small. However, if τd varies over time,
updating L̂ to reflect this variation requires additional analysis and the choice of a suitable α.

Here, the derivative of E can be formulated as follows:

Ė = eT ė = eT(ȦTTanh(L̂) + AT d

dt
(Tanh(L̂))− ˙̄τ) (17)

As τ̄ = τd−( fmin+λ)J1
λ , ˙̄τ can be shown as follows:

˙̄τ =
τ̇d − ( fmin + λ)ȦT

1

λ
(18)

We can rewrite Equation (17) as follows:

Ė = eT(ȦTTanh(L̂) + AT d

dt
(Tanh(L̂))− 1

λ
τ̇d

+
1
λ
( fmin + λ)ȦT

1)

(19)

where

τ̇d =Ṁ(−kp(q− qd)− kd q̇) + Cq̈ + Ċq̇ + Ġ

+ M(−kp(q̇− q̇d)− kd q̈)
d

dt
(Tanh(L̂)) = (Um×m − Tanh2(L̂)) ˙̂L

Furthermore, by incorporating Equation (15), it can be concluded that

Ė = eTz− αd (20)

where
z = ȦTTanh(L̂) +

1
λ
(( fmin + λ)ȦT

1)− 1
λ
(Cq̈ + Ġ + Ċq̇)

− 1
λ
(Ṁ(−kp(q− qd)− kd q̇) + M(−kp(q̇− q̇d)− kd q̈))

(21)

d = eT AT HTanHT
Tan Ae (22)

HTan = Um×m − Tanh2(L̂) (23)

q̈ can be calculated using q̈ = M−1(AT f − Cq̇ − G). Thus, utilizing the dynamic and
kinematic model of the robot and the sensor-measured angular position and velocities, it is
possible to determine z.

From Equation (20), due to the fact that d is a non-negative value, we can select an
appropriate α to make Ė negative. Here, the value of d is crucial for selecting α.

Remark 1. We do not need to update L̂ and α if d is close to zero.

Proof. When d decreases in value, each element of vector HT
Tan Ae in tension space becomes

small. It is evident that there may exist two possible explanations when d is close to zero,
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as each element of this vector is calculated using two variables, namely, the corresponding
element of vector Ae and the diagonal element of matrix HTan.

On the one hand, when the control wrench tracking error e is decreased to zero and
the desired control wrench is achieved, d becomes zero.

On the other hand, when d is close to zero, it is possible that diagonal elements of
HTan may be close to zero as well, as the corresponding elements of Ae are not zero. Due to
the fact that HTan is a diagonal matrix and each diagonal element of HTan is calculated as
1− (tanh(Li))

2, where tanh() has the upper and lower boundaries as 1 and−1, respectively,
each element of HTan becomes small. This indicates that each cable’s force is sufficiently
close to the limitation boundary. The tension of the cable is actually unable to maintain the
appropriate tension for realizing the desired wrench.

Therefore, in each of these circumstances there is no need to update L̂ any further.

If d is large enough, α can be selected provided the following conditions are met:

α

{
> 0 (Ēr > 0)

> −Ēr
d (d > δ, Ēr < 0)

where δ denotes a tiny positive value.
Here, Ēr is defined as

Ēr := −eTz− βeTe (24)

where β is a positive scalar.
By following the condition of α, we can obtain

− αd 6 Ēr (25)

Then, by substituting Equation (25) into Equation (20) and using Equation (24), we
obtain

Ė 6 −βeTe (26)

which indicates that the desired control wrench is tracked steadily.

4. Optimization of Cable Distribution
4.1. Optimization Algorithm

Although the previous section included a useful method for computing the tension
distribution of the control wrench, it remains essential to select the proper tension distribu-
tion in an optimal and effective manner, and a method that provides a minimum norm for
energy reservation is needed.

Notably, after utilizing the proposed tension function, we can easily achieve an optimal
tension distribution by selecting or minimizing the cost function as min C( f ) without
tension constraints.

For instance, when choosing a tension with the lowest norm value in a tension space,
we can choose f as follows:

fo = A+Tτd (27)

Nevertheless, A+Tτd is sometimes not a viable alternative, as it is possible that the
tension requirement may not be satisfied. Consequently, a feasible f that can track A+Tτd
as closely as possible, meet the tension condition, and realize the desired control wrench is
required.

In order to achieve this goal, we can augment the tension function as follows:

f = fmin1+ λ[1+ Tanh(S̄La)] (28)

with the use of L in Equation (12):
L = S̄La (29)
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where S̄ represent a diagonal matrix, S̄ :=

S1 · · · 0
...

. . .
...

0 · · · Sn

.

Notably, S̄La can be computed as follows:

S̄La = L̄aS (30)

where L̄a denotes the matrix L̄a :=

La1 · · · 0
...

. . .
...

0 · · · Lan

 and the vector S can be represented as

S = [S1, . . . , Sn]T . Then, Equation (28) can be shown as f = fmin1+ λ[1+ Tanh(L̄aS)].
The error between the tension function and desired tension distribution with a mini-

mum norm can be represented as follows:

e2 = f̂ − fo (31)

and the desired control wrench tracking error becomes

e1 = ATTanh( ˆ̄SL̂a)− τ̄ (32)

where L̂a represents the estimation of La.
Here, the objective is to simultaneously minimize e1 and e2 in order to achieve the

desired wrench and optimal tension distribution solution. We define an error function as
E2 = eT

2 e2 and E1 = eT
1 e1 to represent the error of tracking the desired wrench and tracking

the optimal tension distribution, respectively. In order to simultaneously minimize E1 and
E2, based on the gradient descent method, the updated law of the estimation of L̂a and Ŝ
can be formulated as follows:

˙̂La = −α1
∂E1

∂L̂a
= −α1

ˆ̄ST(Um×m − Tanh2( ˆ̄SL̂a))
T Ae1 (33)

and
˙̂S = −α2

∂E2

∂Ŝ
= −α2λ ˆ̄LT

a (Um×m − Tanh2( ˆ̄LaŜ))Te2 (34)

where ˆ̄La, L̂a, ˆ̄S, Ŝ represent the estimation of L̄a, La, S̄, S.
Notably, although the updating law chosen in Equations (33) and (34) minimizes E1

and E2, variations in either of these processes have repercussions on the other.
When the ideal tension f0 satisfies all tension constraints, this tension becomes one

of the tension solutions that minimize E1 to zero. In this case, a decrease in E2 facilitates
decreases in E1.

However, when the ideal tension f0 is located outside of the tension constraints, re-
ductions in E1 and E2 can actually lead to conflict, especially considering that updating Ŝ
may cause a divergence in tension from the desired wrench. In detail, as seen in Figure 2,
f0 denotes the optimal tension selection out of the feasible tension space. The dashed line
passing through fm, f0, and τd denotes the set of all the tension solutions corresponding to
the desired τd; the blue part of this dashed line in the tension space denotes the feasible
tension solutions, fm denotes the feasible tension solution closest to f0, and fp represents
the solution that is nearest to f0 in tension space. If we fix L̂a and only update Ŝ following
Equation (34), the tension value converges to fp, reducing E2 to the minimum. More-
over, even when we update the original fixed L̂a with Equation (33), when Ŝ changes the
value of the tension may deviate from the feasible tension solutions related to the desired
control wrench.

Thus, in order to manage this situation, tracking of the desired wrench with an
appropriate α1 is required to ensure that tensions are only selected from the points on
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the blue part of the dashed line; by updating the law of Equation (34), E2 becomes the
minimum value on the blue part of the dashed line.

The total calculation and control process is shown in Algorithm 1.
To guarantee the convergence of E1, in the following section we examine its dynamic

change and define the tunable range of α1.

Figure 2. Relation between wrench space and tension space.

Algorithm 1 tanh(:)-based Optimal Tension Distribution

Require: q, q̇, qd, L̂a0, Ŝ0, λ
Ensure: f

LOOP Process
1: for t = 0 to t f do
2: Calculate τd following Equation (11).
3: Calculate the Updating law of Equations (33) and (34).
4: Update the integral of L̂a, Ŝ.
5: Calculate the tension following Equation (28) and use the calculation result to control

the robot.
6: end for

4.2. Analysis for Tracking the Stability of the Desired Control Wrench

Similar to the derivation of Equation (19), the derivative of E1 can be calculated
as follows:

Ė1 = eT
1 ė1 = eT

1 (ȦTTanh(L̂) + AT d

dt
(Tanh(L̂))− ˙̄τ) (35)

In order to examine the tracking stability of the desired control wrench, it is necessary
to determine the variation of d

dt (Tanh(L̂)) and τ̇d. With the updating law selected as shown
in Equations (33) and (34), d

dt (Tanh(L̂)) becomes

d

dt
(Tanh(L̂)) = (Um×m − Tanh2(L̂)) ˙̂L

= (Um×m − Tanh2(L̂))( ˆ̄S ˙̂La + ˆ̄La
˙̂S)

= −α1HTan
ˆ̄S ˆ̄ST HT

Tan Ae1 − α2λHTan
ˆ̄La

ˆ̄LT
a HT

Tane2

(36)

Equation (35) can be written as

Ė1 = eT
1 z̄− α1d̄ (37)

where z̄ = z− α2λHTan
ˆ̄La

ˆ̄LT
a HT

Tane2 and d̄ = eT
1 AT HTan

ˆ̄S ˆ̄ST HT
Tan Ae1.
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It has been shown that the term −α2λHTan
ˆ̄La

ˆ̄LT
a HT

Tane2 generated by the updating law
of Ŝ has an effect on the tracking stability of the desired wrench. Here, we select α1 as
follows to ensure consistent tracking of the desired wrench:

α1

{
> 0 ( ¯̄Er > 0)

> − ¯̄Er
d̄ (d̄ > δ, ¯̄Er < 0)

where ¯̄Er is defined as ¯̄Er := −eT
1 z̄− βeT

1 e1. As a result, we obtain

Ė1 6 −βeT
1 e1 (38)

which indicates that E1 continues to decrease with the suggested selection law for α1. Here,
because the selection of α1 takes into account the effect of ¯̄Er, which includes the effect
caused by the variation of Ŝ, it can be seen that AT f is able to consistently track the desired
wrench even when Ŝ varies. Due to the updating of Ŝ, E2 is minimized and the tension f̂
finally reaches fm, which is close to the desired f0 illustrated in the feasible tension solutions
with respect to τd (for example, fm in Figure 2).

4.3. Analysis of Trajectory Tracking Control

If the desired control of the wrench can be achieved, the robot’s acceleration q̈, velocity
q̇, and position q can satisfy the equation provided below due to the existence of the
nonlinear compensated control wrench:

q̈ + Kd q̇ + Kp(q− qd) + Ki

∫ t

0
(q− qd)dt = 0 (39)

which indicates that q is well able to track the desired position qd. However, because of the
existence of the tracking error of the desired wrench, Equation (39) becomes

q̈′ + Kd q̇′ + Kp(q′ − qd) + Ki

∫ t

0
(q′ − qd)dt = M−1(AT f − τd) (40)

where q′ represents the novel system state.
By comparing Equation (39) to (40), an auxiliary error system can be constructed

as follows:

q̈e + Kd q̇e + Kpqe + Ki

∫ t

0
qedt = de (41)

where qe := q′ − q.
Here, during the procedure in which AT f tracks τd, the term de = AT f − τd can be

regarded as a disturbance that may cause a steady-state error in the robot’s tracking control.
In this study, the presence of the integral term Ki

∫ t
0 (q− qd)dt in the nonlinear compensated

PID controller can help to reduce the steady-state tracking error caused by this disturbance.

5. Tracking Control of Cable-Driven Robot Considering Model Uncertainties in
Jacobian Matrix
5.1. Analysis of Model Uncertainties’ Impact on the Jacobian Matrix

Considering the model uncertainties, Equation (15) becomes

˙̂L′ = −α
∂E
∂L̂′

= −α(Um×m − Tanh2(L̂′))T Âe′ (42)

where ÂT represents the estimation of AT , L̂′, e′ represent the new estimation of L and
the error e using ÂT , respectively, e′ can be calculated with e′ = ÂTtanh(L̂′) − ˆ̄τ, and
ˆ̄τ = τd−( fmin+λ)ÂT

1

λ .
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Simultaneously, the robot’s dynamics, as shown in Equation (6), are as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = AT f̂ (43)

Equation (43) can be rewritten as follows in order to analyze the effect of the estimation
error on the robot’s tracking behavior:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τd − τd + AT f̂ = τd + τe (44)

with τe = AT f̂ − τd
Equation (41) becomes

q̈e + Kd q̇e + Kpqe + Ki

∫ t

0
qedt = M−1(AT f̂ − τd) (45)

Considering that qe and q̇e are both measurable, we suggest that an adaptive control
law can be utilized to minimize the model errors. Furthermore, the previous equation can
be rewritten as follows:

q̈e + Kd q̇e + Kpqe + Ki

∫ t

0
qedt = M−1(AT f̂ − ÂT f̂ + ÂT f̂ − τd) = τe1 + τe2 (46)

where the τe1 = M−1(AT f̂ − ÂT f̂ ) denotes the error exerted by model uncertainties and
τe2 = M−1(ÂT f̂ − τd) denotes the error between the desired wrench and approximated
wrench.

Here, we can rewrite the term M−1 AT f̂ as M−1 AT f̂ = Ya, where Y denotes a re-
gression matrix and a represents the uncertain parameters in the Jacobian matrix. Then,
M−1 ÂT f̂ can be represented as follows:

M−1 ÂT f̂ = Yâ (47)

where â denotes the estimation of a.
Equation (46) then becomes

q̈e + Kd q̇e + Kpqe + Ki

∫ t

0
qedt = Yã + λM−1e′ (48)

According to Equation (48), qe is affected by both Yã and M−1λe′. With the existence
of M−1λe′, it is challenging to find a suitable time-changing law of â to accomplish the
adaptive control law based on Equation (48). In this study, we employ a fault detection and
isolation technique to build an auxiliary system with a state solely affected by Yã. We then
propose an adaptive control law based on this novel system.

5.2. Fault Detection and Isolation-Based Adaptive Algorithm

First, as in [19,20], we can consider the dynamics of the generalized momentum of the
auxiliary system in Equation (41), as follows:

p = q̇e (49)

By differentiating Equation (49), we obtain

ṗ = −(Kd q̇e + Kpqe + Ki

∫ t

0
qedt) + M−1(AT f̂ − τd)

= τr + M−1 AT f̂
(50)

For notational brevity, vector τr = −(Kd q̇e + Kpqe + Ki
∫ t
0 qedt)−M−1τd is introduced.
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Based on τr, we can construct a residual generator as follows:

r(t) = Γ[p(t)−
∫ t

0
(τr + r(s))ds] (51)

where Γ denotes a positive scalar and the initial value of r satisfying r(0) = 0. r(t) is
calculable as p in r(t), and can be calculated using q̇− q̇′, where q̇ can be obtained using
Equation (39) and q̇′ can be measured by sensors.

By differentiating Equation (51) with respect to time and considering Equation (50),
we can obtain

ṙ + Γr = ΓM−1 AT f̂ = ΓYa (52)

From this equation, it can be seen that the state r of this constructed system is only
affected by the term ΓYa. If we introduce an estimation method using â instead of a,
we obtain

˙̂r + Γr̂ = ΓYâ (53)

where r̂ represents new system states after using â. By comparing the error between these
two systems (Equations (52) and (53)), we can obtain the following error system:

˙̃r + Γr̃ = ΓYã (54)

where r̃ = r̂− r and ã = â− a. By appropriately adjusting â, ã and r̃ can converge to zero
and system Equation (54) becomes stable. The stability of this error system can be analyzed
using a Lyapunov theory-based stability analysis, with the Lyapunov candidate selected
as follows:

V =
1
2

r̃T r̃ +
1
2

ãT ã (55)

Therefore, the time derivative of V can be calculated as follows:

V̇ = r̃T ˙̃r + ãT ˙̃a

= −r̃TΓr̃ + r̃TΓYã + ãT ˙̂a
(56)

Thus, if we designate the time change of â as

˙̂a = −ΓYT r̃ (57)

we obtain
V̇ = −r̃TΓr̃ ≤ 0 (58)

which means that the system of Equation (54) is stable. Here, r̃ converges to 0, which
denotes that the error term Yã converges to zero. With the dynamics in Equation (48),
the tuning law of Equation (42), and the existence of the integral term in the nonlinear
compensated PID controller, qe and q̇e converge to zero, and q′ finally converges to the
desired position qd.

Here, in Equation (57), r̃ can be calculated using r− r̂, where r̂ can be obtained using
Equation (53) and r can be computed with Equation (51).

6. Simulation Studies

In order to verify the efficacy of our strategy, a simulation study of a cable-driven
robot with six degrees of freedom and eight cables was conducted. This robot’s geometric
structure and configuration model are depicted in Figure 3.
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Figure 3. Cable-driven parallel robot with six degrees of freedom and eight cables.

The generalized robot’s state can be represented as follows:
[
x, y, z, φ, θ, ψ

]T . The
position of the eight motors in the original coordinate system is set as

A1 =

 1.5
−1.5

2

, A2 =

1.5
1.5
2

, A3 =

−1.5
1.5
2

, A4 =

−1.5
−1.5

2

,

A5 =

 1.5
−1.5
−2

, A6 =

1.5
1.5
−2

, A7 =

−1.5
1.5
−2

, A8 =

−1.5
−1.5
−2


(59)

with the angular parameters (φ, θ, ψ) all set to zero. The tension constraint is set as fmin = 0 N,
fmax = 20 N.

This robot’s dynamics can be shown as follows:[
m3×3 0

0 I3×3

]
q̈ + G = AT f (60)

where m3×3 and I3×3 represent a diagonal matrix with diagonal elements set as the mass m
and the inertia I of the end-effector, respectively. In the simulation, m and I are selected as
0.5 and 0.3, respectively.

Using a conventional PID controller, the simulated robot tracks the desired pose
qd = [0.6,−0.6, 0.6, 0, 0, 0]T from its initial position [0, 0, 0, 0, 0, 0]. We performed simulations
with two proposed strategies, and the next two subsections detail the simulation results for
each strategy.

6.1. Simulation 1

First, we constructed a simulation to validate the effectiveness of a tension distribution
approach that satisfies the tension requirements and tracks the computed wrench without
considering the optimization problem associated with tension distribution. The α in this
method is α = 10, while the control gains are Kd = 10, Dd = 10, Ki = 0.1. The desired
pose is selected as qd = [0.6,−0.6, 0.6, 0, 0, 0]T . Figure 4 represents the simulation result of
this method.

From Figure 4, it is evident that the tension of the cable falls between 0 N and 20 N.
Additionally, the figure shows that the tension satisfies the tension constraints while
preserving the tracking of the computed control wrench. Additionally, from these results it
is found that the robot’s tracking error is reduced to zero, as the desired pose is continually
achieved. In the comparison of the tracking error in panel (c) of Figure 4, the identical
overlap between the results of the original direct calculation using a computed wrench
(represented by the gray line in the figure) and the results of the computation using our
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approach (represented by the blue line in the figure) demonstrates the efficacy of our
method.

(a) (b) (c)

Figure 4. Results of Simulation 1. Parameters and desired pose are selected as α = 10, Kd = 10,
Dd = 10, Ki = 0.1, qd = [0.6,−0.6, 0.6, 0, 0, 0]T . (a) Tension distribution in Simulation 1. (b) Tracking
error of computed wrench. (c) Tracking error of desired pose.

6.2. Simulation 2

Next, we conducted a simulation to validate the effectiveness of the second tension
distribution method, taking into account the optimization problem of tension distribution
while simultaneously satisfying tension limits and tracking the computed wrench. In
this method, α1 and α2 were selected as α1 = 15 and α2 = 12, respectively, the control
gain was selected as Kd = 10, Dd = 10, Ki = 0.1, and the desired pose was selected as
qd = [0.6,−0.6, 0.6, 0, 0, 0]T . Figure 5 shows the simulation results of this method.

(a) (b) (c)

Figure 5. Results of Simulation 2. Parameters and desired pose are selected as α1 = 15 , α2 = 12,
Kd = 10, Dd = 10, Ki = 0.1, qd = [0.6,−0.6, 0.6, 0, 0, 0]T . (a) Tension distribution in Simulation 2.
(b) Tracking error ofcomputed wrench. (c) Tracking error of desired pose.

From Figure 5, using our second proposed tension distribution method with the added
goal of lowering the tension vector’s norm, it can be observed that all tensions decrease to
values below 8 N. Neither the desired wrench tracking ability nor the tracking ability of the
desired pose is diminished concurrently. Consequently, these results demonstrate that our
proposed strategy is valuable and effective. Additionally, in panel (c) of Figure 5 it can be
seen that the results of the original direct calculation using a computed wrench and the
results of our method overlap perfectly, further indicating the effectiveness of our method.
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6.3. Simulation 3

In this simulation, the gravity center of end-effector PG is selected as an uncertain
parameter of the Jacobian matrix. We select the origin of Co as the geometrical center of the
end-effector and set the vector from this origin to the gravity center of end-effector as an
unknown a. Both α1 and α2 are selected as α1 = 0.1 and α2 = 0.1, respectively. The desired
pose is qd = [0.6,−0.6, 0.6, 0, 0, 0]T .

From Figure 6, it can be seen that the proposed tension distribution method is effective,
as the tension satisfies the tension constraint and varies smoothly. From the results of the
convergence errors of the desired wrench in Equation (11), shown in panel (b) of Figure 6,
it is clear that the adaptive rule proposed in this paper is useful. Most importantly, by
combining panels (a) of Figure 6, (b) of Figure 6, and (d) of Figure 6, it can be seen that
the high-frequency fluctuation exerted in â’s adaptive process has little impact on the
tension variation when low parameters of α1 = 0.1 and α2 = 0.1 are selected. In addition, it
can be seen from the results of the tracking error shown in panel (c) of Figure 6 that the
robot’s state converges to the desired position, which proves that the proposed hyperbolic
tangent function-based desired wrench approximation method and the adaptive tuning
law of Jacobian parameter allow a cable-driven robot with an unknown gravity center to
successfully complete the position tracking task. This implies that our method can be used
to implement this type of control method in a cable-driven robot, albeit with the drawback
of a potentially high-fluctuation control wrench.

(a) (b)

(c) (d)
Figure 6. Results of Simulation 3. Parameters and desired pose are selected as α1 = 15, α2 = 12,
Kd = 0.1, Dd = 0.1, Ki = 0, Γ = 20, qd = [0.6,−0.6, 0.6, 0, 0, 0]T . (a) Tension distribution. (b) Tracking
error of computed wrench. (c) Tracking error of desired pose. (d) Variation of â.

7. Discussion: Comparison with Other Tension Distribution Methods
7.1. Computational Complexity and Calculation Speed

Realizing real-time control of cable-driven robots requires tackling the problem of
computational complexity. In each control loop of the suggested approach for tension
distribution, it is necessary to compute Equations (33) and (34), the integral of ˙̂La

˙̂S, and
Equation (28), which comprises the matrix dot product and summation. In addition, there
exists no iterative calculation or optimization procedure in either control loop. Therefore,
this approach has low enough computational complexity for use in real-time applications.

Here, we test the computational speed of the proposed algorithm in Matlab2016b with
an AMD Ryzen 7 5800H CPU and 3.20 GHz Radeon GPU. Because the closed-form method
is the fastest known method for distributing tension, we compared the calculation speed of
our method with the closed-form method. We found that the closed-form method requires
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24 µs for one control loop, whereas our method requires 35 µs. Although our approach is
slightly slower than the closed-form method, our proposed algorithm’s calculation speed
is fast enough to process tension distribution calculations in real-time.

7.2. Continuous Solution

In practice, continuous solutions are essential. Although non-continuous tendon
forces may be a feasible solution, they result in discontinuities in motor torques, which
in turn produce vibrations and high mechanical loads. Many existing real-time tension
distribution algorithms, such as the closed-form, improved closed-form, Barycentric, and
puncture methods, attempt to solve this problem by analyzing the structure matrix AT

and finding an appropriate continuous trajectory in the kernel space of AT to construct the
continuously varying tension solution. The issue of the discontinuity that may be imposed
in the calculated control wrench owing to white noise in the sensing process, discontinuous
changes of the desired pose, buffering the influence of unexpected external loads, etc., has
not yet been considered in the issue of tension distribution.

Our approach theoretically guarantees the continuity of the solution of tension dis-
tribution based on a previously selected tension function constructed by tanh(:). Then,
tracking the computed wrench based on the selected tension function naturally provides the
continuously varying internal tension that previous research attempts to find in the kernel
space of AT and allows for selection of the convergence rate of tracking for the computed
wrench by adjusting the parameter α1, α2 to filter out any excessive discontinuous changes
of the computed wrench that may exist, resulting in an acceptable continuous internal
tension.

We compared our method with the closed-form method in the following two cases:
1. Measurement noise exists in q, and 2. The desired pose changes discontinuously at some
time. Here, we selected closed-form in the comparison because it has the fastest calculation
speed, provides an effective way to perform the tension distribution, and is a key part of
other real-time algorithms such as the improved closed-form method and the puncture
method. The improved closed-form method and the puncture method behave similarly
when the control wrench is discontinuous.

For the case of existing white noise in sensing q, we compared our method to the
closed-form method in Figure 7. Here, white noise is generated using the MatLab Simulink
block ’Band-Limited White Noise’, with the noise power selected as 0.0000001.

(a) (b)
Figure 7. Comparison of our method and closed-form method (noisy case). Parameters and desired
pose are selected as α1 = 0.1, α2 = 0.1, Kd = 2, Dd = 1, Ki = 0, qd = [0.6,−0.6, 0.6, 0, 0, 0]T .
(a) Tracking error of pose. (b) Tension result.

As shown in Figure 7, the existence of white noise in the measurement results of q and
the fluctuation of the gray line in the tension results reflect the results of the closed-form
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method, with a high-frequency vibration that can cause discontinuities in the torque of the
motors. In contrast to this result, the blue line, which represents the result of our approach
of selecting lower α1 = 0.1, and α2 = 0.1, varies smoothly, and the high vibration is
eliminated. In addition, compared to the prior closed-form method, although convergence
in tracking the desired pose of our method with the selection of α1 = 0.1, α2 = 0.1 is a
little slower, the difference between the two lines is not significant, and the tracking errors
converge to 0.

Moreover, we compared our method to the closed-form method in the case where the
desired pose changes at some point. Here, the shift times of the desired pose are 5 s and
10 s.

The gray line of the closed-form method varies at 5 s and 10 s, changing to a maximum
of roughly 5 N, as shown in Figure 8, and a significant disturbance in the tension occurs
when the desired position is changed. The blue dotted line in the figure shows that our
method with the selection of α1 = 0.1 and α2 = 0.1 efficiently reduces this disturbance and
eliminates the impact of the discontinuous shift of the desired pose. The tracking error
of the desired pose of the two methods shows that our method can effectively track the
desired pose even with a low α1 = 0.1, α2 = 0.1 in this case; however, it is slightly slower
than the closed-form method.

Thus, when the results of these two cases are compared, it can be seen that our method
is better able to handle the discontinuity in the computed control wrench and keep the
tension change from being interrupted.

(a) (b)
Figure 8. Comparison of our method and closed-form method (shifting desired pose). Parameters and
desired pose are selected as α1 = 0.1, α2 = 0.1, Kd = 2, Dd = 1, Ki = 0, qd = [0.5,−0.5, 0.5, 0, 0, 0]T (0 s→
5 s), qd = [0.1, 0.05, 0.5, 0, 0, 0]T (5 s→ 10 s) and qd = [0.5, 0.5, 0.5, 0, 0, 0]T (10 s→ 15 s). (a) Tracking
error of pose. (b) Tension result.

7.3. Force Level and Force Level Changing

The existing tension distribution method may attempt to select the minimum, maxi-
mum, average, or any solution of the force level of tension (p99, [18]). In fact, the force level
of the cables affects the stiffness of the cable-driven robot [18]. Especially in applications
where robots may contact the external environment, the issue of the variable stiffness
control of the robot is crucial for completing such sophisticated tasks. As a result, a tension
distribution algorithm that is capable of realizing any tension distribution is required,
rather than just focusing on achieving a specific minimum or maximum force level.

In our method, we select f0 in Equation (27) as

f0 = A+Tτd + (Um×m − A+T AT)s (61)
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where s ∈ Rm denotes an optional vector. Here, f0 represents the point in the tension’s
solution space satisfying AT f = τd that has the minimum distance with vector s. Therefore,
by changing the vector s, selecting f0 in this equation, and using our method, we can obtain
an appropriate force level. Notably, when setting the s as zero (as in Equation (27)), we can
obtain the point in the tension’s solution space satisfying AT f = τd that is the closest to the
origin. Additionally, this point is necessary for the puncture method.

The example below shows the ability of our method in terms of selecting the force
level and performing force-level changes. Here, s is selected as s = [10, . . . , 10]T ∈ R8 from
0 s to 5 s and s = [15, . . . , 15]T ∈ R8 is selected from 5 s to 15 s.

From Figure 9, it can be seen that the gray line in the tension results represents the
f0 relating to the selected s and the blue line represents the tension distribution result of
our method. From 0 s to 5 s, all elements of f0 satisfy tension constraints, and the tension
calculated by our method can precisely track f0. After 5 s, with increasing s, elements of f0
become bigger than 20 Nm which does not satisfy the tension constraint. In this situation,
the tensions calculated using our method converge to an appropriate force distribution,
which has the closest distance to f0 in the feasible solutionsm and the force level is enlarged
to an extent. Notably, when the force level is changed at 5 s, our method yields satisfactory
results for the continuous variation of tension.

These results demonstrate that our method can be used to achieve any required feasible
force level and the change in force level during the robot’s movement while maintaining
the continuous variation of tension.

(a) (b)
Figure 9. Force level changing with our method. Parameters and desired pose are selected as α1 = 80,
α2 = 50, Kd = 2, Dd = 1, Ki = 0, qd = [0.6,−0.6, 0.6, 0, 0, 0]T , s = [10, . . . , 10]T ∈ R8 (0 s→ 5 s) and
s = [15, . . . , 15]T ∈ R8 (5 s→ 15 s). (a) Tracking error of pose. (b) Tension result.

8. Conclusions

In order to tackle the control problem of an over-constrained cable-driven robot with
tension (control input) constraints and cable redundancy, we suggest a desired computed
wrench method based on a hyperbolic function. In this method, a generated continuous
function containing a hyperbolic tangent function is utilized to form the tension, and the
variable of this function can be chosen to satisfy any conditions. This method is effective in
solving the control problem of cable-driven robots due to its ability to ensure the continuity
of cable tension and its straightforward calculation procedure. In addition, we propose
a method for achieving optimal tension distribution objectives, such as the minimization
of cable tension norms for energy saving. According to the simulation results, our two
proposed methods are effective. By comparing our method with previous real-time tension
distribution methods, the advantages of handling discontinuity with our method can be
seen in terms of the computed wrench, force level changes, etc.
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In future work, we intend to study the selection laws for the tracking parameters α1
and α2 in order to determine the best tuning laws. In addition to applying this technique in
simulations, we want to utilize it in real-world scenarios involving cable-driven robots in
order to perform tasks such as collision tackling, handling the cable strain and elasticity
problem in the tension control, and managing the problems of aerial cable-towed robots, etc.
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