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Abstract: Extracting representative feature sets from raw signals is crucial in Prognostics and Health
Management (PHM) for components’ behavior understanding. The literature proposes various
methods, including signal processing in the time, frequency, and time–frequency domains, feature
selection, and unsupervised feature learning. An emerging task in data science is Feature Construc-
tion (FC), which has the advantages of both feature selection and feature learning. In particular,
the constructed features address a specific objective function without requiring a label during the
construction process. Genetic Programming (GP) is a powerful tool to perform FC in the PHM
context, as it allows to obtain distinct feature sets depending on the analysis goal, i.e., diagnostics and
prognostics. This paper adopts GP to extract system-level features for machinery setting recognition
and component-level features for prognostics. Three distinct fitness functions are considered for the
GP training, which requires a set of statistical time-domain features as input. The methodology is ap-
plied to vibration signals extracted from a test rig during run-to-failure tests under different settings.
The performances of constructed features are evaluated through the classification accuracy and the
Remaining Useful Life (RUL) prediction error. Results demonstrate that GP-based features classify
known and novel machinery operating conditions better than feature selection and learning methods.

Keywords: prognostics and health management; feature construction; genetic programming

1. Introduction

Prognostics and Health Management (PHM) relies on collecting and analyzing signals
produced by a system to determine its health status at any moment during its functioning
and in the future. The two primary goals of PHM are diagnostics and prognostics. Diag-
nostics deals with detecting, isolating, and identifying a fault when it occurs [1]. Hence, it
deals with defining the health condition of a given system or component at the moment
of signal acquisition. Prognostics aims to predict the Remaining Useful Life (RUL) of the
system or component [2] and, therefore, it deals with defining when the fault will occur.

In a data-driven approach, given the weak information about the system health
condition provided by raw signals, it is necessary to process and transform raw signals
before applying Machine Learning (ML) for diagnostics and prognostics [3]. In particular,
besides noise removal, it is essential to extract relevant and non-redundant features from
raw signals. A feature is relevant when it can point out the information about the system’s
health condition, usually hidden in the raw signal. A set of features is non-redundant when
each feature in the set contributes in a distinct way to increase the informative content.
A so-characterized feature set is beneficial to diagnostics and prognostics because it may
facilitate the learning process of ML algorithms while increasing their generalizability and
reducing their computational complexity. Relevant features are usually obtained through
signal processing in the time, frequency, or time-frequency domain. The most common
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approach consists of dividing the signal into segments of defined length and computing one
or more features for each signal segment. Depending on the failure propagations, features
may assume different trends, e.g., strictly monotonic, constant, mixed, or constant with
discontinuities [4]. Thus, a deep knowledge of the system is required to identify relevant
features representing specific failure propagations. Alternatively, dimensionality reduction
methods, including feature selection and feature learning, can be implemented to extract
relevant features from a large original set according to a specific object and, at the same
time, to reduce the eventual redundancy [5,6].

Methods for feature selection extract relevant features from the original set without
any transformation [7]. In particular, filter methods rank the features in the original
set according to one or more evaluation criteria and select the features with the highest
score [8,9]. Wrapper and embedding feature selection approaches use ML algorithms’
performances to select the optimal subset of features [10,11]. On the other side, feature
learning methods project the original feature set into a new feature space with a lower
dimension, losing the physical meaning of the original features [12]. Deep Learning (DL),
which allows extracting a relevant and non-redundant feature set automatically and in an
unsupervised way, represents a breakthrough in feature learning methods. DL allows the
construction of end-to-end diagnostics and prognostics models to learn features directly
from raw data and recognize and predict the health state of machines [13,14].

The major problem with DL-based feature learning is that it requires many calculations
during the training process and many hyperparameters to set [15].

An emerging task in data science is Feature Construction (FC), which aims to construct
higher-level features from the original feature set to increase the classification performance
and eventually reduce the dimensionality of features [16]. Like feature learning, FC may
provide a combination of the original features in output and, therefore, the resulting
features may not have a clear physical meaning. However, FC may also work just as feature
selection when the original feature set contains a feature that already describes the failure
propagation. In addition, FC can be used for both diagnostics and prognostics since it
allows constructing features according to specific criteria to satisfy, e.g., similarity and
monotonicity [17].

Genetic Programming (GP) represents an effective tool for FC. It automatically selects
and constructs more discriminating features without requiring a pre-defined model and
a high amount of training data [18]. Feature selection and construction are performed
according to a fitness function, which can be designed depending on the objective of the
analysis, e.g., classification, clustering, and regression.

This paper uses GP to construct feature sets for two distinct goals, i.e., system setting
detection and prognostics. System setting detection aims to recognize the specific operating
condition under which the system is working. An optimal prognostics model, and therefore
an optimal HI, should be insensitive to the implemented setting. However, industrial
data are often unlabelled and not provided with contextual information, especially if the
perspective of a machine producer is assumed [19]. These characteristics make it necessary
to detect a change in the system setting to understand, for instance, that a different trend in
the extracted feature does not correspond to a component fault. Like diagnostics, system
setting detection is a pattern recognition problem and, therefore, can be faced through
classification and clustering ML algorithms [20]. Since not all machinery settings may be
known at the time of the analysis, two distinct GPs are built for the setting recognition
goal in this paper. The first GP uses a supervised algorithm, i.e., the k-Nearest Neighbor
(k-NN), to evaluate the feature constructed at each iteration; therefore, the label indicating
the system setting is used during the assessment process. The second GP uses the k-Means
algorithm, which adopts an unsupervised learning approach and does not require any
information on the implemented setting. Both GPs provide one only feature, which should
be as constant as possible within the same class/cluster since not influenced by the single
component behaviors. The performances of constructed features are evaluated in terms of
the classification accuracy obtained by two ML supervised algorithms, i.e., the Decision
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Tree (DT) and the k-NN. Finally, a third GP is built for the prognostics goal. It provides a
component-level Health Indicator (HI) that describes the components’ degradation process.
The HI should have a clear trend and similar values at the end of the components’ life, i.e.,
similar Failure Thresholds (FT). To this aim, a multi-criteria fitness function considering
monotonicity, trendability, and prognosability is used to assess the constructed HI.

The proposed GP models are applied to vibration signals collected from a test rig built
in the Department of Industrial Engineering of the University of Bologna.

The main contributions of this paper can be summarized as follows. First, FC is
performed to build two distinct features, one identifying the system setting and the other
one describing the failure progression at a component level. Hence, a simultaneous analysis
at a system and component level is conducted. Second, to the best of our knowledge, it
is the first time that a clustering-based fitness function for system setting recognition is
included in the GP in the prognostics field.

The remaining of this paper is organized as follows. Section 2 reviews the existing
literature about GP-based FC for diagnostics and prognostics. In Section 3, the theoretical
background and critical elements of GP are described. In addition, the adopted fitness
functions for setting detection and prognostics are described. Finally, a case study shows
the application of the developed GPs to vibration signals collected during several run-to-
failure tests.

2. Materials and Methods

Many AI optimization algorithms for searching a function maximum (or minimum)
value work in a finite domain, consider multiple constraints on the solution set, and have
issues if the objective function has multiple local maxima or non-linearity trends [21]. In
particular, these algorithms require an unacceptable amount of time to reach the optimal
solution. Hence, the attention moves towards heuristic algorithms, which can guarantee
sub-optimum solutions to the problem in a reasonable time. Effective heuristic algorithms
are Evolutionary Algorithms (EA), which have their fundamentals in Darwin’s evolutionary
theory, particularly Genetic Programming (GP).

GP emulates the evolution of a population’s individuals through genetic operators
such as crossover and mutation [22]. The individuals represent the possible solutions
belonging to the population, and their strength is evaluated by a fitness function, which
expresses their ability to adapt to the environment. Thus, only individuals with high fitness
function values survive during the construction process. The main steps of GP can be
summarized as follows [23]:

1. First, an initial population of individuals is randomly generated
2. Then, the following steps are performed until a specific termination criterion is met

a. A fitness value is assigned to each individual
b. The individuals with the best fitness value are selected and reproduced for the

next generation
c. A new population is created through genetic operators
d. The result of genetic operators represents a possible solution to the generation

Typical termination criteria are the fitness function threshold and the number of
generations. Genetic operators for individuals’ evolution are reproduction, crossover, and
mutation. The reproduction operator consists of copying an individual (chosen for his
fitness score) into the new population without any transformation. The crossover operator
introduces variation in the population by creating offspring that includes some parts of
their parents, chosen by a selection method. The mutation operator is a stochastic alteration
of one or more genes. It introduces the exploration of new spaces on the fitness surface to
avoid the premature convergence of the program. Each operator is realized with a certain
probability. In particular, the probability of the mutation operator Pm cannot be greater
than 0.1. Between the operators’ probabilities, the following relation is held:

Pr + Pc + Pm = 1 (1)
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where Pr, Pc, Pm represent the probability of reproduction, crossover, and mutation, respectively.
At each iteration, the GP creates a program that can have a tree-based representation.

The nodes represent the function set, which contains all the operator types, e.g., mathemati-
cal, arithmetic, Boolean, conditionals, and looping. Typical elements of the function set are
summarized in Table 1 [24]. The tree’s leaves represent the terminal set, which includes the
variables to combine with the operators and sometimes constant values.

Table 1. Function set.

Kind of Primitives Example(s)

Arithmetic Add, Multiplication, Division
Mathematical Sin, Cos, Exp

Boolean AND, OR, NOT
Conditional IF-THEN-ELSE

Looping FOR, REPEAT

Other essential parameters of GP are the generation gap, which is defined as the
percentage of the population that survives from one generation to another, and the par-
ents’ selection methods, often chosen between tournament selection and roulette-wheel
selection [25].

Genetic Programming for feature construction is receiving significant attention because
of its flexibility and adaptability in different contexts [26].

According to data scientists, a feature set constructed through GP may significantly
increase classification or clustering performances depending on the formulated fitness
function. In the case of classification, the fitness function mainly includes genetic algo-
rithms [27]. In the case of clustering, the fitness function can include different measures,
such as the connectedness [28] or the silhouette coefficient [29]. A clustering algorithm is
embedded into the GP algorithm to get data partitions in both cases.

Although the promising results for the classification and clustering tasks in the data sci-
ence domain, few works use GP-based feature construction for diagnostics. Firpi et al. [30]
use GP to construct artificial features for fault detection using the Fisher rate as the fit-
ness metric. Peng et al. [31] propose a fault diagnosis approach based on the extraction,
construction, and combination of features through GP that uses classification results of
the k-NN algorithm in the fitness function. On the contrary, feature construction through
GP is mainly investigated for prognostics to identify degradation indicators that reveal
the failure progression [32]. Unlike features for diagnostics, which have to be as much
different as possible for distinct health conditions, an optimal HI should have peculiar
characteristics. Nguyen et al. [33] provide an overview of the HI evaluation criteria for
prognostics, divided into two categories: the first looks at the performance of the HI con-
struction phase, and the second focuses on prognostic results. Many existing works use
the evaluation criteria of the first category and, in particular, the intrinsic characteristic of
the HI, such as monotonicity, trendability, and failure consistency. Liao [34] proposes a
GP-based HI construction approach for automatically identifying prognostics features for
RUL prediction. They extract statistical features in the time domain first. Then a single-
objective fitness function, including monotonicity, is introduced to construct an optimal
HI. Similarly, Qin et al. [32] adopt monotonicity as the fitness function for prognostics of
rotating machinery. Wang et al. [24] use a GP-based HI construction for rolling bearings
prognostics. In this case, the original feature set includes features in the time, frequency,
and time–frequency domains, and the fitness function is equal to the arithmetic mean of
three terms, i.e., monotonicity, trendability, and deviation. Nguyen et al. [33] propose a
multi-criteria GP-based HI construction methodology, in which the input feature set con-
sists of 11 time-domain features, and the fitness function is represented by a combination
of eight different HI evaluation criteria. Wen et al. [35] include GP in the stochastic process
for RUL prediction. In particular, considering the characteristics of the degradation models,
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two properties of the HI are identified, i.e., consistency and the average range of HI, and
considered in the fitness function.

Similar to the works mentioned above, this paper uses a GP for HI construction based
on three metrics, i.e., monotonicity, trendability, and prognosability. In addition, GP is also
used for constructing system-level features and classifying the system setting.

Table 2 summarizes the main approaches adopted in the related literature for feature
extraction, feature construction, and HI construction through Genetic Programming. The
first difference of the present study with respect to related works lies in the use of GP
for two distinct purposes, i.e., features construction and HI construction, which allow
realizing a simultaneous analysis at a system level and a component level. Indeed, features
with different trends are built from the same feature set consisting of time-domain features
extracted from raw signals depending on the fitness function included in the GP training. In
particular, a classification- or cluster-based fitness function addresses the machinery setting
recognition issue, while a fitness function based on typical metrics for RUL prediction
address the component-level prognostics issue. In addition, because the working conditions
are not always known, both classification- and clustering-based fitness functions for the
setting recognition. In this way, GP can also be used in case of scarce availability of labeled
datasets, which is a widespread situation for industrial machinery producers.

Table 2. Similarities and differences between the proposed approach and other works.

References Feature Extraction
Fitness Function

Features Construction HI Construction

[30] - Fisher ratio -
[31] Embedded in the function set k-NN -
[32] 7 Time-domain features - Monotonicity

[33] 11 Time-domain features -

Monotonicity, trendability, failure
consistency, scale similarity,
robustness, mutual information
Spearman correlation with RUL,
F-test

[34] 68 Time- and frequency-domain
features - Monotonicity

[35] - Weighted sum of failure consistency
and the average range

[24] 21 Time, frequency, and
time–frequency domain features - Arithmetic mean of monotonicity,

trendability, and deviation quantity

This paper 81 Time-domain features k-NN
Silhouette index

Weighted mean of monotonicity,
trendability, and prognosability

2.1. Test Rig Description and Data Collection

This section describes the methodology followed to construct system-level features for
system setting recognition and component-level features for prognostics.

The system under analysis, which is shown in Figure 1, is a test rig built in the Depart-
ment of Industrial Engineering of the University of Bologna. It consists of an asynchronous
motor, a gearbox made of two pulleys exchanging the rotational motion through a belt, two
shafts that share the torques due to a couple of gears, and an electromagnetic brake. The
three-phase electric motor is an eight poles motor with 0.23 kW power and possible rotation
speeds equal to 710 rpm and 910 rpm. The motion is transmitted to the first shaft through
the belt running on the pulleys and put in tension thanks to a screw-system positioned
on the motor’s support, allowing a regulation of the belt’s tension which is essential for
accelerated run-to-failure tests. The braking system consists of an electromagnetic dust
brake with adjustable braking torque in 0–7.5 Nm and a 90 VDC command control fed
by a transformer. The platform’s data acquisition device is composed of three accelerom-
eters and a pyrometer. Three Dytran 3093D3 triaxial accelerometers are placed on the
bearing’s support, next to the second pulley and the two gearboxes. The three sensors have
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a sampling frequency of 12.8 kHz per axis and an acceleration range of 500 Gpeak. An
OPTRIS CSmicro infrared sensor is placed near the second pulley measuring the pulley or
the belt’s temperature at a sampling frequency of 1 kHz. The accelerometers are connected
to a computer through three-channel NI9230 I/O modules with a maximum sampling
rate of 12.8 kS/s for each channel mounted on a four-slot NI 9274 chassis that collects all
the data from the acceleration sensors before sending it to the computer through a USB
connection. A data acquisition interface is placed in the pyrometer’s cable, and temperature
measurements are collected using the plug-n-play software CompactConnect supplied by
the Optris company. The technical characteristics of all components included in the test rig
can be found in Appendix A.
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Figure 1. (a) The test rig and (b) its mechanical scheme.

The component under analysis for prognostics is the belt. In particular, six run-to-
failure tests are conducted, in which the belt is stressed until its failure. The more significant
stress is caused by putting the belt at its maximum stretch to accelerate its degradation until
it suddenly breaks. A greater tension of the belt usually occurs because of an improper
mounting, which causes faster wear of the component and consequently more system
downtimes. Tests are conducted in three different operating conditions, named C1, C2, and
C3, defined by distinct braking torque values and the motor speed (Table 3). The braking
force values have been set to 0.1 and 0.2 Nm because of the low power of the electric motor.
Indeed, higher values would cause an overheating of the motor until its failure. In addition,
a major braking force would cause fewer vibrations in the system, which would slow down
the degradation process and make tests much longer. The motor speed values have been
chosen because of technical aspects. For each setting, one or two belt run-to-failure tests
are conducted. In addition, a run-to-failure test is also conducted with varying operating
conditions. Run-to-failure tests for each condition are described in Table 4.

Table 3. Setting parameters.

Operating Condition AC Motor Speed (rpm) Braking Force (Nm)

C1 710 0.1
C2 710 0.2
C3 910 0.2
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Table 4. Available datasets.

Test Setting Run-to-Failure Trajectories Duration (min)

1 C1 F1 38.4
2 C1 F2 170.5
3 C2 F3 157.9
4 C2 F4 74.2
5 C1-C2 F5 328.1 + 667.1
6 C1-C2-C3 F6 208.9 + 232.2 + 995.5

2.2. The Methodology

The methodology consists of two main steps: the training phase, whose framework is
depicted in Figure 2, and the testing phase, which is depicted in Figure 3.
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After signal acquisition under conditions described in Table 4, nine typical time-
domain features, summarized in Table 5, are extracted for each signal of tests 1, 2, 3, and 4
used for the GP training step. As the system is provided with three triaxial accelerometers,
the original feature set contains 81 features. The length of the signal segments for feature
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extraction is equal to 1 s (12,800 observations). Two different datasets are created from the
so-obtained feature set and used for the setting recognition and the belt prognostics. Both
datasets contain all the extracted features plus the label for each observation. The label
may assume only two values corresponding to setting C1 and C2 for the setting recognition
goal. The label C1 is assigned to tests 1 and 2, while the label C2 is assigned to tests 3 and 4.
The label assumes continuous values for prognostics and expresses the second in which the
observation has been collected, starting from 0. As feature observations are extracted every
1 s, the label increases by one along with the dataset, and the last value corresponds to the
belt’s duration. Note that the two training sets are used separately for the GP training to
find two distinct HIs for the two machinery settings.

Table 5. Extracted time features from raw signals. xi, is the signal (observation) at time i, i = 1, . . . , SN ,
SN is the length of the signal segments, x is the mean value of xi, i = 1 . . . SN , and σ3 σ4 are third
and the fourth moment of xi, i = 1 . . . SN , respectively.

Feature Name Feature Formula

Peak fPeak = xmax = max|xi|
Peak-to-peak fPeak2Peak = |max(xi)−min(xi)|

Mean fMean = 1
N ∑N

i=1 xi

Root mean square (RMS) fRMS =
√

1
N ∑N

i=1 xi
2

Crest factor (CF) fCrestF = fPeak/ fRMS

Kurtosis fKurt =
1
N ∑N

i=1
(xi−x)4

σ4

Skewness fSkew = 1
N ∑N

i=1
(xi−x)3

σ3

Shape factor fShapeF = fRMS/ fMean
Impulse factor f ImpulseF = fPeak/ fMean

The dataset created for system setting recognition is provided to train GP with a
classification-based fitness function and a clustering-based fitness function. In the first case,
a supervised approach is adopted during the training, while an unsupervised learning
approach is adopted in the clustering-based GP. The datasets created for prognostics are
provided to a GP aiming to construct a component-level feature revealing the degradation
processes of the belt during the run-to-failure trajectories F1, F2, F3, and F4. The output
of the training phase is represented by three features, CF1, CF2, and CF3, that correspond
to the best feature for the classification-based GP, clustering-based GP, and GP for HI
construction, respectively.

The performances of the features extracted for setting recognition, i.e., CF1 and CF2,
are evaluated in terms of training accuracy and training time provided through two typical
classification models, i.e., the DT and the k-NN [36]. The performance of the constructed
feature for prognostics, i.e., CF3, is evaluated by considering its ability to predict the belt
Remaining Useful Life. First, the obtained HI for each system setting is smoothed through
a moving average method. Then, an exponential model is applied to one of the available
trajectories for each condition, and the accuracy of RUL prediction is computed through
Equation (2), which represents the mean prediction error.

meanerror% =
1
N

N

∑
n=1

|realRULn − predictedRULn|
realRULn

× 100 (2)

where N is the number of observations.
The testing phase has two main goals, i.e., to assess the generalization ability of the

models built on the constructed features and to assess the ability of constructed features
to recognize novel settings [37], where novel means that they are not included in the GP
training process. Therefore, all the CFs are extracted from two other datasets during the
testing phase. The first dataset includes the trajectory F5, collected under known system
settings (C1 and C2), while the second dataset includes trajectory F6, collected under
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known settings C1 and C2, and novel setting C3. The generalization ability of the models is
assessed using the classification models built during the training phase to make predictions
on test 5 and compute the prediction accuracy (accuracy for setting recognition and RUL
prediction error for prognostics). The generalization ability of constructed features is
assessed by training classification and exponential degradation models on test 6, which
includes three settings and evaluating the training accuracy and the Mean Square Error.

Note that the k-NN in the fitness function of the classification-based GP is trained
using the cross-validation method. Standard values of 80% of observations for the training
set and 20% for the testing set have been used. Instead, the k-means algorithm performed
in the clustering-based GP is iterated five times for each GP iteration to get the best data
partitioning. In addition, the DT and k-NN used to evaluate the different feature sets
are always trained using a 5-fold cross-validation. Finally, it is worth pointing out that
the testing accuracy computed during the testing phase of the methodology refers to the
prediction accuracy of models built in the training phase and not to the testing accuracy
resulting from the cross-validation.

The fitness functions used for training GPs are described in the following subsection.

2.3. GP Fitness Functions

The GP-OLS MATLAB toolbox [38], with a modified fitness function, has been used
for GPs training. In particular, three fitness functions are considered. In the case of
the supervised approach, the accuracy of k-NN is considered [31]. In the case of the
unsupervised approach, the fitness function is equal to the mean value of the silhouette
coefficient computed on the data partitions provided by the k-means algorithm. The
silhouette coefficient, defined in [29] and given in Equation (3), measures the similarity of a
point to the points belonging to the same cluster compared with points belonging to the
other clusters.

Fit =
1
N

N

∑
i=1

si (3)

where

1. si =
ai−bi

max{ai ,bi}
is the silhouette value of the point i

2. ai =
1

|Ci |−1 ∑j∈Ci ,i 6=j di,j is the average distance from the ith point to the other points in
the same cluster as i

3. bi = min
k 6=i

1
|Ck |

is the minimum average distance from the ith point to points belonging

to other clusters
4. N is the total number of observations

The silhouette value ranges from −1 to 1. A high silhouette value indicates that i is
well matched to its cluster and poorly matched to other clusters. The clustering solution is
appropriate if most points have a high silhouette value.

The fitness function used to construct an optimal HI, as shown in Equation (4), consists
of three terms: monotonicity, trendability, and prognosability.

Fit = w1Mon + w2Trend + w3Progn (4)

where Mon, Trend, Progn are calculated by Equations (5)–(7), respectively [39]; w1, w2, w3
are the weights associated with each HI evaluation criteria, and ∑

i
wi = 1.

Mon =
1

NF

∣∣∣∣∣ N

∑
i=1

(
n+

i
ni − 1

−
n+

i
ni − 1

)∣∣∣∣∣ (5)

Trend = min
(∣∣corrcoe f fij

∣∣), i, j = 1, . . . , NF (6)
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Progn = exp

− std
(

HI f ail

)
mean

(∣∣∣HIstart − HI f ail

∣∣∣)
 (7)

where NF is the number of run-to-failure trajectories, n+
i (n−i ) indicates the number of

observations characterized by a first positive (negative) derivative, corrcoe f fij is the linear
correlation coefficient between the ith and jth run-to-failure trajectory.

The other parameters adopted for all GPs are summarized in Table 6.

Table 6. GP parameters set.

Parameter Value

Function set Add, Subtraction, Protected division, Multiplication, Logarithm,
Power, Exponential

Terminal set Peak, Peak-to-peak, Mean, RMS, Crest factor, Kurtosis,
Skewness, Shape factor, Impulse Factor

Population size 100
Max tree depth 10
Generation gap 0.9

Pc 0.9
Pm 0.1

Parents selection method Tournament selection
Type of crossover One point crossover

Replacement Elitism
Number of generations 30

Termination criteria Max. number of generations (iterations)

3. Results
3.1. GP for System Setting Recognition

This section reports the best results obtained from 20 runs of each GP. In Table 7, the
mean fitness value, the best fitness value, and the feature constructed at each iteration of
the best run of classification-based and clustering-based GP are summarized.

Table 7. Fitness values and mathematical formulation of the feature constructed at each iteration of
the best run of classification-based and clustering-based GP.

Iter. Classification Clustering

Mean
Fitness
Value

Best Fitness
Value FC1

Mean
Fitness
Value

Best Fitness
Value FC2

1 - 0.950801
fMean(x. a1)× fSkew(x. a1)×

fPeak2Peak(x. a3) - 0.720651 fSkew(z.a2)
2 0.840463 0.977063 fCrestF(z. a1) + fPeak(x. a1) 0.711219 0.720651 fSkew(z.a2)
3 0.819037 0.977063 fCrestF(z. a1) + fPeak(x. a1) 0.711219 0.720651 fSkew(z.a2)
4 0.841445 0.977517 fCrestF(z. a1) + fPeak(x. a1) 0.741445 0.757926 fSkew(z.a2)× fRMS(y.a3)
5 0.662749 0.977517 fCrestF(z. a1) + fPeak(x. a1) 0.753748 0.777517 fPeak2Peak(x.a3)× fSkew(y. a2)
6 0.693168 0.978424 fCrestF(z. a1) + fSkew(y. a2) 0.753748 0.785372 fPeak2Peak(x.a3)× fSkew(y. a2)
7 0.931907 0.998413 fSkew(y. a2) + fPeak(x. a1) 0.753748 0.795372 fRMS(y.a3)× fSkew(y. a2)
8 0.947476 0.998526 fSkew(y. a2) + fPeak(x. a1) 0.767290 0.815372 fRMS(y.a3)× fSkew(y. a2)
9 0.976685 0.998526 fSkew(y. a2) + fPeak(x. a1) 0.734272 0.815372 fRMS(y.a3)× fSkew(y. a2)

10 0.976421 0.998526 fSkew(y. a2) + fPeak(x. a1) 0.746396 0.823728 fRMS(y.a3)× fSkew(y. a2) + fMean(y. a2)
11 0.998602 0.999698 fSkew(y. a2) + fKurt(z. a1) 0.745824 0.823728 fRMS(y.a3)× fSkew(y. a2) + fMean(y. a2)
12 0.998451 0.999698 fSkew(y. a2) + fKurt(z. a1) 0.797367 0.823728 fRMS(y.a3)× fSkew(y. a2) + fMean(y. a2)
13 0.956545 0.999811 fSkew(y. a2) + fCrestF(x. a2) 0.796293 0.823728 fRMS(y.a3)× fSkew(y. a2) + fMean(y. a2)
14 0.952766 0.999811 fSkew(y. a2) + fCrestF(x. a2) 0.817364 0.839811 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
15 0.956734 0.999811 fSkew(y. a2) + fCrestF(x. a2) 0.826378 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
16 0.999773 0.999849 fSkew(y. a2) + fRMS(x. a2) 0.826738 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
17 0.970602 0.999849 fSkew(y. a2) + fRMS(x. a2) 0.826647 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
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Table 7. Cont.

Iter. Classification Clustering

18 0.999849 0.999887 fSkew(y. a2) + fRMS(x. a1) 0.826849 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
19 0.999735 0.999887 fSkew(y. a2) + fRMS(x. a1) 0.826354 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
20 0.999811 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826354 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
21 0.958472 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826937 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
22 0.999849 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826929 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
23 0.999849 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.825289 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
24 0.999849 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.817839 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
25 0.661087 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826273 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
26 0.999887 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826142 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
27 0.999735 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826039 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
28 0.999887 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826377 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
29 0.999849 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826371 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)
30 0.961797 0.999924 fSkew(y. a2) + fRMS(x. a1) 0.826352 0.840800 fRMS(y.a3)× fSkew(y. a2) + fMean(z. a2)

Figure 4 shows the final tree corresponding to the best solution and the fitness values
at each iteration of the GP in the case of classification-based GP.
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For classification, the best fitness value equal to 0.9999 is provided by the feature given
in Equation (8) and shown in Figure 5a.

fSkew(y. a2) + fRMS(x. a1) (8)

where, fSkew(y. a2) corresponds to the skewness extracted from the fifth signal (the y-axis
of the second accelerometer) and fRMS(x. a1) corresponds to the RMS of the x-axis of the
first accelerometer.

For clustering, the best fitness value equal to 0.8408 is provided by the feature in
Equation (9) and shown in Figure 5b.

fRMS(y.a3)× fSkew (y.a2)× fMean(z.a2) (9)

where fRMS(y.a3) is the RMS of the x-axes of the third accelerometer, fSkew (y.a2) is the
skewness extracted from the y-axis of the second accelerometer, and fMean(z.a2) is the mean
extracted from the z-axes of the second accelerometer.
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The DT and the k-NN are trained to evaluate the performance of the constructed
features. Then, the obtained model is applied to the trajectory F5 and prediction accuracy
is computed.

Both classification-based and clustering-based GPs provide high accuracy prediction
during the training phase, while the accuracy is relatively low when applying the models
to the testing trajectory.

DT and k-NN are also applied to the whole set of extracted features to evaluate
the effect of feature construction on classification accuracy. Finally, GP-based feature
construction is also compared with the Principal Component Analysis (PCA) (feature
learning) [40] and the ReliefF (feature selection) [41]. For comparison, one only feature
is selected for both PCA and ReliefF. Table 8 summarizes the obtained results, where the
training accuracy is computed on trajectories F1–F4 and the testing accuracy on trajectory
F5. It can be seen that the training accuracy is lower than that provided by GP-based
features, meaning that both the Principal Component (PC) constructed through the PCA
and the feature selected through the ReliefF algorithm are not able to separate the two
classes well. In addition, the model accuracy prediction on test 5 is lower than that obtained
by applying the models trained with GP-based features. Similarly, although considering all
features as input of classification models provides the best training accuracy, the testing
accuracy is low, and the training time is higher, especially with k-NN.

Table 8. Classification performance.

Method for Feature Extraction Model Training Accuracy (%) Training Time (s) Testing Accuracy (%)

Classification-based GP DT 90.4 2.6 67.03
k-NN 90.8 1.25 67.03

Clustering-based GP DT 96.0 0.71 67.30
k-NN 94.5 0.72 66.85

No feature selection DT 99.99 3.53 31.52
k-NN 100 56.94 61.14

PCA DT 81.9 1.78 61.30
k-NN 74.9 1.63 57.44

ReliefF DT 74.8 1.93 61.79
k-NN 64.1 1.57 52.86
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Finally, the performance of the extracted features for classification and clustering
are also evaluated based on the ability to distinguish unknown conditions. The time-
domain features extracted from raw signals collected during test 6, which considers the
system under a “novel” operating condition (F6), are added to the training set in the feature
evaluation step of the methodology. In Figure 6, the constructed features with the clustering
GP-based (left) and the classification GP-based (right) are shown, where distinct colors
represent distinct settings. The results of classification models trained on these datasets
are summarized in Table 9, including the training accuracy obtained using the features
obtained through the PCA and the ReliefF.
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Table 9. Classification accuracy (%) obtained with GP-based FCs, and feature extracted through PCA
and ReliefF after adding a third machinery setting into the training set.

Model Classification-Based GP Clustering-Based GP PCA ReliefF

DT 92.8% 81.1% 92.2% 76.4%
k-NN 90.8% 70.8% 89.3% 69.1%

From Table 9, it can be seen that when the system-level feature is constructed with
the classification-based GP, classification models trained with the additional operating
condition provide a class prediction accuracy higher than 90%. On the contrary, the
classification accuracy is lower than 90% when using the clustering-based GP.

In addition, ReliefF provides lower training accuracy than GP-based features, while
the PCA produces similar results as the classification-based GP. The direct conclusion of this
result is that feature construction provides more discriminant features than feature selection.

3.2. GP for Belt Prognostics

After system-level feature construction, a component-level HI (for the belt wear) has
been constructed through the GP with the fitness function expressed by Equation (4). As
the acquired signals have acceptable values of prognosability and trendability, greater
weight is assigned to the monotonicity in order to obtain more monotonic HIs. Therefore,
the weight of the monotonicity, w1, is set to 0.5 while both other weights are set to 0.25.

As in the first case, the training set is made of run-to-failure trajectories F1, F2, F3,
and F4. However, these trajectories have been divided into two input sets to extract an HI
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for each condition. The fitness values of constructed HIs for both conditions during some
GP runs are summarized in Table 10, including the RUL prediction mean error computed
through Equation (2) on the signal acquired during test 5. As test 5 includes both C1 and
C2 conditions, the error has been computed using HIC1i , i = 1, . . . , 4, until the first setting
is implemented and HIC2i , i = 1, . . . , 4 for the remaining observations.

Table 10. HI construction GP.

Constructed HI Fitting Function Mean Error (%)

HIC11 = fSkew(x.a1)( fKurt(z.a1)− fRMS(y.a1)) 0.89 14.2
HIC12 = fPeak(x.a3)/ fMean(y.a1) 0.87 33.4
HIC13 = fCrestF(y.a3)/ fRMS(y.a2) 0.78 40.5
HIC14 = f ImpulseF(z.a2)/e fPeak(z.a3) 0.94 130.1
HIC21 = fPeat2Peak(x.a2)/e fRMS(x.a1) 0.985 36.6

HIC22 = fSkew(x.a3)× fRMS(z.a3)× log
( f ImpulseF(y.a3)

log fMean(y.a3)

)
0.87 10.5

HIC23 = fRMS(z.a3) − log
(

fRMS(x.a3)
fShapeF(z.a3)

)
0.99 30.5

HIC24 = fSkew(x.a3) 0.78 35

Each constructed HI represents an optimal solution according to the GP fitness func-
tion. However, when a degradation model is built to compute the RUL, not all HIs provide
good RUL prediction mean error results. For instance, HIC14 and HIC23 have the best
fitness values, equal to 0.94 and 0.99, but they provide a high RUL mean prediction error.
On the contrary, HIC11 and HIC22 provide a slightly lower fitness value, but a lower RUL
mean prediction error. Hence, HIC11 and HIC22 are chosen as the best HIs for setting 1
and setting 2, respectively, since they provide the best fitness value among HIs with an
acceptable prediction error. In this case, an error between 10% and 20% is acceptable
because computed from the beginning of the test, when the belt was still in good health
conditions. The constructed HIs for each trajectory of the training dataset are depicted in
Figure 7. Table 11 summarizes the values of monotonicity, trendability, and prognosability
of the two constructed HIs.
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Table 11. Monotonicity, trendability, and prognosability values of His constructed through GO for
the two machinery settings.

Health Indicator Monotonicity Trendability Prognosability

HIC11 0.3999 0.1042 0.9095
HIC22 0.2637 0.7599 0.7599
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To demonstrate the advantage of constructing HIs through GP, they are compared
to a typical HI used for prognostics: the correlation coefficient between nominal signals
and fault signals [42]. Table 12 summarizes the length of nominal signals and fault signals
considered for each run-to-failure trajectory.

Table 12. Length of nominal and fault signals considered for the correlation coefficient computation.

Run-to-Failure Trajectory Nominal (s) Fault (s)

F1 763 763
F2 1.389 6.945
F3 1.531 6.124
F4 1.088 4.352

The correlation coefficient has been computed for each acquired signal, and their
monotonicity, trendability, and prognosability values are summarized in Table 13. As can
be seen, all metrics have lower values than those computed on constructed HIs with GP.

Table 13. Length of nominal and fault signals considered for the correlation coefficient computation.

Setting Metric X-a1 Y-a1 Z-a1 X-a2 Y-a2 Z-a2 X-a3 Y-a3 Z-a3

C1
Monotonicity 0.0045 0.0154 0.0036 0.0041 0.0035 0.0080 0.0138 0.0147 0.0160
Trendability 0.0040 0.0077 0.0011 0.0311 0.0241 0.0262 0.0074 0.0083 0.0173
Prognosability 0.1997 0.8400 0.8152 0.8247 0.9104 0.3104 0.6745 0.8328 0.4767

C2
Monotonicity 0.0133 0.0060 0.0301 0.0093 0.0031 0.0071 0.0041 0.0072 0.0033
Trendability 0.0503 0.0222 0.1513 0.0090 0.0414 0.0589 0.0242 0.0313 0.0150
Prognosability 0.2828 0.3350 0.2577 0.2569 0.0632 0.3011 0.2316 0.8701 0.3361

3.3. Discussion

This section describes the three primary outcomes of the present work.
First, as shown in Table 8, the training accuracy obtained with GP-based feature con-

struction is higher than the training accuracy obtained considering the feature selected
through the ReliefF and the feature extracted through the PCA. This result implies that
the constructed features FC1 and FC2 well separate the two classes corresponding to the
settings. On the contrary, using all the time-domain features provides a better training ac-
curacy. However, the so-built models overfit the training data. Indeed, the testing accuracy
is equal to 31% in the case of DT and 61% in the case of k-NN. Similar testing accuracies are
obtained with PCA and ReliefF as well. On the contrary, the testing accuracies obtained by
using the GP features are higher than 67%. Therefore, the features FC1 and FC2 separate
the two settings and allow the building of a more generalizable classification model.

Second, as shown in Table 9, when GP features are used to train classification models
with three classes, classification accuracy is higher than using the extracted feature through
the ReliefF. This result implies that FC is better than feature selection for novelty detection.
Indeed, only selected features are used as input trained models in streaming diagnostics
and prognostics. This means that if a feature does not reveal an unknown setting, the
change cannot be detected.

Finally, concerning the GP trained to extract a HI for the belt prognostics, results show
that the constructed HIs have similar trends for failure occurred in the same operating
condition. However, the trend is not strictly monotonic, which makes it hard to build
a robust degradation model for RUL prediction. Indeed, no HI produces a mean RUL
prediction error lower than 10%. However, the constructed HI is compared with the
correlation coefficient between a nominal signal and the two fault signals collected during
two different settings. This comparison shows that correlation coefficients have lower
values of monotonicity, prognosability, and trendability than the constructed HI through
the GP. Therefore, the constructed HIs are more suitable for component-level prognostics.
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4. Conclusions

This paper applies Genetic Programming to construct system-level and component-
level features for system setting recognition and prognostics. First, the use of Genetic
Programming in the PHM field is reviewed, and the essential elements of GP are described.
Then, three GPs with distinct fitness functions are trained using vibration signals collected
from an experimental platform built in the Department of Industrial Engineering laboratory
of the University of Bologna.

The first two GPs aim to construct a feature that reveals the system setting imple-
mented during signal acquisition. The first GP adopts a supervised ML algorithm in the
fitness function, while the second adopts an unsupervised learning approach. The two ap-
proaches can be applied depending on the available training data. The supervised approach
may be adopted if the training data are provided with a label indicating the system setting.
Otherwise, the unsupervised approach is necessary. This latter situation is widespread
among automatic machinery producers, who do not know all machinery use conditions
and collect the data from their clients, who, in turn, often provide unlabelled datasets. Two
traditional ML models, i.e., the Decision Tree and the k-Nearest Neighbor, are chosen to
evaluate the performance of the constructed features in terms of training accuracy, training
time, and model accuracy when used to predict the setting of observations collected after
the training, named testing accuracy. Finally, the GP features are also evaluated against the
ability to reveal a setting not included during the feature construction process. The third
GP aims to construct an optimal HI for the belt degradation process. The fitness function is
computed as a weighted mean of monotonicity, trendability, and prognosability.

Future development of this work will include a multi-objective GP for HI construction,
which also considers HI evaluation criteria directly correlated with the effectiveness of the
prognostic results. Moreover, an anomaly detection algorithm for incipient degradation
detection will be applied to define the instant in which the algorithm should begin the RUL
computation in a real-time application.
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Appendix A

Table A1 summarizes the technical aspects of all elements included in the test rig.

Table A1. Technical characteristics of components included in the test rig.

Component Characteristics Values Component Characteristics Values

Pulley 1

Number of teeth 30

Spur gear 1

Number of teeth 60
Pitch 5 mm Module 1

To suit belt width 10 mm Pitch 60 mm
Bore 8 mm Bore 10 mm

Material Aluminum Material Steel
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Table A1. Cont.

Component Characteristics Values Component Characteristics Values

Pulley 2

Number of teeth 40

Spur gear 2

Number of teeth 120
Pitch 5 mm Module 1

To suit belt width 10 mm Pitch 120 mm
Bore 8 mm Bore 12 mm

Material Aluminum Material Steel

Belt

Number of teeth
Pitch

Length
Width

Maximum speed
Material

122
1.2

5 mm
610 mm
10 mm
80 m/s

Polyurethan

Ball-bearing

Inside diameter
Outside diameter
Static load rating

Material

20 mm
47 mm
6.55 kN

Steel

Long Closed Bush
Shaft

Length 1 m
Diameter 20 mm
Hardness 60→64 HRC
Tolerance h6
Material Steel
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