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Abstract: The decoy state quantum key distribution (QKD) protocol is proven to be an effective
strategy against the photon number splitting attack. It was shown that the 1-decoy state protocol,
easier to implement in the practical QKD system, outperforms the 2-decoy state protocol for block
sizes of up to 108 bits. How intensity fluctuations influence the performance of the 1-decoy state
protocol with finite resources remains a pending issue. In this paper, we present a finite-key analysis
of the 1-decoy state protocol with intensity fluctuations and obtain the secret key rate formula about
intensity fluctuations. Our numerical simulation results show that the stronger the intensity fluctua-
tions, the lower the secret key rate for a small data block size of a few bits. Our research can provide
theoretical implications for the selection of data size in the QKD system with intensity fluctuations.

Keywords: 1-decoy; finite key; intensity fluctuation; Azuma inequality

1. Introduction

Quantum key distribution (QKD) [1], whose security is guaranteed by the fundamental
quantum mechanics, has been developed for nearly four decades. Its secure transmission
distance has grown from 32 cm in a free space channel to hundreds of kilometers in a
low-loss fiber channel [2,3]. In particular, QKD based on single photon states and quantum
entanglement states between minus satellite and its ground station has been successfully
demonstrated [4], implying the feasibility of space-based QKD. However, due to the
intrinsic imperfections of realizing devices, quantum hacking attacks [5–8], based on device
loopholes, bring great threats to the practical security of QKD. For example, the weak
coherent source, usually used as a candidate of the true single-photon source, is vulnerable
to the photon number splitting (PNS) [9–11] attack raised from multi-photon events.

Fortunately, the decoy state method proposed by Hwang [12] has been proven to
be one of the most effective countermeasures against PNS attacks. Although the original
decoy state method with an infinite number of intensities provides the best performance
with optimal parameter estimation, its practical versions with a finite number of intensi-
ties [13–15] are shown to be effective enough to meet the usage requirements of real QKD
systems. When taking the statistical fluctuation resulting from a finite-length data size into
account, how the intensity fluctuations influence the security bounds of the QKD protocol
remains to be deeply investigated, and some important results [16–20] have been obtained
to answer this question. The 2-decoy state method outperforms the 1-decoy state method
in the asymptotic case of infinite key length. However, when we turn to a practical data
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block size, the results [21] indicate the 1-decoy state method is more advantageous than
the 2-decoy state method by conducting a rigorous finite-key analysis using Hoeffding’s
inequality [22].

Many efforts have been made to improve the finite-key security bound by considering
the statistical characteristics such as the Hoeffding’s inequality, the Chernoff bound [23]
and the Improved-Chernoff bound [24], which assume that the former event, current
event and later event are independently related. However, in real-life QKD setups, since
the intensities of the emitting signals from the photon source are not always steady, the
counting events before and later gathered in the measurement setups may be related to
each other [25]. Thus, the previous finite-key analysis methods are not suitable for these
event-dependent scenarios. Then, it is necessary to find an appropriate statistical model
to handle the dependent events and renew the upper security bound by taking intensity
fluctuations into consideration. Otherwise, the eavesdropper (Eve) can acquire more secret
information if one does not refresh the security bound. For different protocols, much
work [26–28] has been acquired to relax the assumption that Alice can control the intensities
of light sources with great accuracy. In particular, Wang et al. [18] studied the effects of
both intensity fluctuations and classical statistical fluctuations for the 2-decoy state method
with dependent events.

In this paper, we turn to the 1-decoy state method and re-examine its finite-key bound by
taking both intensity fluctuations and dependent events into account. We obtain a secret key
rate of the 1-decoy state method with different data sizes and different intensity fluctuations.
Numerical simulations indicate that, as with the 2-decoy state method, intensity fluctuations
have non-negligible effects on the performance of the 1-decoy state method. Most importantly,
for the 1-decoy state method, the security bound with a small data size is more sensitive to
intensity fluctuations than that with a large data size. This paper is organized as follows.
Section 2 conducts a finite-key analysis for the 1-decoy state method with intensity fluctuations
and dependent events. In Section 3, the simulation results are shown, and a conclusion is
obtained in Section 4.

2. The Finite-Key Analysis of 1-Decoy with Intensity Fluctuations

The 1-decoy method was presented as a simpler method with only two intensities,
i.e., a signal and a decoy state, denoted as µ1 and µ2, respectively. In practical scenar-
ios, the intensity fluctuations are usually caused by imperfections of the laser and the
intensity modulators. Therefore, it is too difficult to use a specific analytical method to
describe the intensities’ fluctuations, but the range of the intensity can be assumed as
µi ∈ [µi

−, µi
+], µi ∈ {µ1, µ2}. Furthermore, we can characterize intensity fluctuations by

µi
− = (1− δµ)µi and µi

+ = (1 + δµ)µi, where the parameter δµ is used to quantify the
degree of intensity fluctuation. Once the source is determined, the δµ can be regarded as
constant. For each intensity, the probability that the light source produces the n-photon
states is pn|µi

, which can be written as [18]

e−µi
+
(µi
−)n

n!
≤ pn|µi

=
e−µi µi

n

n!
≤ e−µi

−
(µi

+)n

n!
. (1)

When the intensity fluctuations are not considered, the total probability that Alice
sends n-photon states can be expressed as τn = ∑µi∈{µ1,µ2} pµi e

−µi µi
n/n!. However, inten-

sity fluctuations of modulation will affect the probability τn, and we can obtain the range
of the τn as follows:

τ−n = ∑
µi∈{µ1,µ2}

pµi e
−µ+

i (µ−i )
n/n! ≤ τn ≤ ∑

µi∈{µ1,µ2}
pµi e

−µ−i (µ+
i )

n/n! = τ+
n . (2)

We set pµi to represent the probability of Alice choosing intensity µi and the probability
pµi |n denotes the probability of n-photon coming from specific intensity µi in the total n-
photon detection events.
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pµi e
−µi

+
(µi
−)n

τ+
n n!

≤ pµi |n =
pµi e

−µi µi
n

τnn!
≤

pµi e
−µi

−
(µi

+)
n

τ−n n!
. (3)

Let Nα be the total number observed by Bob on α ∈ {Z, X} basis. The sα,n are the total
detections observed by Bob in which Alice sent n-photon states on α ∈ {Z, X} basis. The
number of detection events with a specific intensity µi should be N∗α,µi

and the Nα,µi is the
expectation of the amount of detection events. Then, we have

Nα = ∑
µi∈{µ1,µ2}

Nα,µi
=

∞

∑
n=0

sα,n. (4)

In this paper, the effects of statistical fluctuations and intensity fluctuations are taken
into account concurrently. We use the concentration inequality to describe the relationship
between expected and observed values. Significantly, the intensity fluctuations will destroy
the independence between response events. Therefore, we should use Azuma’s inequal-
ity [20], which holds with dependent random samples, to characterize the relation between
the expected values and the observed values. The observed values N∗α,µi

shall be deviated
from the expected values Nα,µi by

| Nα,µi − N∗α,µi
|≤ δA(Nα, εA1), (5)

with the probability of at least 1 − 2εA1, where the δA(x, y) =
√

2xln( 1
y ). Moreover,

Nα = ∑µi∈{µ1,µ2} Nα,µi is the total number of events when Bob and Alice both choose α
basis. Simultaneously, M∗α,µi

, the number of errors observed on α basis with the intensity
µi, can be estimated with the same method. One can obtain the following relation:

| Mα,µi −M∗α,µi
|≤ δA(Mα, εA2), (6)

with the probability at least 1− 2εA2. Moreover, Mα = ∑µi∈{µ1,µ2} Mα,µi is the total number
of errors in which Alice sent states on α basis. Thence, we can bound N∗α,µi

and Mα,µi for a
given intensity µi ∈ {µ1, µ2}, respectively, as follows:

N∗L
α,µi

= Nα,µi − δA(Nα, εA1) ≤ N∗α,µi
≤ Nα,µi + δA(Nα, εA1) = N∗Uα,µi

, (7)

M∗L
α,µi

= Mα,µi − δA(Mα, εA2) ≤ M∗α,µi
≤ Mα,µi + δA(Mα, εA2) = M∗Uα,µi

. (8)

After error correction and privacy amplification, the upper bound on the secret key
length of the 1-decoy can be derived as [21]:

l ≥ sL
Z,0 + sL

Z,1(1− h(φU
Z ))− λEC − 6log(19/εsec)− log(2/εcor). (9)

where λEC is the number of bits leaked during the error correction step; εsec and εcor are the
secrecy and correctness parameters.

According to Equations (1) and (4), we can obtain the detailed expression of the
boundary of N∗α,µi

pµi

∞

∑
n=0

e−µi
+
(µi
−)n

τ+
n n!

sα,n ≤ N∗α,µi
≤ pµi

∞

∑
n=0

e−µ−(µi
+)

n

τ−n n!
sα,n. (10)

Thence, we can obtain the following bounds:

eµ+
1 N∗Z,µ1

pµ1

≥ sZ,0

τ+
0

+
µ−1 sZ,1

τ+
1

+
∞

∑
n=2

(µ−1 )
n

τ+
n n!

sZ,n, (11)
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eµ−2 N∗Z,µ2

pµ2

≤ sZ,0

τ+
0

+
µ+

2 sZ,1

τ+
1

+
∞

∑
n=2

(µ+
2 )

n

τ+
n n!

sZ,n. (12)

By adding Equations (11) and (12), we can obtain

eµ+
1 N∗Z,µ1

pµ1

−
eµ−2 N∗Z,µ2

pµ2

≥
(µ−1 − µ+

2 )sZ,1

τ+
1

+
∞

∑
n=2

(µ−1 )
n − (µ+

2 )
n

τ+
n n!

sZ,n. (13)

Even if the µ−1 is the lower of the µ1 and the µ+
2 is the upper of the µ2, the relationship

µ−1 > µ+
2 still holds. Therefore, we can obtain

(µ−1 )
n − (µ+

2 )
n ≥ (µ+

2 )
n−2((µ−1 )

2 − (µ+
2 )

2). (14)

Therefore, we can obtain

eµ+
1 N∗Z,µ1

pµ1

−
eµ−2 N∗Z,µ2

pµ2

≥
((µ−1 )

2 − (µ+
2 )

2
)

(µ+
2 )

2 (
eµ+

2 N∗Z,µ2

pµ2

− sZ,0

τ−0
)

+(
(µ−1 − µ+

2 )

τ+
1

−
(µ−1 )

2 − (µ+
2 )

2

µ+
2 τ−1

)sZ,1.

(15)

It is easy to isolate sZ,1 from Equation (15):

sZ,1 ≥ sL
Z,1=

τ+
1 τ−1 µ+

2

µ−1 (µ
+
2 τ−1 − µ−1 τ+

1 ) + (µ+
2 )

2
(τ+

1 − τ−1 )
(

eµ+
1 N∗Z,µ1

pµ1

−
eµ−2 N∗Z,µ2

pµ2

−
((µ−1 )

2 − (µ+
2 )

2
)

(µ+
2 )

2 (
eµ+

2 N∗Z,µ2

pµ2

− sZ,0

τ−0
)).

(16)

In the 2-decoy method, three intensities (i.e., signal states, weak states and vacuum
states) are needed to bound the vacuum events. For the 1-decoy method, there are two
approaches to obtain the upper bound of the vacuum events. In this paper, we choose
the latter, which provides the best secret key rate [15]. Let mα,n be the number of errors
detected at Bob’s side when Alice sent n-photon states. We can obtain the upper bound by
considering only the errors relative to the 1-decoy state:

M∗Z,µi
=

∞

∑
n=0

pµi |nmZ,n =
∞

∑
n=0

pµi e
−µi µi

n

τnn!
mZ,n ≥

pµi e
−µi mZ,0

τ0
≥

pµi e
−µi

+
mZ,0

τ+
0

. (17)

Therefore, we can obtain the upper bound of mZ,0,

mZ,0 ≤
τ+

0 eµi
+

M∗Z,µi

pµi

= g(µi). (18)

Since there are two intensities in the 1-decoy method, we can obtain a tighter upper
bound as

mZ,0 ≤ min(g(µ1), g(µ2)) = mU
Z,0. (19)

As the detectors respond to the vacuum events (sZ,0) randomly, no information can
be extracted from these events by Eve, and Bob also has only 50% probability of correct
detection. Therefore, the expectation value of mZ,0 should be half of the corresponding
total events:
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mZ,0

sZ,0
=

1
2

. (20)

In this way, we have the relation:

sZ,0 ≤ sU
Z,0 = 2(mZ,0 + δA(NZ, εA1)). (21)

Therefore, combined with finite-key analysis, we can obtain the lower bound of sZ,1

sZ,1 ≥
τ+

1 τ−1 µ+
2

µ−1 (µ
+
2 τ−1 − µ−1 τ+

1 ) + (µ+
2 )

2
(τ+

1 − τ−1 )
(

eµ+
1 N∗UZ,µ1

pµ1

−
eµ−2 N∗L

Z,µ2

pµ2

−
((µ−1 )

2 − (µ+
2 )

2
)

(µ+
2 )

2 (
eµ+

2 N∗L
Z,µ2

pµ2

−
sU

Z,0

τ−0
)).

(22)

By multiplying Equation (11) by µ+
2 and Equation (12) by −µ−1 and adding two

inequalities, we can obtain

µ+
2 eµ+

1 N∗Z,µ1

pµ1

−
µ−1 eµ−2 N∗Z,µ2

pµ2

≥
(µ+

2 − µ−1 )sZ,0

τ0
+ µ+

2 µ−1

∞

∑
n=2

((
µ−1
)n−1 −

(
µ+

2
)n−1

)
sZ,n

τnn!

≥
(µ+

2 − µ−1 )sZ,0

τ0
.

(23)

Since µ−1 ≥ µ+
2 , we can obtain

sZ,0 ≥ sL
Z,0 =

τ−0
µ+

2 − µ−1
(

µ+
2 eµ+

1 N∗UZ,µ1

pµ1

−
µ−1 eµ−2 N∗L

Z,µ2

pµ2

). (24)

Then, we need to estimate the phase error in the Z basis by following formula [21,29]:

φZ :=
cZ,1

sZ,1
≤

mU
X,1

sL
X,1

+ f

(
εsec,

mU
X,1

sL
X,1

, sL
Z,1, sL

X,1

)
, (25)

f (a, b, c, d) =

√
(c + d)(1− b)b

cdln2
log2(

(c + d)212

cd(1− b)ba2 ), (26)

where cZ,1 is the number of phase errors in the single-photon events when in the Z basis.
Here, we estimate the phase error under Z basis by the bit error under X basis.

For sL
X,1, we can use the same method as in sZ,1 for calculation. In addition, mX,1 can

be bounded as in the following formulas. Similarly to the previous case, the M∗X,µi
can be

described as:

pµi

∞

∑
n=0

e−µi
+(µi

−)n
mX,n

τ+
n n!

≤ M∗X,µi
≤ pµi

∞

∑
n=0

e−µi
−(µi

+)n
mX,n

τ−n n!
. (27)

For the specific intensity, there are

eµ−2 M∗X,µ2

pµ2

≤ mX,0

τ0
+

µ+
2 mX,1

τ1
+

∞

∑
n=2

(µ+
2 )

nmX,n

τnn!
, (28)

eµ+
1 M∗X,µ1

pµ1

≥ mX,0

τ0
+

µ−1 mX,1

τ1
+

∞

∑
n=2

(µ−1 )
nmX,n

τnn!
, (29)
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By adding Equations (28) and (29), we can obtain

(µ−1 − µ+
2 )mX,1

τ1
≤

eµ+
1 M∗X,µ1

pµ1

−
eµ−1 M∗X,µ2

pµ2

+
∞

∑
n=2

(µ2)
n − (µ−1 )

n

τnn!
mX,n. (30)

Due to µ−1 ≥ µ2
2,

mX,1 ≤ mU
X,1 =

τ+
1

µ−1 − µ+
2

 eµ+
1 M∗UX,µ1

pµ1

−
eµ−2 M∗L

X,µ2

pµ2

. (31)

Therefore, we can calculate the upper bound of the phase error rate in the Z basis by
Equation (25), and obtain the secret key rate by

SKR =
lRre

Ntotal
, (32)

where the Rre is the repetition rate of the system and the Ntotal is the number of pulses that
Alice needs to send to calculate the amount of the key once.

3. Numerical Simulation

In this section, we simulate a fiber-based QKD system model from [21]. The parame-
ters, namely the intensities µi, the relative probability and the probability of choosing the Z
basis, are optimized for different channel attenuation.

The system operates at a repetition rate of 1 GHz. For the detectors, we assume that
the dead-time tdead is 100 ns and the dark count rate pd = 10−8. In addition, the optical
misalignment error rate pperr is fixed to 0.001. The efficiency of error correction fEC is 1.16.
The experimental parameters are shown in Table 1.

Table 1. Simulation parameters [21].

Variable Parameter Simulation Value

pd Dark count rate 10−8

pperr Optical misalignment error 0.01
tdead Dead time 100 ns
εsec Secrecy parameter 10−9

εcor Correctness parameter 10−15

fEC Efficiency of error correction 1.16

Based on the parameters above, we simulate the secret key rate curve. We firstly
simulate the effect of data size on the security key rate, i.e., NZ = 108, 109, 1010, 1020 for
δµ = 0, 0.09. As shown in Figure 1, when the data size is small, the secret key rate is greatly
affected by the fluctuation in intensity. The main reason for this impact is that the larger the
amount of data, the less sensitive it is to statistical fluctuations. From Equations (5) and (6),
we can infer that a large data size can estimate N∗α,µi

and M∗α,µi
more closely. Therefore,

we can achieve a tighter secure key rate in the later calculation. As the data size increases
to a certain extent, its impact on statistical fluctuations will become less obvious and
the curves of the secure key rate will converge. In Figure 1 right, the key rate curve
decreases rapidly compared with the case without intensity fluctuations when NZ = 108

and δµ = 0.09. Intensity fluctuation parameter δµ provides us with the range of intensity
and helps us to estimate the secure key rate considering the worst case. However, when the
data size tends to infinity, the key rate curve is less affected by the intensity fluctuations.
Then, we simulate the effects of intensity fluctuations in different degrees on the 1-decoy
state method. Assuming the secret key rates with degrees of intensity fluctuations, i.e.,
δµ = 0, 0.01, 0.05, 0.09, for NZ = 108 and NZ = 109, respectively. We can see the results in
Figure 2. Obviously, the intensity fluctuations have non-negligible effects on the secret key
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rate; the transmission distance is significantly reduced with the increase in the intensity
fluctuation parameter. As shown in Equations (9), (22), (24) and (25), the counts sL

Z,0, sL
Z,1

and the phase error φU
Z are all affected by strength fluctuations, leading to a reduction in

the secure key rate. Moreover, the effects of intensity fluctuations are more obvious for
NZ = 108 than NZ = 109.

Figure 1. (Color online) Secret key rate vs. global attenuation for NZ = 108, 109, 1010, 1020 with δµ = 0,
0.09.

Figure 2. (Color online) Secret key rate vs. global attenuation for NZ = 108 and NZ = 109 with δµ = 0,
0.01, 0.05, 0.09.

In order to research the effect of δµ on the secret key rate for different NZ, we plot the
Rδµ

/Rideal curves. The Rideal means the result without intensity fluctuations and the Rδµ
is

the secure key rate under certain intensity fluctuations with the parameter δµ. From the
discussion above, it is obvious that the intensity fluctuation parameter δµ has a negligible
impact on the secure key rate. The relations between Rδµ

/Rideal and the global attenuation
with δµ= 0.01, 0.05, 0.09 for NZ = 108 and NZ = 109 are shown in Figure 3.



Appl. Sci. 2022, 12, 4709 8 of 10

Figure 3. (Color online) Rδµ
/Rideal vs. global attenuation for NZ = 108 and NZ = 109 with δµ = 0,

0.01, 0.05, 0.09.

As can be seen from the figure, the stronger the intensity fluctuations, the more obvious
the downward trend of the security key rate. In addition, the key rate is less affected by the
intensity fluctuations during normal attenuation. However, when the global attenuation
exceeds 60 dB, the security key rate decreases sharply, especially when NZ = 108. In this
part, we simulate the effect of the intensity fluctuations to the secret key rate of the 1-decoy
state method with finite-length data sizes. The simulation results show that the secret key
rate of the 1-decoy state method is sensitive to intensity fluctuations.

4. Conclusions

The 1-decoy state protocol has been proven to have better performance in practical
applications under normal attenuation. In this paper, we presented a finite-key analysis of
the practical 1-decoy method with intensity fluctuations based on Azuma’s inequality. We
derived the formulas to bound the single-photon events and the phase error rate with both
finite-key effects and intensity fluctuations. Our results show that when the data size is
relatively small, the single decoy state protocol is greatly affected by the finite-length key
and strength fluctuations. The results can also be reflected in the process of deriving the
formula for the secure key rate. In the process of implementing practical 1-decoy state QKD,
it is necessary to set an appropriate data size before the post-processing to alleviate the
influence of statistical fluctuations on the secure key rate. The set data size does not need to
be too large, as it takes a long time to collect the data and the advantage of one decoy state
over two decoy states will disappear. According to our simulation, the accurate estimation
of the intensity fluctuations plays a significant role in the secure analysis, especially for a
small data size of the total transmitting signals. For intensity fluctuations, we can measure
the range of intensity before the protocol. If the range of intensity fluctuations exceeds
a certain threshold, we have to replace the laser. In this paper, we propose a method to
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estimate the secure key rate for the 1-decoy state protocol when considering the different
intensity fluctuations; otherwise, it will overestimate the secret information and bring the
hidden danger of information disclosure. Moreover, when we consider both finite-length
keys and intensity fluctuations, the protocol with data size N = 109 performs better than
the protocol with data size N = 108, especially when the intensity fluctuation parameter
δµ = 0.09.
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