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Featured Application: Semi-supervised learning can effectively be used to detect the chest X-rays
affected by COVID-19.

Abstract: The advent of the COVID-19 pandemic has resulted in medical resources being stretched
to their limits. Chest X-rays are one method of diagnosing COVID-19; they are used due to their
high efficacy. However, detecting COVID-19 manually by using these images is time-consuming and
expensive. While neural networks can be trained to detect COVID-19, doing so requires large amounts
of labeled data, which are expensive to collect and code. One approach is to use semi-supervised
neural networks to detect COVID-19 based on a very small number of labeled images. This paper
explores how well such an approach could work. The FixMatch algorithm, which is a state-of-the-art
semi-supervised classification algorithm, was trained on chest X-rays to detect COVID-19, Viral
Pneumonia, Bacterial Pneumonia and Lung Opacity. The model was trained with decreasing levels of
labeled data and compared with the best supervised CNN models, using transfer learning. FixMatch
was able to achieve a COVID F1-score of 0.94 with only 80 labeled samples per class and an overall
macro-average F1-score of 0.68 with only 20 labeled samples per class. Furthermore, an exploratory
analysis was conducted to determine the performance of FixMatch to detect COVID-19 when trained
with imbalanced data. The results show a predictable drop in performance as compared to training
with uniform data; however, a statistical analysis suggests that FixMatch may be somewhat robust
to data imbalance, as in many cases, and the same types of mistakes are made when the amount of
labeled data is decreased.

Keywords: COVID-19; chest X-rays; deep learning; semi-supervised learning; FixMatch

1. Introduction

COVID-19 was first declared a global pandemic in March 2020 by the director of the
World Health Organization (WHO) [1], and the world is still suffering from its impact. To
this date, almost 425 million people have been infected worldwide, with almost 6 million
deaths being recorded [2]. The disease has cold-like symptoms and is spread through
droplets in the air when people cough, sneeze or even talk [3]. Although the most commonly
used test to detect COVID-19 is the reverse-transcriptase polymerase chain reaction (RT-
PCR) test, as it is said to have sufficient analytical sensitivity to detect the viral infection in
the pre-infectious stage in an infected individual [4]; a study in Canada shows that the test
had a false negative rate (FNR) of 9.3% [5]. Despite the small value FNR, considering how
fast the disease spreads, the FNR could become a big issue. Hence, an alternative method
of testing is required for people who show symptoms but get negative test results. One
such way is the usage of chest X-rays (CXRs), as they are less costly compared to the other
radiological imaging methods and have the least risk, due to low amounts of radiation.

There is considerable work applying machine learning and medical imaging tech-
niques to reduce the burden on radiologists [6]. Due to the recent introduction of COVID-19,

Appl. Sci. 2022, 12, 4694. https://doi.org/10.3390/app12094694 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094694
https://doi.org/10.3390/app12094694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1270-3005
https://orcid.org/0000-0002-1048-5633
https://doi.org/10.3390/app12094694
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094694?type=check_update&version=2


Appl. Sci. 2022, 12, 4694 2 of 26

automated diagnosis of COVID-19 through computer chest X-rays (CXRs) has become
a popular topic [7]. As machine learning techniques required labeled data, authors such as
Vantaggiato et al. [8] have provided large public datasets with a collection of COVID-19
related CXRs. However, it took almost 2 years after the start of the pandemic for such
datasets to appear. This is because, in situations where a novel disease is discovered,
compiling and building datasets containing adequate amounts of labeled data relating to
the disease consumes considerable time and effort [9]. This is additionally taxing as the
datasets generally have to be compiled by medical experts whose time would be better
utilized in actively helping to contain the spread of any such diseases. Consequently, such
situations, semi-supervised learning can be leveraged. As opposed to requiring large
amounts of labeled data, semi-supervised algorithms are generally able to effectively gener-
alize data classes based on only a handful of representative samples [10]. Therefore, it may
be worthwhile to apply such techniques to the problem of COVID-19 detection from CXR
images. This paper investigates how well the currently best performing semi-supervised
learning algorithm called FixMatch by Sohn et al. [11] performs at detecting COVID-19
based on X-ray images. The contributions of this paper are as follows:

1. Providing a comprehensive literature review of using X-ray data to detect various
COVID-19 types of diseases.

2. Evaluating the performance of InceptionV3, DenseNet121, Xception, ResNet50 and
EfficientNet (B1, B2 and B3) to detect COVID-19 by using transfer learning.

3. Evaluating FixMatch algorithm to detect COVID-19 by using varying percentages of
labeled data.

4. Evaluating the robustness of the FixMatch algorithm against data imbalance for
detecting COVID-19 by varying the distribution of majority/minority classes and
percentage of labeled data.

The following sections discuss various approaches to the problem of CXR classification
seen in the literature before outlining the experimental methodology and discussing the
results obtained.

2. Literature Review
2.1. X-ray Classification Using Deep Learning

As pointed out by Calli et al. [6], the most common work performed in the field of
X-ray classification is diagnosing Pneumonia and Tuberculosis (TB).

A common dataset used for the Pneumonia problem is the ChestX-ray14 dataset that
consists of over 100,000 images and 14 class labels. The cheXNet model by Rajpurkar
et al. [12] that used transfer learning for diagnosis using X-rays. CheXNet is an adaptation
of DenseNet [13], which was trained on the ChestX-ray14 dataset. The weights were
initialized with the ImageNet weights. For pneumonia detection, the Pneumonia labeled
images were taken as the positive class, and all other labels were considered as the negative
class. To test the model, an unseen dataset of 420 images from four practicing radiologists
at Stanford University was used. The model was also extended to classify all 14 labels
and achieved state-of-the-art results at that time, with an example of 0.9164 Area Under
the Curve (AUC) for detecting Hernia and 0.7680 AUC for detecting Pneumonia. This
was an improvement on Wang et al. [14], who found the best model to be ResNet-50 [15]
trained on a ChestX-ray8 dataset that consisted of over 32,000 unique patients with eight
disease labels had an AUC of 0.63 for Pneumonia classification. Baltrushchat et al. [16]
used various ResNet models and found that ResNet-38 improved the results further with
an example of AUC of 0.937 for Hernia and 0.714 for Pneumonia. Irfan et al. [17] used
three models for transfer learning, namely ResNet-50, Inception V3 [18] and DenseNet121.
DenseNet121 performed the best, with and AUC of 0.71. The model was also tested on an
unseen CheXpert dataset, and DenseNet121 performed the best, again, with an AUC of 0.76.
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One of the first works to automate the detection of Tuberculosis (TB) through chest
X-rays was performed by Hwang et al. [19]. The CNN architecture based on AlexNet [20],
using transfer learning with low-level filters, worked the best, with an average accuracy
of 90.3% across three datasets, which was a significant improvement from 77.3% when
trained without transfer learning. The dataset used for training was the KIT dataset
that consisted of 7020 normal and 3828 TB images retrieved from the Korean National
Tuberculosis Association. Liu et al. [21] trained their model on a private dataset that
consisted of six variations of TB. There was a total of 453 normal and 4248 TB images.
This work also utilized AlexNet, with an accuracy of 85.86%. The model was first trained
by using the original weights and then fine-tuned. They also trained a binary classifier
which achieved an average accuracy of 97.82% across 5-fold evaluation. More recently,
Rahman et al. [22] proposed using segmentation to extract the lung features as an input.
Consequently, U-net [23] was used for the segmentation, and after trying nine different
deep CNN models, it was found that ChexNet performed the best, with an accuracy of
96.47%, without segmentation; and DenseNet201 performed the best, with an accuracy of
98.6%, with segmentation, and this was an improvement from before. The dataset used to
train the lung segmentation was a Kaggle chest X-ray dataset that consisted of 704 images,
along with their corresponding lung masks, while NLM, Belarus, NIAID and RSNNA were
used for the classification network with 3500 images of each of the binary classes.

Semi-supervised learning (SSL) has also been used to address Pneumonia detection
problem using X-rays. For example, Amin et al. [24] proposed an SSL-based model utiliz-
ing Generative Adversarial Networks (GANs) [25]. GANs are used, along with transfer
learning, utilizing a pretrained VGG16 model [26] as the discriminator. A few of the layers
of the VGG model were unfrozen while training for fine-tuning the model toward X-ray
images. The SGAN model not only generates new fake images but also learned to classify
unlabeled images into the correct classes. The authors trained the model on a dataset from
the Guangzhou women’s and children’s hospital that consisted of 5856 images, out of
which 4237 were Pneumonia, and the rest were normal. For their experimentation, they
randomly selected 1000 images of each class and used 70% unlabeled data for each class.
The authors were able to achieve an accuracy of 94.73%, which is on par with non-SSL
networks, even with unlabeled data present. Similarly, Zhang et al. [27] used unlabeled
images to train a feature extractor instead of predicting pseudo labels. The authors used
a c3 schema for feature extraction on unlabeled images and used Resnet50 for the final
classification. The model was trained by using the ChestXRay2017 dataset that consisted of
5856 Pneumonia images and a mix of two sets of datasets from the US National Library
of medicine to get 800 images of Tuberculosis. The class Pneumonia was trained with
1536 labels and achieved an AUC of 0.98, while the Tuberculosis class was trained with
448 labels and achieved an AUC of 0.923.

Tables 1 and 2 below summarizes the work reviewed for the above section.
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Table 1. Summary of work using deep learning for Pneumonia classification through CXRs.

Authors Year Dataset No. of Data Points Domain Model Results

Wang et al. [14] 2017 ChestX-ray8 Pneumonia: 1062
Normal: 84,312 Pneumonia ResNet-50 AUC for Pneumonia:

0.63

Rajpurkar et al.
[12] 2017 ChestX-ray14 Pneumonia: 105,408

Normal: 6712
Multi-class lung

diseases

CheXNet
(adaptation of

DenseNet)

AUC for Hernia:
0.9164

AUC for Pneumonia:
0.7680

Baltrushchat
et al. [16] 2019 ChestX-ray14 Pneumonia: 1431

Normal: 110,689
Multi-class lung

diseases ResNet-38
AUC for Hernia: 0.937
AUC for Pneumonia:

0.714

Irfan et al. [17] 2020
ChestX-ray14,

CheXpert (only
for testing)

112,120 CXRs Pneumonia DenseNet121 Training AUC: 0.71
Testing AUC: 0.76

Amin et al. [24] 2020

Guangzhou
women’s and

children’s
hospital dataset

Pneumonia: 1000
Normal: 1000 Pneumonia SSL SGAN + VGG Accuracy: 94.73%

Zhang et al.
[27] 2021 ChestXRay2017 5856 CXRs Pneumonia,

Tuberculosis

C3 schema
feature extractor

+ ResNet50

AUC for Pneumonia:
0.98

AUC for Tuberculosis:
0.923

Table 2. Summary of work using deep learning for Tuberculosis classification through CXRs.

Authors Year Dataset No. of Data Points Domain Model Results

Hwang et al. [19] 2016 KIT, MC,
Shenzhen

Kit
TB: 3828

Normal: 7020
MC

TB: 58
Normal: 80

Zhen
TB: 336

Normal: 326

Tuberculosis CNN based on
AlexNet

Average accuracy
across three

datasets: 90.3%

Liu et al. [21] 2017 Private dataset

Normal: 453
Different

manifestations of TB:
4248

Multi class
Tuberculosis AlexNet Accuracy: 85.86%

Rahman et al. [22] 2020

Kaggle dataset for
segmentation,
NLM, Belarus,

NIAID, RSNNA
for classification

TB: 3500
Normal: 3500 Tuberculosis

Unet for
segmentation,

DenseNet201 for
classification

Accuracy: 98.6%

Zhang et al. [27] 2021 ChestXRay2017 5856 CXRs Pneumonia,
Tuberculosis

C3 schema
feature extractor

+ ResNet50

AUC for
Pneumonia: 0.98

AUC for
Tuberculosis:

0.923

2.2. COVID-19 Detection Using Deep Learning

As Shah et al. [7] point out, for COVID-19 detection using medical images, the ma-
jority of previous works used transfer learning for the prediction of labels. For instance,
Oh et al. [28] used FC-DenseNet103 for feature extraction of the lung and heart contour and
ResNet-18 for the classification of X-rays trained on a compilation of images from various
sources, namely JSRT and NLM. Their method was able to classify Bacterial Pneumonia,
Tuberculosis, Viral Pneumonia, COVID-19 and others. Even with the small dataset size,
the authors were able to achieve 88.9% accuracy with segmentation mask and 79.8% accu-
racy without mask. Another such instance is seen in the work of Mangal et al. [29], who
repurposed the CheXNet model [12] that identified pneumonia to detect COVID-19. The
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CheXNet model was trained by using the ChestX-ray14 dataset, and its weights were fit
for classification by using chest X-rays. The authors were able to achieve an accuracy of
90.5% on the public covid-chestxray-dataset Similarly, Apostolopous et al. [30] used two
self-built datasets for experimenting, using transfer learning. The authors tried VGG19,
MobileNet v2, Inception, Xception and Inception ResNet v2. They found that MobileNet
performed the best, even with the small dataset size, giving an accuracy of 96.78% for
binary classification and 94.72% for three-class classification. Similarly, Ozturk et al. [31]
used DarkNet as the basis for their model. They trained and tested on a combination of
two datasets and experimented by using a binary classifier and a multiclass classifier to
detect COVID-19, normal and Pneumonia. The binary classifier achieved an accuracy of
98.08%, while the three-class classifier only achieved an accuracy of 87.02%. Narin et al. [32]
created three datasets from a combination of images from Kaggle and GitHub, with the first
dataset consisting of 341 COVID and 2800 normal images, the second having 341 COVID
and 1493 Viral Pneumonia images and the third having 341 COVID and 2772 Bacterial
Pneumonia. The best model was found to be ResNet50, with an accuracy of 96.1% for
dataset 1, 99.5% for dataset 2 and 99.7% for dataset 3. Khasawaneh et al. [33] used a combi-
nation of locally acquired images and a publicly available dataset for their experimentation.
The authors tested a simple 2D-CNN, MobileNet and VGG-16 with different combinations
of the datasets. For the 2D-CNN, the public dataset alone performed best, with an accuracy
of 96.1%, while for MobileNet, the fused dataset for training and the local dataset for
testing achieved an accuracy of 98.7%. Finally, the same dataset combination as MobileNet
performed the best, with an accuracy of 99% with VGG-16. Luz et al. [34] used transfer
learning on the latest state-of-the-art EfficientNet model with the COVIDx dataset. They
were able to achieve an overall accuracy of 93.9%, with COVID-19 sensitivity of 96.8%.
AbdElhamid et al. [35] extended the pretrained Xception model by adding an addition
global average pooling (GAP) layer to avoid overfitting. The authors trained their model
with over 7000 images from multiple Kaggle datasets for detecting three classes, COVID-19,
Pneumonia and normal and were able to achieve a testing accuracy of 99.3%. Finally,
Al-Shargabi et al. [36] found the best transfer learning model to be InceptionResNetv2 out
of the five models they tested. As the original dataset only had 500 images, the authors
decided to generate synthetic COVID-19 CXRs by using a CGAN. They were able to achieve
and accuracy of 99.72%.

While the majority of works used transfer learning for identifying COVID-19 through
chest X-rays, custom designed models have also been explored. One such model is COVID-
Net implemented by Wang et al. [37]. They developed their own dataset COVIDx which
was used by in the future. This dataset is relatively large in comparison to other datasets
comprising of 358 COVID-19, 8066 normal and 5541 pneumonia chest X-rays. The model
used a lightweight residual projection-expansion-projection-extension design pattern and con-
sists of one convolution layer to expand the features into a higher dimension, three depth-wise
convolutions or learning spatial characteristics, one convolutional layer for projecting back
to the lower dimension and finally a single convolutional layer to get the final features.
Their model achieved an average accuracy of 93%. Similarly, Arias-Lomdono et al. [38]
built on this model for their experimentation. They modified the last two dense layers
and added a weighted categorical cross-entropy loss for the compensation of the class
imbalance. Multiple datasets are combined to create a dataset with more than 79,500 X-ray
images with over 8500 COVID-19 samples. The authors experimented with three settings:
directly using the raw data, using cropped images and using lung segmentation. From this
experimentation, it was found that raw data performed the best, with an accuracy of 91.67%,
while segmentation came close with an accuracy of 91.53%. The cropped images performed
the worst, with an accuracy of 87.64%. The COV-SNET model by Hertel et al. [39] improved
upon this accuracy. They used the COVIDx dataset for their experimentation. Due to the
high imbalance of the dataset, the authors decided to do a 90–10 train–test split. For testing,
the authors matched the number of images within the COVID-19 category. The authors
also built a secondary training set consisting of 3913 COVID-19 images. The additional
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images were extracted from the MIDRC-RICORD-1C dataset and BIMCV dataset. The
authors improved upon the DenseNet-121 network by adding an additional dense layer
with 128 units and a dropout layer, followed by a softmax layer for multiclass classification
and a dense layer with a sigmoid activation function for the binary classifier. Initially, the
newer layers were trained, and then the full model was unfrozen. Both the three-class and
two-class classifiers achieved an average accuracy of 95%.

Finally, Sahlol et al. [40] proposed the usage of modified CNN by retraining a pretrained
Inception model, along with the Fractional-Order Marine Predators Algorithm for better
feature extraction. The authors built two of their own datasets by combining various
sources, as well as extracting normal X-rays from Kaggle. Both the datasets had similar
characteristics; for example, the age group of patients was limited to 40–84 years, and the
imbalance within the classes were very high, with COVID-19 being the minority. This new
approach achieved an accuracy of 98.21% on dataset 1 and 99.1% on dataset 2.

The use of ensemble networks was also experimented with to detect COVID.
Kedia et al. [41] proposed using ensemble network for the classification of COVID-19
through X-rays. This method achieved an accuracy of 98.28% and was able to identify
three classes being COVID-19, Pneumonia and normal. They also trained a binary classifier
and was able to achieve an accuracy of 99.71%. The authors used a stacked ensemble
method and used two pretrained models, namely VGG19 and DenseNet121. The final
classification was performed by using a Scalar Vector Model (SVM). The authors also cre-
ated their own dataset by extracting images from five different sources, including Kaggle
and GitHub repositories. The final dataset consisted of 798 COVID-19 images, and this
amount is larger than the number of images present in the previously reviewed works
above. Similarly, Vantaggiato et al. [8] created their own dataset. Their dataset consisted of
two different sets, with the first split into three categories, namely COVID-19, Pneumonia
and normal, and the second split into COVID-19, Bacterial Pneumonia, Viral Pneumonia,
Lung Opacity not Pneumonia and normal. This is the first dataset to split the groups
into five to further distinguish between different forms of Pneumonia. For training, the
authors used 404 images of each class to have a balanced set, along with 12 augmented
versions of each image. The authors set aside 100 images for validation and 207 for testing.
They used Argmax to get the final prediction after getting probabilities of each class from
the three model within the ensemble model. For this paper, ResNet-50, Inception-V3 and
DenseNet-161 were used. The authors were able to achieve an accuracy of 75.23% for the
three-class dataset and 81.0% for the five-class dataset. Mahanty et al. [42] proposed the
use of the Xception model, along with a Choquet Fuzzy ensemble scoring method with
a balanced Kaggle dataset, and was able to achieve an accuracy of 99.57%. Win et al. [43]
proposed a voting-based ensemble that consisted of the top five models from five different
scenarios. These five scenarios were introduced to remove the effect of unbalanced data.
Each scenario was applied on eleven different transfer learned models, such as XceptionNet,
VGG and Resnet. The input to the models was lung segments from the CXRs, and the
five scenarios were weighted loss, image augmentation, undersampling, oversampling
and hybrid sampling. They tested their ensemble network on a combination dataset of
Kaggle and GitHub and achieved a highest accuracy of 99.23%, using an ensemble of
XceptionNet, MobileNetv2, DenseNet201, InceptionResNetV2 and NasNetMobile with
image augmentation.

Table 3 below summarizes the work reviewed for the above section.
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Table 3. Summary of work using deep learning for COVID-19 classification through X-rays.

Authors Year Dataset No. of Data Points Model Accuracy

Oh et al. [28] 2020 JSRT, NLM

Normal: 191
Bacterial: 54

Tuberculosis: 57
Viral: 20

COVID-19: 180

FC-DenseNet103 for
feature extraction +

ResNet-18
88.9%

Arias-Lomdono et al.
[38] 2020 COVIDx

Control: 49,983
Pneumonia: 24,114

COVID-19: 8573
Modified COVID-Net 91.67%

Wang et al. [37] 2020 Created COVIDx
COVID-19: 358
Normal: 8066

Pneumonia: 5538
COVID-Net 93%

Apostolopous et al.
[30] 2020 2 Self-built datasets

Dataset_1
COVID-19: 224

Bacterial Pneumonia: 700
Normal: 504

Dataset_2
COVID-19: 224

Bacterial and viral Pneumonia: 714
Normal: 504

MobileNet

96.78%—binary
classification

94.72%—3-class
classification

Ozturk et al. [31] 2020 Cohen Jp +
ChestX-ray8

COVID-19: 127
Pneumonia: 500

Normal: 500
DarkNet

98.08%—binary
classification

87.02%—3-class
classification

Sahlol et al. [40] 2020 Built own datasets

Dataset_1
COVID-19: 200
Normal: 1675

Dataset_2
COVID-19: 219
Normal: 1341

Inception +
Fractional-Order
Marine Predators

98.21%

Vantaggiato et al. [8] 2021 Built own datasets

3-class dataset:
COVID-19: 711 + 4848 augmented
Pneumonia: 711 + 4848 augmented

Normal: 711 + 4848 augmented
5-class dataset:

COVID-19: 711 + 4848 augmented
Bacterial Pneumonia:

711 + 4848 augmented
Viral Pneumonia:

711 + 4848 augmented
Lung Opacity not Pneumonia:

711 + 4848 augmented
Normal: 711 + 4848 augmented

Voting ensemble,
ResNet-50,

Inception-V3,
DenseNet-161

75.23%—3-class
classification

81.0%—5-class
classification

Hertel et al. [39] 2021
COVIDx, MIDR-

RICORD-1C,
BIMCV

COVID-19: 3913
Normal: 13,417

COV-SNET
(modified

DenseNet-121)
95%

Luz et al. [34] 2021 COVIDx
COVID-19: 183

Pneumonia: 5521
Normal: 8066

EfficientNet 96.8%

Khasawaneh et al.
[33] 2021 Local dataset +

public dataset

Public dataset:
COVID-19: 713
Normal: 1583

Fused dataset: 1080
Normal: 1583

MobileNet 99%

Win et al. [43] 2021 Kaggle Dataset and
GitHub Dataset

COVID-19: 3616
Pneumonia: 1345
Normal: 10,192

XceptionNet,
MobileNetv2,
DenseNet201,

InceptionResNetV2
and NasNetMobile

with image
augmentation

99.23%

Mahanty et al. [42] 2021 Kaggle Dataset
COVID-19: 2313
Pneumonia: 2313

Normal: 2313

Xception +
Choquet Fuzzy 99.57%
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Table 3. Cont.

Authors Year Dataset No. of Data Points Model Accuracy

Narin et al. [32] 2021

3 datasets of
combinations of

Github repositories
and Kaggle

Dataset_1
COVID-19: 341
Normal: 2800

Dataset_2
COVID-19: 341

Viral Pneumonia: 1493
Dataset_3

COVID-19: 341
Bacterial Pneumonia: 2772

ResNet50 Best was 99.7%
for dataset 3

Kedia et al. [41] 2021 Built own datasets

3-class dataset
COVID-19: 1628

Normal: 2148
Pneumonia: 2345

2-class dataset:
COVID-19: 1628

Normal: 2148

Ensemble with VGG19,
DenseNet121, SVM 99.71%

Al-Shargabi et al. [36] 2021
Original

(500 images) +
Synthetic images

Original Dataset
COVID-19: 500
Pneumonia: 500

Normal: 500
Generated Images: 2790

CGAN +
InceptionResNetv2 99.72%

Mangal et al. [29] 2022 COVID-chest
X-ray-dataset

Normal: 1583
Bacterial Pneumonia: 2780

Viral Pneumonia: 1493
COVID-19: 155

CheXNet 90.5%

AbdElhamid et al.
[35] 2022 Combination of

3 Kaggle datasets

COVID-19: 1371
Normal: 1751

Pneumonia: 4273

Xception + GAP layer
+ activation layer 99.3%

2.3. COVID-19 Detection Using Semi-Supervised Deep Learning

Haque et al. [44] proposed a teacher-based network where an initial CNN model was
trained to generate pseudo labels for the unlabeled images, and then a classification CNN
model was used to do the final classification, which was trained by using the original
and pseudo labels. The authors combined three datasets, namely COVIDx, BIMCV and
MIDRCRICORD, and the final dataset consisted of 3795 COVID cases, 6045 Pneumonia
cases and 8851 normal cases. An equal distribution of each group was selected, and 20%,
30% and 40% labeled samples were used. From this experimentation, they found that the
set with 40% labeled sampled performed the best, with an F1 score of 0.93. The 30% labeled
samples were able to achieve the same F1-score of 0.91 as a fully supervised XNet model
trained on the same dataset.

Some of the other works utilized a state-of-the-art SSL model named MixMatch [45]
for the classification of COVID-19, with lower amounts of labeled data. For example,
Calderon-Ramirez et al. [46] used MixMatch with a wide-Resnet classifier. The author used
a dataset from a GitHub repository and selected 102 positive and negative images. The
author then experimented on the model with 25, 40, 50, 70 and 100 labeled images. By
training on the full imbalanced dataset of 4468 images, the author achieved an accuracy of
96.6%, while training with a selective number of labels saw its peak accuracy of 85.1% at
100 labeled images, as was expected, as there were only two unlabeled for each class. The
authors further improved their accuracy, as seen in Reference [47], by using a Densenet121
model for the classifier with MixMatch. An additional unseen dataset was created for
testing. Sets of 10, 15 and 20 labeled samples were tested with varying proportions of
imbalance for the labeled set. The authors tested both binary classification and multiclass
classification. The final model yielded an accuracy of 91.3% as compared to the accuracy of
67.74% for the fully supervised model. For the chest X-ray8 dataset, an accuracy of 93.4%
was achieved.
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Another example for the usage of SSL in the detection of COVID-19 through chest X-rays
is when unlabeled images were used to train a feature extractor instead of generating
pseudo labels. For example, Abbas et al. [48] proposed a three phase model for the
classification of COVID-19. They compiled their own dataset with 50,000 unlabeled X-rays
and a heavily imbalanced set of images including labels of COVID-19, normal, SARS
and Pneumonia. First, an autoencoder was used to extract the deep local features for the
unlabeled generic chest X-ray set, and then transfer learning was used to train the main
model with ImageNet weights; finally, downstream training was performed to convert
from generic to COVID-19 detection. They tested the model on two COVID-19 datasets,
with the first dataset achieving an accuracy of 97.54% and the second dataset achieving
an accuracy of 99.8%.

Gazda et al. [49] proposed a method of transfer learning in a self-supervised task-
agnostic way, utilizing the CheXpert dataset for training, and then the model was tested
on four datasets, namely Cell, ChestX-ray14, C19-Cohen and COVIDGR. The self-learning
method is similar to the mechanism of SimCLR and MoCo, where data augmentation was
used to make two versions of each image in a batch, where a positive pair is derived from
the same image and a negative pair is between different images. The backbone network for
this work was the ResNet50 Wide Network. The system was also tested with three different
data fractions, namely 1%, 10% and 100%. For COVID detection, in the COVIDGR dataset,
the 100% fraction gave the best result, 97.1% AUC; meanwhile, for the C19-Cohen dataset,
the 10% fraction gave the best AUC, 91.5%.

Table 4 below summarizes the work reviewed for the above section.

Table 4. Summary of work using semi-supervised deep learning for COVID-19 classification
through X-rays.

Authors Year Dataset No. of Data Points Model Best Results

Calderon-Ramirez et al. [46] 2020 Private dataset
COVID-19: 102
Pneumonia: 102

Normal: 102

MixMatch +
wide-Resnet Accuracy: 96.6%

Calderon-Ramirez et al. [47] 2021 Private dataset
COVID-19: 102
Pneumonia: 102

Normal: 102

MixMatch +
DenseNet121 Accuracy: 91.3%

Haque et al. [44] 2021 COVIDx + BIMCV +
MIDRCRICORD

COVID-19: 3795
Pneumonia: 6045

Normal: 8851

CNN for pseudo
label generation +

CNN for classification

40% labeled sample
with F1 score of 93%

Gazda et al. [49] 2021 COVIDGR,
C19-Cohen

COVIDGR
COVID-19: 426

Normal: 426
C19-Cohen

COVID-19: 243
Normal: 564

Data augmented
pairs + wide ResNet50

COVIDGR: 100%
fraction: AUC of 97%

C19-Cohen: 10%
fraction: AUC of 91.5%

Abbas et al. [48] 2021 Private dataset
COVID-19: 576
Normal: 1583

Pneumonia: 4273

Auto Encoder + CNN
with ImageNet weights

Accuracy: 99.8% on
second dataset

3. Materials and Methods
3.1. The FixMatch Algorithm

The FixMatch algorithm proposed by Sohn et al. [11] in 2021 is a semi-supervised
learning algorithm that makes use of the consistency regularization and pseudo-labeling
techniques commonly employed as part of semi-supervised learning [9]. Consistency
regularization exploits the argument that realistic perturbations of input data points should
not significantly change the predictions of a model in the label space [50]. This technique is
based on the manifold and smoothness assumptions required to be met by algorithms in
order to effectively train in a semi-supervised manner [51]. Pseudo-labeling is the process
by which the model is trained on labeled data before the unlabeled data are passed through
it in order to generate predictions. These predictions are then treated as true labels to further
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train the model in a supervised manner [52]. FixMatch leveraged these two techniques by
a process where an artificial label is first produced by using a weakly augmented image
before the model is trained to predict this label when a strongly augmented version of the
same image is input to it. A loss term is then computed which consists of a supervised
terms and an unsupervised term. The supervised and unsupervised loss terms can be seen
in Equations (1) and (2), respectively, where pb is the predicted distribution for the labeled
sample, xb is the true distribution (label), B is the labeled batch size, µB is the unlabeled
batch size, qb is the pseudo-label generated from the weakly augmented image and qθ is
the predictions on the strongly augmented image.

Ls =
1
B

B

∑
b=1

CE(pb, xb) (1)

Lu =
1

µB

µB

∑
b=1

1(max(qb) ≥ τ) CE(qb, qθ (y | A(u))) (2)

This procedure is relatively simple compared to many of the prevailing state-of-the-art
semi-supervised learning techniques. However, FixMatch achieved the state-of-the-art
when compared with prevalent semi-supervised algorithms such as MeanTeacher [53],
MixMatch [45], Unsupervised Data Augmentation [54] and ReMixMatch [55] on common
benchmarking datasets such as CIFAR10, CIFAR100 [56] and SVHN [57]. The FixMatch
algorithm reported an error as low as 13.81% for CIFAR-10, with just 40 labeled samples
per class in contrast with the next best results of 19.10% error reported by ReMixMatch.
Due to these advantages, the FixMatch algorithm was implemented as the semi-supervised
learning algorithm for the work presented here.

3.2. Dataset Selection

In order to test the efficacy of semi-supervised learning in detecting diseases from
chest X-ray images, a dataset compiled by Vantaggiato et al. was used [8]. The dataset
consists of chest X-ray images from the 5 classes shown below:

• Normal;
• COVID-19;
• Viral Pneumonia;
• Bacterial Pneumonia;
• Lung Opacity No Pneumonia.

Figure 1 shows a sample X-ray image for each of the classes.
Each of the classes contained 404 training images and 207 testing images, resulting in

a total of 2020 training images and 1035 testing images. The images making up the testing
set were obtained from sources different to those used to compile the training set. The
overall dataset was compiled by Vantaggiato et al. [8] and involved combining various
open-source datasets, namely the IEEE8023 COVID-19 chest X-ray dataset [58], Chest X-ray
Images Pneumonia [59], RSNA Pneumonia Detection Challenge [60], CheXpert [12] and the
China CXR set and Montgomery set [61]. Additionally, the authors reported collecting the
test images for COVID-19 from a hospital in Algeria. Given the range of diseases contained
within the dataset taken from various commonly used datasets, this dataset was chosen
in order to benchmark the efficacy of semi-supervised learning in classifying between the
different diseases based on X-ray images.
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Figure 1. Sample x-ray images of (a) normal, (b) Bacterial Pneumonia, (c) COVID-19, (d) Lung Opacity
and (e) Viral Pneumonia.

3.3. Preparing the Dataset

In order to prepare the dataset for the training, a stratified split was conducted to
assign a proportion of the imbalanced data to serve as the unlabeled data for the semi-
supervised learning process, while the rest would serve as the labeled data. The proportion
of labeled data was varied, with the tests being conducted with the labeled proportion
being 80%, 60%, 40%, 20%, 10% and, finally, an extreme case of 5%. Finally, the images were
resized to 224 × 224, as this is the standard input for the underlying ResNet-18 model [15]
used within the FixMatch algorithm.

3.4. Model Parameters and Training

In order to perform training of the FixMatch semi-supervised algorithm, a Pytorch [62]
implementation of the algorithm [63] was used, with appropriate modifications being
made to apply it to the chest X-ray dataset, as well as performing the imbalancing step.
The hyperparameters used for the training were kept similar to the parameters reported
to be used by the authors of FixMatch [11] for their experimentation with the ImageNet
dataset [64]. Table 5 summarizes the hyperparameters used in the training process.

Table 5. Training parameters.

Parameter Value

Batch Size 64
Epochs 300

Unlabeled Batch Size Coefficient 5
Unlabeled Loss Coefficient 10

Pseudo-label Threshold 0.7
Model ResNet-18

Weight Decay 0.0003
Initial Learning Rate 0.4
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3.5. Supervised Baseline

In order to establish a supervised baseline to compare the results of the semi-supervised
algorithm, a number of prevalent CNN models were trained on the full training dataset
and evaluated by using the testing subset. The models implemented were InceptionV3 [18],
Xception [65], DenseNet121 [13], MobileNetV2 [66], EfficientNetB1, EfficientNetB2 and
EfficientNetB3 [67]. The parameters used for this training can be seen in Table 6.

Table 6. Semi-supervised training parameters.

Parameter Value

Batch Size 64
Epochs 100

Optimizer Stochastic Gradient Descent
Batch Size 32

Learning Rate 0.01

4. Results and Discussion
Comparing FixMatch to Supervised Models

In order to effectively compare the performance of the FixMatch semi-supervised
algorithm to existing supervised CNN approaches, the macro-average F1-scores of each
of the models were computed and plotted. The formula for the F1-score can be seen in
Equation (3), while the formulas for precision and recall can be seen in Equations (4) and (5).

F1− Score = 2× (precision× recall)
( precions + recall)

(3)

where we have the following:

Precision =
True Positives

True Positive + False Postive
(4)

Recall =
True Positives

True Positive + False Negatvie
(5)

Computing the macro-average F1-score involves computing the F1-scores for each
class and then averaging it out such that each class has an equal weight in the overall
score. To ensure an equal say from each class, this metric was used in order to compare the
F1-scores. The class-wise F1-scores of the FixMatch model with varying amounts of labeled
data can be seen in Table 7. As Table 7 shows, the average macro-average F1-score across
all tests was about 0.74. However, COVID-19 was detected (from others) with a high rate of
over 0.87 and as high as 0.94 and 0.93, using only 5% of the labeled data. Interestingly, the
model had the most problem detecting normal against others. This is especially noteworthy
because the model is trained on equal amounts of data across the classes, and, therefore, in
order to gain a better understanding of the considerable difference in scores, an analysis of
the data themselves is carried out in Section 4.

Table 7. Class-wise F1-score of FixMatch.

Class FixMatch 80%
Labeled

FixMatch 60%
Labeled

FixMatch 40%
Labeled

FixMatch 20%
Labeled

FixMatch 10%
Labeled

FixMatch 5%
Labeled

Bacterial 0.68 0.64 0.7 0.66 0.66 0.67
COVID-19 0.99 * 0.97 0.97 0.94 0.87 0.93

Lung Opacity 0.79 0.8 0.8 0.76 0.76 0.79
Normal 0.67 0.59 0.68 0.5 0.55 0.38

Viral 0.74 0.69 0.74 0.74 0.74 0.64
Macro-Average 0.77 0.74 0.78 0.72 0.71 0.68

* Bold depicts the highest F1-score.
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In order to further investigate these results, the precision vs. recall graphs of the tests
are shown in Figure 2.
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As the figure shows, in all cases, the COVID-19 class outperformed the remaining
classes by considerable margins. As expected, the curves do become steeper as the amount
of labeled data is reduced, thereby serving as an indicator for the model’s deteriorated
performance. It can be noted here that the recall of the COVID-19 class consistently remains
high, and this is indicative of a low false negative rate. This is especially important because
it means that, while there may be cases where the model may diagnose a healthy individual
with COVID-19, it is less likely to fail diagnosing a patient with COVID-19. Considering
how contagious the COVID-19 disease is, this is an important characteristic for the model
to have and, therefore, proves the model’s suitability in being used for COVID-19 detection.

Table 8 shows the results of using transfer learning with the various pretrained models.
As Table 8 shows, using the complete data, InceptionV3 and DenseNet121 performed well,
with F1-scores of 0.98 and 0.97. Other models, such as EfficientNet, B3 did not perform
well at all.

Our analysis of the results revealed a number of interesting trends. The FixMatch
algorithm is seen to be competitive to the fully supervised models even at lower amounts
of labeled data. Indeed, the model was noted to perform adequately well until trained with
only 20% of labeled data (corresponding to only about 80 labeled images per class), after
which a drop in performance is seen, as the labeled data are reduced to 5%. It is seen that,
even with just 5% of labeled data, the model performed fairly well, reporting an F1-score of
0.68, which is just 0.02 less than that reported by the fully supervised MobileNetV2 model.
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Table 8. Class-wise F1-score for supervised CNN models with entire labeled dataset.

Class InceptionV3 DenseNet121 Xception ResNet50 MobileNetV2 EfficientNet
B1

EfficientNet
B2

EfficientNet
B3

Bacterial 0.69 0.68 0.63 0.63 0.46 0 0.01 0
COVID-19 0.98 * 0.97 0.93 0.89 0.97 0.33 0.29 0.39

Lung Opacity 0.79 0.8 0.75 0.7 0.74 0 0.51 0.04
Normal 0.61 0.63 0.59 0.68 0.63 0 0.19 0.14

Viral 0.78 0.76 0.74 0.74 0.7 0 0.5 0.6
Macro-Average 0.77 0.77 0.73 0.73 0.70 0.07 0.30 0.23

* Bold depicts the highest F1-score.

Since our class of interest was that of COVID-19, it is useful to examine the results
obtained specifically for that class. In general, it is seen that the COVID-19 class performed
exceptionally well as compared to the other classes. Indeed, the FixMatch algorithm has
outperformed the best supervised CNN with 80% labeled data. Furthermore, it is seen
that, even with 5% of labeled data, the FixMatch model was able to show an F1-score of
0.93, matching that of the Xception CNN model and outperforming the ResNet50 model.
These satisfactory results with the COVID-19 class further reinforce the usability of semi-
supervised learning in the domain, as well as the adaptability of using this technique in
cases where labeled data are limited.

It is noteworthy that the architecture of the EfficientNet, which has lately emerged
as one of the best performing CNN models, seemed to have completely failed to learn
the intricacies of detecting the diseases in the chest X-rays. Three different architec-
tures of increasing size, namely B1, B2 and B3, were implemented, but all of them gave
an inadequate performance.

In order to be able to compare the performance of our models to the initial work
performed by Vantaggiato et al. [8], the accuracies obtained from each of the runs were
tabulated for the benchmark score of 81% obtained by the authors. The results can be seen
in Table 9.

Table 9. Accuracies across the various models.

Model Accuracy

Ensemble Approach [8] 81%
InceptionV3 78
DenseNet121 74

Xception 78
ResNet-50 74

MobileNetV2 72
FixMatch with 80% Labeled Data 78
FixMatch with 60% Labeled Data 78
FixMatch with 40% Labeled Data 78
FixMatch with 20% Labeled Data 78
FixMatch with 10% Labeled Data 73
FixMatch with 5% Labeled Data 72

It can be seen from Table 9 that, while FixMatch did outperform the CNN approaches,
it remained slightly (<3%) inferior to the ensemble approach adopted by the authors, with
an accuracy of just over 78% as compared to the 81% obtained by Vantaggiato et al. [8].
However, given that the underlying architecture of the FixMatch is a simple ResNet18 CNN
model, we see that it is much less computationally intensive as opposed to the multi-model
ensemble approach proposed by the authors.

Having established the efficacy of semi-supervised learning in the domain of COVID-
19 detection by using chest X-rays, a number of tests were conducted in order to measure
the impact of an imbalanced dataset on the training of the FixMatch model.
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5. Exploratory Imbalance Analysis
5.1. Methodology

While the dataset selected has a balanced distribution across all classes, it may be
worth investigating the performance for the semi-supervised algorithm in cases where the
dataset is imbalanced in nature. This is especially relevant to the domain in question, where
newer diseases would have significantly lesser available data as compared to previously
established diseases. Therefore, in circumstances such as these, any detection model
would be trained on various forms on imbalance data. In order to develop an imbalancing
procedure, we first identified three target imbalance distributions which could simulate a
variety of imbalance situations. A Weibull distribution was used in order to select the target
imbalance distributions. This is a widely used model in the field of modern statistics, due to
its ability to fit data from a large range of applications, from economics to engineering [68].
While a variety of variations of the Weibull distribution exist, the implementation followed
by this work is based on the Weibull distribution calculator developed by Matt Bognar at
the University of Iowa [69]. The probability density function that was applied in this case
is seen in Equation (6).

f (x) =
α

β

(
x
β

)α−1
e−(

x
β )

α

(6)

where x > 0, shape α > 0 and scale β > 0.
In order to generate different distributions, the shape and scale are varied, and three of

the resulting distributions are selected based on varying entropies. Figure 3 displays the
final selected imbalance distributions, along with the uniform distribution, which is used
as a baseline. The x-axis represents the classes, and the y-axis represents the proportion of
the overall data the corresponding class occupies.
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As can be seen in the figure, the distribution with many majority classes has the
lowest number of minority classes, as its right tail is less defined than the other chosen
distributions. The distribution with less majority classes has a long right tail with a well-
defined peak on the left side, resulting in a very small number of samples existing in
the classes corresponding to the probability on the right side. Furthermore, this long
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tail leads to there being a greater number of minority classes, and this would affect the
training. Finally, the equal majority–minority distribution has both a right tail and a left
tail. This means that there are minority classes on both ends of the distribution, with
an overwhelming majority class corresponding to the middle of the distribution. Due to the
tails on both side, this leads to a larger number of minority classes, such that the proportion
of majority to minority classes is approximately equal.

In order to better describe the chosen distributions, the entropies of each of the
distributions are calculated based on the formula seen in Equation (7), where in P(xi)
is the probability of the given point.

H(X) = −
n

∑
i=1

P(xi) log P(xi) (7)

The resulting entropies can be seen in Table 10.

Table 10. Entropy of chosen distributions.

Distribution Entropy

Uniform Distribution 2.3025
Many Majority 1.9305
Lesser Majority 1.9665

Equal Distribution 1.8886

To estimate the difference between the chosen distributions, the Kullback–Leibler
divergence [70] and the Jensen–Shannon distance [71] between the distributions were
measured. The formula used to calculate the Kullback–Leibler divergence can be seen in
Equation (8), and the formula used to calculate the Jensen–Shannon distance can be seen in
Equation (9), where P and Q are the two distributions being compared.

DKL(P||Q) =
n

∑
i=1

P(xi) log
(

P(xi)

Q(xi)

)
(8)

JS(P||Q) =
1
2

KL(P||M) +
1
2

KL(Q||M) where M =
1
2
(P + Q) (9)

Table 11 displays the KL divergences between the distributions, while Table 12 displays
the JS distance. The distributions are ascendingly ordered based on their entropy.

Table 11. KL divergence between the chosen distributions.

Equal Distribution Many Majority Lesser Majority Uniform Distribution

Equal Distribution 0 0.1661 0.6532 0.4140
Many Majority 0.2054 0 0.2383 0.3720
Lesser Majority 1.3419 0.7906 0 0.3360

Uniform Distribution 1.2642 1.2073 0.4092 0

Table 12. JS distance between the chosen distributions.

Equal Distribution Many Majority Lesser Majority Uniform Distribution

Equal Distribution 0 0.2101 0.4124 0.3440
Many Majority 0.2101 0 0.2590 0.3287
Lesser Majority 0.4124 0.2590 0 0.2940

Uniform Distribution 0.3440 0.3287 0.2940 0



Appl. Sci. 2022, 12, 4694 17 of 26

As the tables illustrate, there is a significant distance between the chosen distributions,
thus indicating that a wide range of imbalance situations is being considered in order to
fully gain an understanding of the effect of imbalance on the training of semi-supervised
learning algorithms. In order to prepare the dataset to follow the chosen imbalancing
distributions, an imbalancing procedure was carried out on the chest X-ray dataset. The
imbalance distributions were applied to the dataset with a randomizing process in place
to assign classes to the different class proportions. The imbalancing was performed by
randomly oversampling or undersampling classes based on the class weight assigned from
the imbalance distribution.

5.2. Results and Discussion
5.2.1. Overall Results

The top-1 accuracies on the test data were computed for each of the tests, where the
proportion of labeled samples was varied from 80% to 5% across the four levels of data
imbalance. The results can be seen in Figure 4.
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A number of interesting trends can be observed from this set of results. Firstly,
as discussed previously, given uniform balance in the data, an accuracy of 78% can be
obtained with just 80% labeled data. This is closely comparable to the 81% reported
by Vantaggiato et al. [8], using their ensemble approach on the same dataset. A second
interesting observation is that, even with 5% labeled data, the accuracy for the uniform
imbalance is as high as 72%, which is only a 6% deterioration as compared with 80% labeled
data and a 9% deterioration compared with fully supervised techniques. The performance
with a uniform data imbalance is generally consistent with decreasing amounts of labeled
data, reporting only a 1% drop until as low as 10% of the data used being labeled. This
could provide great utility in the case of future outbreaks of contagious diseases, where,
at the early stages, there is generally a shortage of labeled data, and medical practitioners
who label the data are otherwise occupied in containing the outbreak. In order to further
analyze these results, the overall macro-average F1-scores across the tests are computed as
seen in Figure 5.
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A greater amount of variation can be seen in the case of the F1-scores, where a greater
deterioration can be seen even in the case of the uniform class. As can be seen from both
result metrics, an expected drop in performance is seen when the algorithm is trained with
imbalanced data. This is rather concerning, as, in the case of a newly discovered disease,
samples from the disease would be much fewer than those of other similar diseases, and
this would bias the model toward the majority when, indeed, the disease of interest might
be the minority. Based on the results, it can be noted that the distribution containing equal
numbers of majority and minority classes seemed to display the poorest performance
with lower proportions of labeled data. This could particularly be due to there being
well-defined majority classes which the model would tend to be biased toward, along with
an equal number of minority classes which the model fails to generalize to. Similarly, the
distribution with lesser majority has a long right tail leading to it that has a large number
of minority classes, as is evidenced from the results. The distribution with many majority
classes, while imbalanced, has a less strongly defined tail, meaning the minority classes
are represented less poorly than those in the previous distributions. This is reflected in the
results, as well, when looking at the accuracies and F1-scores, which reveal a general trend
of the distribution, with many majority classes having performance closest to the results
with the uniform balance. In general, a noted trend is seen where larger amounts of labeled
data are needed by the model to learn accurately in cases where an imbalance in data is
present. Indeed, the case of 80% labeled data shows the least variability in results even
with a high imbalance in data, as the accuracy varies from 78% to 73%, and the F1-score
varies from 0.77 to 0.65. This is in contrast to the extreme case of only 5% of the data being
labeled, where the accuracy varies from 72% to 66%, and the F1-score, in particular, has
a large range, as it varies from 0.68 to 0.50.

5.2.2. Class-Wise Analysis

In order to analyze the performance of the trained models further, the class-wise
F1-scores of the various tests were computed and are displayed in Figures 6 and 7.



Appl. Sci. 2022, 12, 4694 19 of 26

Appl. Sci. 2022, 12, 4694 19 of 27 
 

A greater amount of variation can be seen in the case of the F1-scores, where a greater 
deterioration can be seen even in the case of the uniform class. As can be seen from both 
result metrics, an expected drop in performance is seen when the algorithm is trained with 
imbalanced data. This is rather concerning, as, in the case of a newly discovered disease, 
samples from the disease would be much fewer than those of other similar diseases, and 
this would bias the model toward the majority when, indeed, the disease of interest might 
be the minority. Based on the results, it can be noted that the distribution containing equal 
numbers of majority and minority classes seemed to display the poorest performance with 
lower proportions of labeled data. This could particularly be due to there being well-
defined majority classes which the model would tend to be biased toward, along with an 
equal number of minority classes which the model fails to generalize to. Similarly, the 
distribution with lesser majority has a long right tail leading to it that has a large number 
of minority classes, as is evidenced from the results. The distribution with many majority 
classes, while imbalanced, has a less strongly defined tail, meaning the minority classes 
are represented less poorly than those in the previous distributions. This is reflected in the 
results, as well, when looking at the accuracies and F1-scores, which reveal a general trend 
of the distribution, with many majority classes having performance closest to the results 
with the uniform balance. In general, a noted trend is seen where larger amounts of 
labeled data are needed by the model to learn accurately in cases where an imbalance in 
data is present. Indeed, the case of 80% labeled data shows the least variability in results 
even with a high imbalance in data, as the accuracy varies from 78% to 73%, and the F1-
score varies from 0.77 to 0.65. This is in contrast to the extreme case of only 5% of the data 
being labeled, where the accuracy varies from 72% to 66%, and the F1-score, in particular, 
has a large range, as it varies from 0.68 to 0.50. 

5.2.2. Class-Wise Analysis 
In order to analyze the performance of the trained models further, the class-wise F1-

scores of the various tests were computed and are displayed in Figures 6 and 7. 

 
Figure 6. Class wise F1-score for varied labeled samples and 4 levels of imbalance. Figure 6. Class wise F1-score for varied labeled samples and 4 levels of imbalance.

Appl. Sci. 2022, 12, 4694 20 of 27 
 

 
Figure 7. F1-scores of COVID-19 class for varied labeled samples and 4 levels of imbalance. 

A number of interesting trends were revealed when examining this data. Firstly, we 
noticed that the COVID-19 class consistently outperforms the other classes and is 
generally seen to be extremely distinguishable by all the models, except in the extreme 
cases of 5% labeled data. This is rather promising, considering that the COVID-19 class is 
the class of interest in this case, given the recent outbreak of the pandemic. Indeed, a near-
perfect score of 0.99 is seen when uniform data are used to train the model with 80% 
labeled data. This score remains rather consistent, even with lower proportions of labeled 
data, indeed, remaining as high as 0.93 in the case of 5% labeled data for the uniform 
distribution. While an expected drop in performance is noted for the different imbalance 
distributions, the overall F1-score generally remains high, thus confirming the viability of 
the process in detecting X-rays of persons infected with COVID-19. Such consistency in 
results across all imbalance distributions and percentages of labeled data is also noted in 
the case of the lung opacity class, where F1-scores in the range of 0.7–0.8 are consistent 
across all tests. However, in the cases of the bacterial, normal and viral classes, a much 
greater amount of variability is observed in across the different distributions and 
proportions of labeled data. In order to understand these results, the PCA [72] and TSNE 
[73] dimensionality reduction techniques were applied to the dataset, and the results were 
plotted. Figure 8 shows the PCA results, and Figure 9 shows the TSNE results. 

Figure 7. F1-scores of COVID-19 class for varied labeled samples and 4 levels of imbalance.

A number of interesting trends were revealed when examining this data. Firstly, we
noticed that the COVID-19 class consistently outperforms the other classes and is generally
seen to be extremely distinguishable by all the models, except in the extreme cases of 5%
labeled data. This is rather promising, considering that the COVID-19 class is the class
of interest in this case, given the recent outbreak of the pandemic. Indeed, a near-perfect
score of 0.99 is seen when uniform data are used to train the model with 80% labeled data.
This score remains rather consistent, even with lower proportions of labeled data, indeed,
remaining as high as 0.93 in the case of 5% labeled data for the uniform distribution. While
an expected drop in performance is noted for the different imbalance distributions, the
overall F1-score generally remains high, thus confirming the viability of the process in
detecting X-rays of persons infected with COVID-19. Such consistency in results across
all imbalance distributions and percentages of labeled data is also noted in the case of the
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lung opacity class, where F1-scores in the range of 0.7–0.8 are consistent across all tests.
However, in the cases of the bacterial, normal and viral classes, a much greater amount of
variability is observed in across the different distributions and proportions of labeled data.
In order to understand these results, the PCA [72] and TSNE [73] dimensionality reduction
techniques were applied to the dataset, and the results were plotted. Figure 8 shows the
PCA results, and Figure 9 shows the TSNE results.
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This visualization reveals a number of interesting patterns. Firstly, the lung opacity
class has a well-defined cluster in both the visualization types. It is perhaps due to this that
the consistency of the F1-scores for this class is maintained despite the varying levels of
imbalance and amounts of labeled data. Similarly, the COVID-19 class has a well-defined
high-density cluster in the TSNE representation surrounded by areas of relatively low
density, and this would clearly push the decision boundary around the COVID cluster,
thereby accounting for the consistency and efficiency seen when identifying the COVID-19
class. A look at the TSNE representation reveals a high blend in the Bacterial and Viral
classes that might be a factor in their failure to perform, as well as for the lower number of
labeled samples. In both representations, the normal class is seen to have no defined cluster,
with its data points scattered all over the representative space, therefore justifying its poor
performance with respect to the other classes. Given these trends, it might be noteworthy
to examine the variability in confusion matrices across the various imbalance distributions,
as well as various amounts of unlabeled data in order to determine whether the same kinds
of errors are made in each case.

5.2.3. Statistical Analysis of Confusion Matrices

In order to analyze the consistency in the types of errors made by the models across
the various test cases, the Adjusted Rand Index (ARI) and Adjusted Mutual Information
(AMU) scores across the confusion matrices of the models were computed to determine
how closely their errors matched. The formulas for these metrics are shown in Equations
(10) and (11), respectively.
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where nij is the value of an element in row i and column j in the contingency table, ai is the
sum of the elements in row i, bj is the sum of the elements in column j and n is the total
count in the table.

AMU(U, V) =
MI(U, V)− E(MI(U, V))

avg(H(U), H(V))− E(MI(U, V))
(11)

where MI(U, V) is the mutual information between U and V, E(MI(U, V)) is the expected
mutual information between U and V, and H(U) is the entropy associated with U.

The ARI and AMU were computed for various cases in order to gain a better un-
derstanding of the obtained results. In order to fully understand the variability in the
predictions of the model when trained on the imbalanced data, the ARI and AMU between
the confusion matrices generated when trained on uniform distribution, and each of the
imbalance distributions was computed. Tables 13–15 show the obtained ARI and AMU
results alongside the differences in the macro-average F1-scores for the corresponding tests
in order to enable a complete analysis.



Appl. Sci. 2022, 12, 4694 22 of 26

Table 13. ARI, AMU and difference in F1-scores for uniform distribution vs. equal majority–
minority distribution.

Uniform Distribution vs. Equal Majority–Minority Distribution

% Labeled Data ARI AMU Difference in F1-Scores

80 0.14948 0.27771 0.12
60 0.28827 0.39391 0
40 0.44089 0.56003 0.06
20 0.41037 0.49083 0.04
10 0.42611 0.45006 0.10
5 0.36895 0.50927 0.18

Table 14. ARI, AMU and difference in F1-scores for uniform distribution vs. many majority distribution.

Uniform Distribution vs. Many Majority Distribution

% Labeled Data ARI AMU Difference in F1-Scores

80 0.30672 0.44755 0.05
60 0.20373 0.33497 0.06
40 0.26017 0.37980 0.12
20 0.36146 0.46094 0.14
10 0.24457 0.31041 0.13
5 0.36115 0.41877 0.11

Table 15. ARI, AMU and difference in F1-scores for uniform distribution vs. few majority distribution.

Uniform Distribution vs. Few Majority Distribution

% Labeled Data ARI AMU Difference in F1-Scores

80 0.43037 0.49422 0.02
60 0.18946 0.37004 0.08
40 0.41235 0.50588 0.17
20 0.33234 0.39484 0.07
10 0.34888 0.43448 0.04
5 0.31430 0.35841 0.11

As can be seen in this case, the equal majority–minority distribution is the most
different from the uniform distribution, and this is evidenced by the low ARI score for
higher amounts of labeled data. However, as the proportion of labeled data reduces, the
correlation increases despite the difference in F1-scores increasing. This is indicative that,
as the labeled data decreases, the model fails to adequately generalize for both distributions
and, therefore, makes the same kinds of mistakes in the confusion matrices.

An interesting observation in the class containing many majority classes is that, while
the ARI scores are generally constant, meaning that the correlation between the confusion
matrices remains approximately the same, we can also see that the difference in F1-score
remains more or less constant despite the decreasing level of labeled data beyond around
40% of the labeled samples. This suggests that, for the case of this distribution, the low-
ering of the proportion of labeled data has a similar effect on the model regardless of
the distribution.

In the case of the few majority class distribution, it can be seen that the ARI scores
indicate a significant level of correlation, with the confusion matrices generated through
the uniform distribution. This could possibly be due to the few majority class distribution
being the closest to the uniform distribution and, therefore, providing similar results.

Having looked at the obtained results and the correlation between the confusion
matrices, this exploratory study might suggest that the FixMatch algorithm is, indeed,
somewhat resistant to imbalanced data, as indicated by the ARI results. In recent times,
works such as CReST [74], DARP [75], BiS [76], DASO [77] and ABC [78] have been
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published, each aiming to improve the efficacy of the FixMatch algorithm in situations
where the training dataset is imbalanced. While these algorithms have reported major
improvements on benchmarking datasets such as CIFAR and SVHN, running each of them
on this chest X-ray dataset might allow a deeper insight into how effective SSL can truly be
in situations where new diseases have lower amounts of available data.

6. Conclusions and Future Work

The COVID-19 pandemic is not over yet, and people are facing difficulties due to the
shortage of testing kits; hence, an alternative testing method is required CXRs can be used
to detect COVID-19, as it has been seen that it could find COVID-19 in cases where the
patients had symptoms, yet the PCR test returned a negative result. To reduce the burden
on radiologists, deep learning can be applied for the automated detection of the disease.
One limitation of the present datasets is that the data are heavily imbalanced, since the
pandemic is fairly recent, and a lot of information has yet to be documented. To solve this
issue, semi-supervised learning can be utilized, as these algorithms are able to generalize
data with lower amounts of representative samples.

This paper therefore explored the efficacy of the state-of-the-art FixMatch semi-
supervised algorithm for this problem and benchmarked the obtained results for different
proportions of labeled data against supervised CNN models by utilizing transfer learning.

The results demonstrate that, even with a small proportion of labeled data, the Fix-
Match model is able to perform adequately well—indeed, almost along the best supervised
techniques. Furthermore, an exploratory analysis was conducted toward investigating
the effect of an imbalanced training dataset on the FixMatch model. The obtained results
suggest that, while there is an expected drop in performance as the level of imbalance
is increased, the drop is somewhat consistent and not exponential, as may be expected,
thereby suggesting that the FixMatch algorithm could be somewhat robust to high levels of
data imbalance.

Future investigations could explore the efficacy of other prevalent semi-supervised
learning algorithms in the domain of COVID-19 detection from CXRs. Furthermore,
a deeper analysis on the effects of data imbalance on the training could be carried out in
order to accurately understand the behavior of the models when faced with such data. Such
an experiment could lead to attempts to improve the robustness of such models for cases of
high imbalance. In addition to the discussed works aiming to mitigate the effects of data
imbalance, a possible class of techniques to be explored in this domain is those involving
cost-based approaches being applied as part of the training process, such that the minority
classes are given more importance. The enhancement of the performance of such techniques
for imbalanced data will serve to improve the field in general, as such semi-supervised
models will be able to generalize newer diseases for which inadequate data are present,
therefore aiding medical professionals in their battle against any such outbreak.
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72. Maćkiewicz, A.; Ratajczak, W. Principal Components Analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [CrossRef]
73. Van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
74. Wei, C.; Sohn, K.; Mellina, C.; Yuille, A.; Yang, F. CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-

Supervised Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, 20–25 June 2021; pp. 10857–10866.

75. Kim, J.; Hur, Y.; Park, S.; Yang, E.; Hwang, S.J.; Shin, J. Distribution Aligning Refinery of Pseudo-Label for Imbalanced
Semi-Supervised Learning. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020;
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33,
pp. 14567–14579.

76. He, J.; Kortylewski, A.; Yang, S.; Liu, S.; Yang, C.; Wang, C.; Yuille, A. Rethinking Re-Sampling in Imbalanced Semi-Supervised
Learning. arXiv 2021, arXiv:2106.00209.

77. Oh, Y.; Kim, D.J.; Kweon, I.S. Distribution-Aware Semantics-Oriented Pseudo-Label for Imbalanced Semi-Supervised Learning.
arXiv 2021, arXiv:2106.05682.

78. Lee, H.; Shin, S.; Kim, H. ABC: Auxiliary Balanced Classifier for Class-Imbalanced Semi-Supervised Learning. arXiv 2021,
arXiv:2110.10368.

http://doi.org/10.1016/j.cell.2018.02.010
http://doi.org/10.1148/ryai.2019180041
http://doi.org/10.3978/j.issn.2223-4292.2014.11.20
https://www.pytorch.org
https://github.com/kekmodel/FixMatch-pytorch
https://github.com/kekmodel/FixMatch-pytorch
https://homepage.divms.uiowa.edu/~{}mbognar/applets/weibull.html
https://homepage.divms.uiowa.edu/~{}mbognar/applets/weibull.html
http://doi.org/10.1214/aoms/1177729694
http://doi.org/10.1109/18.61115
http://doi.org/10.1016/0098-3004(93)90090-R

	Introduction 
	Literature Review 
	X-ray Classification Using Deep Learning 
	COVID-19 Detection Using Deep Learning 
	COVID-19 Detection Using Semi-Supervised Deep Learning 

	Materials and Methods 
	The FixMatch Algorithm 
	Dataset Selection 
	Preparing the Dataset 
	Model Parameters and Training 
	Supervised Baseline 

	Results and Discussion 
	Exploratory Imbalance Analysis 
	Methodology 
	Results and Discussion 
	Overall Results 
	Class-Wise Analysis 
	Statistical Analysis of Confusion Matrices 


	Conclusions and Future Work 
	References

