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Abstract: Accurate automated localization of cephalometric landmarks in skull X-ray images is the
basis for planning orthodontic treatments, predicting skull growth, or diagnosing face discrepancies.
Such diagnoses require as many landmarks as possible to be detected on cephalograms. Today’s
best methods are adapted to detect just 19 landmarks accurately in images varying not too much.
This paper describes the development of the SCN-EXT convolutional neural network (CNN), which
is designed to localize 72 landmarks in strongly varying images. The proposed method is based
on the SpatialConfiguration-Net network, which is upgraded by adding replications of the simpler
local appearance and spatial configuration components. The CNN capacity can be increased without
increasing the number of free parameters simultaneously by such modification of an architecture.
The successfulness of our approach was confirmed experimentally on two datasets. The SCN-EXT
method was, with respect to its effectiveness, around 4% behind the state-of-the-art on the small ISBI
database with 250 testing images and 19 cephalometric landmarks. On the other hand, our method
surpassed the state-of-the-art on the demanding AUDAX database with 4695 highly variable testing
images and 72 landmarks statistically significantly by around 3%. Increasing the CNN capacity
as proposed is especially important for a small learning set and limited computer resources. Our
algorithm is already utilized in orthodontic clinical practice.

Keywords: detection of cephalometric landmarks; skull X-ray images; convolutional neural networks;
deep learning; SpatialConfiguration-Net architecture; AUDAX database

1. Introduction

Cephalometry has been used for many years for the diagnosis of malformations, surgi-
cal planning and evaluation, and growth studies. This discipline relies on the identification
of craniofacial landmarks [1,2]. Cephalometric analysis, or cephalometrics, is the clinical
application of cephalometry to the field of orthodontics. Cephalometrics has been used
in orthodontic diagnosis to evaluate the pretreatment dental and facial relationship of a
patient, to evaluate changes during treatment, and to assess tooth movement and facial
growth at the end of treatment [3]. The first important step in cephalometric analysis is
accurate detection of cephalometric landmarks on the cephalogram, i.e., an X-ray image
of the craniofacial area (shortly, a skull image). In the cephalometric assessment, certain
carefully defined points should be located on the radiographs, and linear and angular
measurements are then made from these points [3]. Only accurate measurements and
calculations represent diagnostic aids for orthodontists.

There exist lateral and frontal cephalograms. Lateral cephalograms provide a lateral
view of the skull, while the frontal cephalograms present an antero-posterior view of the
skull. The lateral cephalograms will be utilized in this study. Figure 1 depicts sample
lateral cephalograms, captured in a natural head position, which enables the repeatability
of image capture and comparison of different cephalometric analyses.

Early attempts for computerized detection of cephalometric landmarks were found
around the year 2000. Several (prototype) methods for automatic landmark identification
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from skull X-ray images (cephalograms) have emerged, based on heuristic features and
rigid rules. These methods were highly dependent on the quality of the input images,
and were adapted for a small number of landmarks [1] (the number of landmarks is
meant here as the number of different types of landmarks we are looking for in each
image). More mature methods, as well as learning-based approaches, emerged after
2010 [4,5]. Lindner et al. [5,6] proposed an efficient detection method based on Haar-
like features and random forests (RFs). An RF was trained for each landmark in order
to predict the more probable position of that landmark. Each tree in the RF voted for
the likely new position. The RF regression-voting mechanism was integrated into the
constrained local model framework that optimized a statistical shape model and total
votes over all landmark positions. This detection system was adapted for the detection
of 19 cephalometric landmarks. A similar method with RF and Haar-like appearance
features was proposed by Ibragimov et al. in [4,5,7]. The difference was that a matching
of the appearance shape model in a target image was sought by using a game-theoretic
optimization framework. The fitted model determined the optimal landmark positions.

Recently, successful methods have emerged based on convolutional neural networks
(CNN) and deep learning. We expose the four best, which are comparable in effectiveness.
Chen et al., in a conference article [8], proposed the CNN-based architecture that consists
of the pretrained VGG-19 net as a feature extraction module, an attentive feature pyramid
fusion (AFPF) module, and a prediction module. They fused features from different levels
in order to obtain high-resolution and semantically enhanced features in the AFPF module.
A self-attention mechanism was utilized to learn corresponding weights for the fusion for
different landmarks. Finally, a combination of heat maps and offset maps was employed in
the prediction module to perform a pixel-wise regression-voting. The next conference paper
is from Li et al. [9], who modeled landmarks as a graph and employed two global-to-local
cascaded graph convolutional networks (GCNs) to reposition the landmarks towards the
target locations. The graph signals of the landmarks were built by combining local image
features and graph shape features. The authors state that their method is able to exploit the
structural knowledge effectively and allow rich information exchange between landmarks
for accurate coordinate estimation. The first GCN estimated a global transformation of
the landmarks, while the second GCN determined local offsets to adjust the landmark
coordinates further. Payer et al., in a journal article [10], introduced a CNN architecture that
learns to split the localization task into two simpler sub-problems, thus reducing the overall
need for large training datasets. Their fully convolutional SpatialConfiguration-Net (SCN)
utilized one component to obtain locally accurate but ambiguous candidate predictions,
while the other component improved robustness to ambiguities by incorporating the spatial
configuration of landmarks. Since our research is based on this method, we will provide
details about the SCN in the next sections. Lastly, we expose the method by Song et al. [11].
The authors proposed the usage of an individual model for each landmark, where each
model was trained by the ResNet50 architecture. These constructed models were applied
to smaller patches extracted from the cephalometric image. The method assumed that
each patch that was passed into the model must contain the landmark that was being
detected by this model. To ensure this, each testing image was aligned to every training
image by using a translational registration. Landmarks from the training image with the
best fit after registration were considered as centers for the extracted patches. The results
obtained on the database of public cephalograms with 19 landmarks were comparable
to other state-of-the-art methods. However, this method does not scale well to a larger
number of cephalometric landmarks and training images.

In order for cephalometric analysis to be meaningful and useful as a diagnostic tool, it
is necessary to detect as many cephalometric landmarks on the cephalogram as accurately
as possible. Usage of lateral cephalograms predominates today in the field of orthodontics;
therefore, we also focused on this type of cephalograms in our research (similar to the
related works summarized above). The identified shortcomings of early related works
indicated that these methods were adapted for a small number of cephalometric landmarks
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and for a small number of high-quality input images. State-of-the-art methods [8–10] are
practically invariant to brightness/contrast variations, or to situations during cephalograms’
capture, respectively. Additionally, an addition of new landmarks that we would like
to detect with these methods is relatively simple, as we only need to supplement the
learning set and retrain the CNNs (and possibly add some channels). Although state-of-
the-art methods have proven to be very effective in locating cephalometric landmarks,
it should be noted that these methods have been validated on only 19 landmarks and
on just some hundred testing images. Thus, a research question arises as to whether the
CNN architectures of these methods have sufficient capacity to localize a larger number of
landmarks effectively on a larger set of testing images captured with different X-ray devices.
We are tackling a real-world problem from the field of orthodontics in this research; namely,
we are developing a detection method as an enhancement of the state-of-the-art, which will
be able to detect a large number of cephalometric landmarks (in our study 72) on highly
variable testing images. It is understood by variability that testing images are of different
sizes (and different spatial resolutions), and that they were captured by using different
X-ray devices in different orthodontic clinics (most likely with different device settings).
On the other hand, this research also solves one of the concrete problems of the industry
(e.g., the AUDAX company). Virtually every orthodontic software includes a module
for detecting cephalometric landmarks. A greater number of very precisely localized
landmarks of course means better usability of such software. For accurate cephalometric
analyses, we need to localize as many landmarks as possible, as only in this way can
we diagnose discrepancies or patients’ face disharmony, predict skull growth, or plan
treatments.

In this study, we will adapt the architecture of the state-of-the-art SCN network in
order to detect 72 cephalometric landmarks on highly variable X-ray images. The aim is, on
the one hand, to increase the capacity of the CNN (i.e., the ability to learn several different
transformation functions), while maintaining approximately the same number of free
parameters (degrees of freedom—DoF) as the basic SCN network has. The latter is achieved
by expanding the local appearance and spatial configuration components of the SCN
network, and not by a raw increase of filters’ sizes and numbers of channels. Maintaining
DoF while increasing network capacity is important, especially for a small learning set and
limited computer resources, which is often the case in healthcare. This, in turn, means a
better ability to train such an NN and prevent overfitting. The effectiveness of our proposed
SCN-EXT method was confirmed experimentally by detecting 72 cephalometric landmarks
on a challenging private database of 4695 cephalograms.

The contribution of this research work is summarized in

1. The development of a sophisticated landmark detection algorithm, where this algo-
rithm is built on the state-of-the-art SpatialConfiguration-Net neural network.

2. Introduction of the most effective algorithm for the detection of 72 cephalometric
landmarks on the lateral skull X-ray images.

3. The first study that assesses the effectiveness of the state-of-the-art cephalometric
landmark detection algorithms on a large number of landmarks and on a large number
of testing images.

This article is structured as follows. A short overview of cephalometric landmarks’
classification and employed evaluation databases is given in Section 2. A novel cephalo-
metric landmark detection algorithm based on the SpatialConfiguration-Net architecture
is described in detail in Section 3. Some considerations about the proposed method im-
plementation and CNN training are clarified in Section 4. This section also introduces
the evaluation metrics used in our experiments. Section 5 presents some of the results
obtained on the public and private databases, followed by Section 6, which emphasizes
certain aspects of our detection method. Section 7 concludes this paper briefly with some
hints about future work.
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2. Experimental Methods
2.1. Cephalometric Landmarks

There are two well-known classifications of cephalometric landmarks [3], namely,
(1) based on the origin, we distinguish between (i) anatomic and (ii) derived or constructed
cephalometric landmarks, and (2) based on the structures involved, we differentiate be-
tween (a) hard tissue and (b) soft tissue cephalometric landmarks. Anatomic landmarks
represent the actual anatomic structures of the skull (e.g., nasion, point A, point B, ANS,
PNS, etc.), while derived or constructed landmarks are obtained secondarily from anatomic
structures in a lateral cephalogram (e.g., gnathion, anterior point of occlusion, etc.). On
the other hand, the hard tissue cephalometric landmarks represent the actual hard tissue
structures of the skull, such as the nasal bone, frontal bone, maxillary bone, etc., while
soft tissue landmarks, as their name suggests, are located on the soft tissues (e.g., on the
forehead, nose, lips, etc.) [3]. Examples of hard tissue cephalometric landmarks are na-
sion, temporale, sella, menton, and gonion, while examples of soft tissues landmarks are
subnasale, subspinale, stomion, soft tissue pogonion, and soft tissue gnathion [3].

2.2. Evaluation Databases

Two different databases were used to evaluate the effectiveness of the detection meth-
ods in this study, namely, the ISBI public image database with 19 annotated cephalometric
landmarks on each image, and the AUDAX private image database with 72 landmarks
per image.

2.2.1. ISBI Public Database

Wang et al. [5] released a public database of 400 cehpalometric images, where 19 of
the more common landmarks were annotated on each image. A list of all the annotated
landmarks is presented in Table 1. Radiographs were collected from 400 patients ranging
from 6 to 60 years old. All cephalograms were captured by the same X-ray device. Every
image was annotated manually by two experienced medical doctors. A ground truth was
determined as an average of the annotations of both doctors. The images have the same
dimension of 1935× 2400 pixels with 10 pixel/mm spatial resolution.

Table 1. A list of 19 cephalometric landmarks annotated in the ISBI public database. A description of
the landmarks and their significance can be found in [3].

−1i—Lower incisal incisior +1i—Upper incisal incisior ANS—Anterior Nasal Spine Ar—Articulare
Gn—Gnathion Go—Gonion Li’—Lower lip Ls’—Upper lip
Me—Menton N—Nasion Or—Orbitale Pg—Pogonion

Pg’—Point Soft Pogonion PNS—Posterior Nasal Spine Po—Porion S—Sella Turcica
Sn’—Subnasale SS—Subspinale (Point A) SM—Supramentale (Point B)

This database is divided into three sets. The first 300 out of 400 images are from the
2015 Automatic Cephalometric X-Ray Landmark Detection Challenge [4]. These 300 images
were split into a training set (150 images) and testing set 1 (the remaining 150 images). The
2016 Automatic Cephalometric X-Ray Landmark Detection Challenge brought another 100
images to this public database. These 100 images are denoted as testing set 2. Figure 1a
depicts a sample annotated image from this public database. Landmarks are actually pixels,
but they are depicted as white circles in this image.
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(a) (b)

Figure 1. Sample annotated cephalograms from (a) the ISBI public database [5], with 19 landmarks,
and (b) the AUDAX private database, with 72 landmarks (white circles).

2.2.2. AUDAX Private Database

A private database was constructed during an industrial project between our research
group and the Slovenian company AUDAX (https://audaxceph.com (accessed on 13 April
2022)), which is specialized for the development of orthodontic software. This database
consists of 4695 unique skull X-ray images. We assumed that each radiograph belongs to
a different subject. Information about the image spatial resolution and about the subject
in the image (e.g., gender, age, health status) was not provided by AUDAX. The size of
images ranged from 355× 480 pixels (min size) to 4417× 5963 pixels (max size). There
are 287 unique image sizes in this database. On this basis, we concluded that the images
were captured with just as many different X-ray devices. The five most common sizes of
radiographs were as follows: 2808× 2148 pixels (1598 images), 1000× 900 pixels (419),
2685× 2232 pixels (310), 1804× 2148 pixels (309), and 1000× 765 pixels (222). An average
image size was 1740× 2012 pixels.

Seventy-two cephalometric landmarks were annotated on each image by a single
experienced orthodontist. A list of all annotated landmarks is gathered in Table 2. Most
landmarks are anatomic landmarks, while the rest were constructed relative to anatomic
landmarks, or were defined as intersections of particular lines and/or planes, where
lines/planes were defined by specific anatomic landmarks or skull structures. An example
of a constructed landmark is RT-abo, which is lying on a silhouette, halfway between the
landmarks articulare (Ar) and gonion (Go). Based on their expertise, AUDAX classified
landmarks into five classes with respect to their importance in cephalometric analyses.
The 38 most important landmarks (class 5) are highlighted in Table 2. On the other hand,
AUDAX also classified the landmarks into five classes with respect to the difficulty of their
determination. The six most difficult to determine landmarks (class 5) are underlined in
Table 2. All 72 denoted landmarks were used as the ground truth in our research. Figure 1b
depicts a sample image from this private database, with 72 annotated cephalometric
landmarks.

The K-fold validation technique was employed by utilizing data from this database to
verify the detection methods. The K parameter was set to 3, thus dividing the private database
randomly into 3 folds of the same size (i.e., each fold consists of 1565 unique images).

https://audaxceph.com
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Table 2. A list of 72 cephalometric landmarks annotated in the AUDAX private database. All
19 landmarks from the ISBI public database are also annotated in this database (denoted encircled).
The 6 most difficult to determine landmarks are underlined, while the 38 most important landmarks
for the cephalometric analyses are bolded. A description of the landmarks and their significance can
be found in [3].

−1a–Apex of lower incisor −1i—Lower incisal incisor
−6a—Apex of lower 1st

molar
−6c—Cusp of lower 1st

molar
−6d—Distal side of lower 1st

molar +1a—Apex of upper incisor +1i—Upper incisal incisor
+6a—Apex of upper 1st

molar
+6c—Cusp of upper 1st

molar
+6d—Distal side of upper 1st

molar +St’—Upper Stomion A—Point A

A’—Point Soft A ANS—Anterior Nasal Spine
APocc—Anterior point of

occlusion Ar—Articulare

B—Point B B’—Point Soft B Ba—Basion Ci–Clinoidale
Co—Condylion Col’—Columella Cp—Condylion posterior Cs—Condylion superior

D—Point D DC—Point DC ER—End Ramus FMN—frontomaxillary nasal
suture

Gl’—Glabella Gn—Gnathion Gn’—Point Soft Gnathion Go—Gonion
Hy—Hyoid Ir—Point Ir L1—L1 Li’—Lower lip

LLi—Lower Lip inside Ls’—Upper lip Me—Menton Me’—Point Soft Menton
N—Nasion N’—Soft Nasion NC—Nasal crown Or—Orbitale

Pg—Pogonion Pg’—Point Soft Pogonion PM—Suprapogonion Pn’—Pronasale

PNS—Posterior Nasal Spine Po—Porion
PPocc—Posterior point of

occlusion Pt—Pterygoid point

R1–R1 R3–R3 Rh—Rhinion RO—Orbital roof of orbital
cavity

RT-abo—aboRamalTangent S—Sella Turcica Se—Entry of Sella SE—Sphenoethmoidal point
Si—Floor of Sella Sn’—Subnasale SOr—Supraorbitale Sp—Dorsum of Sella

−St’—Lower Stomion Te—Temporale tGo—Constructed Gonion
(tangent) Th’—Throat

U1—U1 ULi—Upper lip inside W—Walker point ZyO—Zy Orbit Ridge

3. Computational Methods
3.1. SpatialConfiguration-Net: A Summary

Our proposed landmark detection approach is based on the SpatialConfiguration-Net
(SCN) neural network introduced in [10]. The SCN network is a fully convolutional NN
and consists of two components, namely (i) local appearance and (ii) spatial configuration
components. Both components generate a multidimensional heat map h:

h(x) ∈ RH×W×N , (1)

where x is a location vector within the heat map, H and W are the height and width of
the heat map (also the size of the input image), and N denotes the number of heat map
channels (also the number of targeted landmarks). A location of the n-th landmark is
predicted as the location of the global maxima in the n-th heat map channel.

The local appearance component is a multi-scale pyramid style network that employs
a series of convolutions and downsamplings to extract feature maps. These feature maps
are then upsampled and integrated across different scales. An output of this component
is the multidimensional or multichannel heat map h of dimension of H ×W × N. Every
channel of h can, therefore, be treated as a separate 2D heat map (H ×W) that estimates
the location of a selected landmark (i.e., N channels for N landmarks).

The spatial configuration component downsamples, by a large factor, the heat map
estimated by the local appearance component. It processes this heat map with another
series of convolutions with larger kernels, and produces the new multichannel heat map,
which is upsampled appropriately at the end. Afterwards, the heat maps from the spatial
configuration component, hSC, and from the local appearance component, hLA, are merged
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into a new multidimensional heat map h by using the Hadamard product (i.e., element-wise
product) as:

h(x) = hLA(x) ◦ hSC(x). (2)

Figure 2 visualizes the above described procedure.

Figure 2. A rough block diagram of the SpatialConfiguration-Net. Depicted are ground plan views
of maps (i.e., a single 2D map/channel is shown for a selected landmark).

The local appearance component was designed to learn an accurate landmark position
based on local information. On the other hand, the spatial configuration component
is aimed to discriminate between possible landmark locations using a larger or global
context. An element-wise multiplication of both heat maps is an essential part of the SCN
architecture. The latter enables the local appearance component to make multiple estimates
for a landmark location across the image, while the spatial configuration component is
allowed to selected between these estimates. The local appearance component can, thus, be
focused on accurate position estimation without a global discrimination knowledge, while
the spatial configuration component does not need to have an accurate landmark’s position
information, but it is focused on the global discrimination of the landmark’s position.

3.2. Proposed SCN-EXT Method

The aim of this research is to develop an effective deep-learning-based method for
detecting a large number of cephalometric landmarks from skull X-ray images. State-of-the-
art cephalometric landmark detection methods such as [8–11] have proven very effective
on a small number of landmarks. Our goal, however, is to upgrade the state-of-the-art
appropriately, also for more challenging kinds of detection.

A substantial increase in the number of targeted landmarks requires, typically, an
increase in a (convolutional) neural network’s capacity. A trivial solution of increasing
the number of filters for each convolution layer proved to have two drawbacks. First,
doubling the number of filters squares the number of free parameters for most layers. Con-
sequently, the memory requirements grow quadratically. Second, increasing the number of
parameters typically makes the learning of an NN with the same training set and similar
hyperparameters either unstable or prone to overfitting [12].

The considerable inflation of free parameters is particularly acute for the SCN network,
as we have found through experimentation that this network learning has become very
unstable. It should also be noted that an exhaustive fine-tuning of the initialization constants
for particular SCN layers were carried out. It is expected that an additional fine-tuning of the
SCN network would be required by larger expansion of the free parameters. However, the
SCN network performed with high accuracy when detecting 19 cephalometric landmarks
on testing images from the ISBI public database (see Section 2.2).

We wanted to take advantage of the high detection effectiveness of the SCN network,
but, at the same time, we wanted to avoid re-evaluating (i.e., fine-tuning) the initialization
constants if the SCN network capacity was increased significantly. Therefore, we propose
the following SCN network extension, denoted as SCN-EXT, which increases the capacity
of the NN by adding a series of new, but with the same hyperparameters, basic building
blocks of the SCN network.
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We constructed the SCN-EXT network by introducing J repetitions of the local appear-
ance component into the SCN network, where each of these components was connected
with an input image. Figure 3 depicts the basic elements and outputs of the SCN-EXT
network. An output of the local appearance component is a multichannel heat map (di-
mensions of H ×W × N), which is passed on to the input of the new spatial configuration
component. We must, therefore, integrate J spatial configuration components into the
SCN-EXT network, i.e., one for each local appearance component. The spatial configuration
component also returns as an output of the matrix of dimension H ×W × N (i.e., spatial
configuration map). Subsequently, combining the outputs of all J repetitions of a particular
component follows. The J outputs of the local appearance components are summed simply
into the final local appearance heat map. Similarly, the spatial configuration components’
outputs are combined (see Figure 3). Finally, identical to the original SCN network, both
the final local appearance and the final spatial configuration heat maps are merged, by
using the Hadamard product, into a prediction map, which is then utilized for predicting
landmarks’ locations. The described procedure for constructing the prediction map h is
written formally as:

h(x) =

(
J

∑
j=0

hLA
j (x)

)
◦
(

J

∑
j=0

hSC
j (x)

)
, (3)

where hLA
j and hSC

j denote heat maps of the j-th local appearance and the j-th spatial
configuration component, respectively. It should be emphasized once again that, in the
SCN-EXT network, we employed the basic components with the same hyperparameters
from the SCN network (i.e., components were initialized with the recommended settings
from [10]).

Figure 3. A rough block diagram of the proposed extended SpatialConfiguration-Net (SCN-EXT).

By adding J − 1 new local appearance and spatial configuration components, the
proposed SCN-EXT network is able to learn J2 − 1 functions more than the original SCN
network. Each such component (i.e., neural network) has independent training parameters,
and can, thus, learn a subset of the targeted landmarks. On the other hand, compared to
the base SCN network, the number of free parameters in SCN-EXT grows linearly with the
number of components used.

Landmarks in a training set are not separated into groups (e.g., with respect to an
individual anatomical feature or with respect to the neighboring position), so a benefit of
utilizing several components in the SCN-EXT is that they can optimize for self-determined
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and overlapping groups of landmarks. Each component (neural network) needs to estimate
only a fraction of all the targeted landmarks, and multiple networks can cooperate on the
same landmark.

An idea in our solution is similar to the so-called grouped convolutions, where the
channels in a single convolution layer are grouped together. Each group of channels is
processed by a separate set of convolution kernels without overlap between the groups.
This has a similar advantage as our proposed approach: a moderate increase of free
parameters despite a greater increase of convolutional filters. Increasing the capacity of
the CNN network considerably, i.e., the ability to learn several new functions, by a small
increase of the number of degrees of freedom (DoF), thus provides more stable learning by
using the same training set.

4. Implementation Details and Evaluation Metrics
4.1. Implementation Details and CNN Training

First of all, we will describe image preprocessing and the preparation of training data,
followed by an explanation about the training procedure.

Initially, each image was zero-padded along its shorter axis to make it square shaped.
Afterwards, it was resampled to a size of 512× 512 pixels. A variability in the training set
was increased by an augmentation. The training images were augmented “on the fly” by
random rotations (±5◦), uniform scaling with a scaling factor selected randomly between
0.6 and 1.2, and intensity changes with a random factor from an interval [0.75, 1.3].

The ground truth heat maps were generated as instructed in [10]. Gaussian kernels
were placed at known landmark positions. The Gaussian kernel values were multiplied by
a constant γ = 100 to reduce training instabilities. The standard deviations of the kernels
were the training parameters, where they were regularized by using L2-regularization with
a weight of 20.

All our own implemented neural networks were trained by using the Adam optimiza-
tion algorithm [13], with an initial learning rate of 1 × 10−4. The learning rate was reduced
by a factor of 0.5 every 50 epochs without loss improvement on the validation set. The
training was limited to a maximum of 150 epochs.

Our software was implemented by using the Python programming language. The
constructed and implemented deep neural networks were trained by using the TensorFlow
software library. Originally, version 1.15 was employed, but later the code was ported to
2.x libraries (at the end, the models were trained in the 2.4 version library).

All experiments were conducted on a computer system with an AMD Ryzen Thread-
ripper 2920X 12-Core processor, an NVidia Quadro GV100 graphical card with 32 GB of
VRAM and 64 GB of physical RAM, and Samsung EVO 970 NVMe 1TB storage.

4.2. Evaluation Metrics

Evaluation metrics and the protocol prescribed for the ISBI public database [4,5] were
employed to validate the cephalometric landmark detection methods in this study. The
validation was based on the radial error (RE), calculated as the Euclidean distance d()
between the estimated, EST, and ground-truth landmark location, GT (i.e., the 2D point).
A basic metric mean radial error (MRE) is derived from this error, where the MRE is
calculated as the average of radial errors over L observed landmarks, which is written
formally as

MRE =
1
L

L

∑
i=1

d(ESTi, GTi), (4)

where ESTi in GTi denote the estimated and ground-truth locations for the i-th landmark.
It should be stressed that L denotes the number of landmarks, and does not necessarily
represent the number of different types of landmarks observed in each X-ray image (this is
denoted as N in this article).
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Two additional statistics of radial error were calculated besides the mean (and the
standard deviation) in this research, namely, the median and the 90th percentile of radial
error. All the mentioned measures can be estimated per landmark type, per image, or even
per all landmark types and all images (i.e., over all landmarks in all images in the database).
These metrics are presented either in pixels or in mm if the spatial resolutions of the images
are known.

The next metric that has been introduced for the ISBI database is the successful
detection rate (SDR), which evaluates the precision (i.e., the positive predictive value) of
landmark detection with respect to the radial error. The metric SDR is assessed typically in
respect to the radial error up to 2 mm (Class 1), 2.5 mm (Class 2), 3 mm (Class 3), and 4 mm
(Class 4) from the ground-truth landmark position. It should be noted that we were unable
to determine this metric for the AUDAX private database, because the spatial resolution
information was not known for this database.

5. Results

First, we will describe the experiment by which we fine-tuned the SCN-EXT network
architecture, and afterwards, we will present the results obtained by the detection of
cephalometric landmarks on the ISBI and AUDAX databases.

5.1. SCN and SCN-EXT Architecture Determination

Our research is based on the SCN neural network. The implementation of this network
is, to the best of our knowledge, not publicly available; therefore, based on the available
information, we recreated the SCN network ourselves. We tested our own implemented
SCN on the public ISBI database by using the (hyper)parameters reported in [10]. The SCN
network had the following architecture. The local appearance component had 4 layers and
128 filters with 3× 3 kernels. The spatial configuration component used a downsampling
factor of 16 and included 128 filters of 11× 11. In total, this network had around 7.90
million (M) trainable parameters. The SCN network with the described architecture was
referred to in the sequel as “our implementation of the method”.

Our proposed SCN-EXT solution is a generalization of the SCN architecture, with J-
times repetition of local appearance and spatial configuration components (see Section 3.2).
We determined the most acceptable SCN-EXT architecture by using the following simple
experiment. This experiment was conducted on the AUDAX private database, whereas
folds 2 and 3 formed the training set, while fold 1 was utilized as the testing set. According
to the presented theory in Section 3, we integrated J repetitions of both components of the
SCN network into the SCN-EXT network. If we had employed our fine-tuned SCN for this
purpose, then the memory requirements would have become so high (even at small values
of J) that this problem could not be solved with today’s available hardware. Therefore, we
utilized the following simplified SCN architecture for this experiment: (i) local appearance
component: 4 layers and 32 filters with 5× 5 kernels; and (ii) spatial configuration compo-
nent: a downsampling factor equal to 16 and 32 filters with 11× 11 kernels. Afterwards,
the SCN-EXT networks were constructed by changing the number of repetitions of SCN
network components, whereas parameter J was varied between 1 and 10 with step 1. It
should be stressed that for J = 1, we are dealing with the original SCN network.

The results obtained by using different SCN-EXT architectures are summarized in
Table 3. The number of repetitions (J) of the SCN architecture components is written next to
the method name. For comparison, we also added in this table the results of the fine-tuned
SCN architecture (see the first line). Three metrics are shown based on the radial error. All
metrics were evaluated across all 72 cephalometric landmarks and across all 1565 testing
images. The values are given in pixels, where a lower value indicates the more effective
method. We added a number of trainable parameters in the last column. Marked in bold
is the SCN-EXT architecture, i.e., SCN-EXT (J = 6), which was used in all subsequent
experiments. We chose this network because it is a good compromise between effectiveness
and training time. At the same time, this network is similar to the fine-tuned SCN with
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respect to the DoF (see the “trainable” column). As both networks have similar DoFs, in
fact the SCN-EXT network (J = 6) has even 1 M lower DoF, all differences in the results can
be attributed to changes in the CNN architecture, and not to a raw increase of the DoF (as
in the case if we would utilize SCN-EXT with J = 9).

Table 3. Effectiveness of different SCN-EXT architectures on cephalometric landmark detection on
fold 1 of the AUDAX private database. The column MRE denotes the mean and standard deviation
of the radial error, while columns PCTL50 and PCTL90 denote the 50th (i.e., median value) and 90th
percentile of the radial error, respectively. All values are in pixels (“px”). The column “trainable”
presents the number of trainable parameters in millions.

Method MRE (px) PCTL50 (px) PCTL90 (px) Trainable

SCN † 11.56 6.70 24.91 7.90 M

SCN-EXT, J = 1 12.35 7.21 26.44 1.15 M
. . ., J = 2 11.80 6.90 25.25 2.29 M
. . ., J = 3 11.57 6.75 24.72 3.44 M
. . ., J = 4 11.56 6.73 24.68 4.58 M
. . ., J = 5 11.54 6.69 24.57 5.73 M
. . . , J = 6 11.36 6.66 24.31 6.88 M
. . ., J = 7 11.42 6.67 24.30 8.02 M
. . ., J = 8 11.35 6.54 24.20 9.17 M
. . ., J = 9 11.26 6.57 24.05 10.31 M

. . ., J = 10 11.48 6.60 24.48 11.46 M
†—Our implementation of the method.

5.2. ISBI Public Database

Initially, the effectiveness of our proposed SCN-EXT method, designed primarily for
cephalometric landmark detection, was assessed on the ISBI public database. We used the
prescribed methodology and established metrics [5]. The mean and standard deviation of
the radial error were calculated over all 19 cephalometric landmarks and over all testing
images. In addition, the successful detection rate (SDR) metric was evaluated for the
four prescribed classes. The results for testing set 1 are gathered in Table 4, while Table 5
summarizes the obtained results for testing set 2.

Table 4. Effectiveness of cephalometric landmark detection methods on the public ISBI database:
testing set 1. The column MRE denotes the mean and standard deviation of the radial error, while the
SDR columns denote the successful detection rate (in %) for the four specified classes.

Method MRE (mm) SDR (%)
2 mm

SDR (%)
2.5 mm

SDR (%)
3 mm

SDR (%)
4 mm

Li et al. [9] 1.04 ± N/A 88.49 93.12 95.72 98.42
SCN [10] † 1.08 ± 1.08 87.30 91.40 94.25 97.33

Song et al. [11] 1.08 ± N/A 86.40 91.70 94.80 97.80
SCN-EXT 1.13 ± 1.11 85.61 90.60 93.96 97.44

Chen et al. [8] 1.17 ± N/A 86.67 92.67 95.54 98.53
Chen et al. [8] † 1.30 ± 2.07 83.65 90.70 94.81 97.86
Lindner et al. [5] 1.67 ± 1.48 73.68 80.21 85.19 91.47

SCN [10] ‡ N/A 73.33 78.76 83.24 89.75
Ibragimov et al. [5] N/A 71.72 77.4 81.93 88.04

N/A—Data not available. †—Our implementation of the method. ‡—Results reported just for the merged testing
set 1 and 2.

The effectiveness of the state-of-the-art methods were added to the tables as well. Im-
plementations of these methods were not publicly available; therefore, we just summarized
the results published by the authors of the methods. We reimplemented only two state-of-
the-art methods successfully. The remaining methods were either basically too ineffective
(e.g., methods [6,7]), or it was very difficult to scale them to the problem of 72 cephalometric
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landmarks’ detection (e.g., method [11]), or method descriptions were not comprehensive
enough to be able to reproduce them accurately (e.g., method [9]). Additionally, the results
of our methods’ implementations are presented in the tables, where they are marked by †
next to the method name.

The methods in both tables are arranged according to the decreasing value of the MRE
metric. Let us emphasize that a lower MRE value indicates a higher detection effectiveness
of the method, which means that the better methods are at the top of the tables.

Table 5. Effectiveness of the cephalometric landmark detection methods on the public ISBI database:
testing set 2. See Table 4 for denotations.

Method MRE (mm) SDR (%)
2 mm

SDR (%)
2.5 mm

SDR (%)
3 mm

SDR (%)
4 mm

SCN [10] † 1.41 ± 1.40 74.84 81.42 86.89 94.47
Li et al. [9] 1.43 ± N/A 76.57 83.68 88.21 94.31
SCN-EXT 1.47 ± 1.44 74.53 82.21 87.21 93.68

Chen et al. [8] 1.48 ± N/A 75.05 82.84 88.53 95.05
Chen et al. [8] † 1.65 ± 2.22 71.79 80.32 86.21 93.84
Song et al. [11] 1.54 ± N/A 74.00 81.30 87.50 94.30

Lindner et al. [5] 1.92 ± 1.24 66.11 72.00 77.63 87.42
SCN [10] ‡ N/A 73.33 78.76 83.24 89.75

Ibragimov et al. [5] N/A 62.74 70.47 76.53 85.11

N/A—Data not available. †—Our implementation of the method. ‡—Results reported just for the merged testing
set 1 and 2.

5.3. AUDAX Private Database

The effectiveness of our proposed SCN-EXT method was also assessed on the AUDAX
private database. On this database, we applied the threefold validation technique, where
there were 1565 images in each fold and 72 cephalometric landmarks in each image. The
results obtained on the individual folds were merged, and, afterwards, summarized with
various statistics calculated over all images and over all cephalometric landmarks. We
calculated the mean radial error and the 50th and 90th percentiles of the radial error. The
spatial resolution for the AUDAX database is not known; therefore, all results are given
in pixels. The calculated metrics are gathered in Table 6. In addition to our proposed
SCN-EXT detection method, this table also presents the results of our implementations
of two state-of-the-art methods. The methods in the table are arranged according to the
decreasing value of the MRE metric. Based on publicly available information, we also
reimplemented the method by Li et al. [9], but, with the calculated MRE of about 34 pixels
and the median radial error around 25 pixels, we found that our attempt was completely
unsuccessful.

The effectiveness of the methods in Table 6 was also assessed with the nonparametric
Friedman’s statistical test [14] at a 0.05 significance level. The calculated p-value was equal
to 0, which indicates that not all the methods’ medians are equal. The proposed SCN-EXT
method had the lowest mean rank of 1.88, followed by the SCN method with the mean rank
of 1.94, and the method of Chen et al. [8] had the highest mean rank of 2.18. Let us evoke
that the lower mean rank correlates with the lower radial error, and, consequently, with the
higher effectiveness of the method. Subsequently, we conducted a multiple comparison test
of mean ranks, i.e., a pairwise comparison of methods. This analysis pointed out that all
three compared methods have significantly different mean ranks. On this basis, we argue
that our proposed approach has proven overall to be the most effective detection method
on the challenging AUDAX database.
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Table 6. Effectiveness of the better cephalometric landmark detection methods on the private
AUDAX database. The column MRE denotes the mean and standard deviation of the radial error,
while columns PCTL50 and PCTL90 denote the 50th (i.e., median value) and 90th percentiles of the
radial error, respectively. All values are in pixels.

Method MRE (px) PCTL50 (px) PCTL90 (px)

SCN-EXT 11.26 ± 17.51 6.52 24.13
SCN [10] † 11.57 ± 18.71 6.70 25.10

Chen et al. [8] † 12.19 ± 15.02 8.36 25.00
†—Our implementation of the method.

In the sequel, we extracted the metrics from the obtained results only for those 19
landmarks that are also annotated in the public ISBI database. The mean and standard
deviation of the radial error was calculated for each landmark and each compared method
separately over all images (i.e., 4695 images). These metrics are accumulated in Table 7.
The effectiveness of the methods was then assessed by Friedman’s statistical test (0.05
significance level), and by a multiple comparison test of mean ranks. In the table next to
the MRE value, we wrote in parentheses the order of methods with respect to the mean
rank (value 1 indicates the most effective and value 3 the least effective method), where
we denoted by an asterisk whether the differences in results are statistically significant.
Our proposed method proved to be the most accurate by 15 landmarks and the second
best by 4 landmarks, which is notably better than the compared methods. Improvements
were statistically significant for six landmarks. Finally, we calculated the MRE over all 19
landmarks (see the row “all landmarks” in the table). The effectiveness of our proposed
detection method was statistically significantly higher by at least 3% than for the compared
methods. The SCN method was shown to be the second most effective, followed by the
method by Chen et al. [8].

Table 7. Effectiveness of the compared methods on the AUDAX database. Considered are only
landmarks from the ISBI database. The mean and standard deviation of the radial error are presented
in pixels. A number and * in () denote the method’s rank and statistically significant difference. Better
results are marked in bold.

Landmark SCN-EXT (px) SCN [10] † (px) Chen et al. [8] † (px)

−1i–Lower incisal incisior 5.06± 7.34(1) 5.09± 7.48(2) 7.45± 7.72(3)

+1i–Upper incisal incisior 4.55± 6.72(1) 4.55± 6.83(2) 8.33± 7.77(3)

ANS–Anterior Nasal Spine 8.96± 10.88(1,∗) 9.35± 11.55(2) 12.16± 19.39(3)

Ar–Articulare 8.07± 9.38(1,∗) 8.44± 9.69(2) 9.56± 8.14(3)

Gn–Gnathion 7.11± 6.08(1,∗) 7.29± 6.22(2) 8.04± 6.17(3)

Go–Gonion 9.40± 8.50(2) 11.05± 10.15(3) 8.81± 7.11(1)

Li’–Lower lip 4.51± 6.77(1) 4.66± 12.77(2) 7.01± 6.80(3)

Ls’–Upper lip 4.49± 6.30(1) 4.63± 8.68(2) 7.16± 6.50(3)

Me–Menton 6.77± 6.52(1,∗) 6.94± 6.63(2) 7.86± 6.17(3)

N–Nasion 7.31± 10.21(2) 7.29± 10.24(1) 9.12± 10.09(3)

Or–Orbitale 12.22± 14.29(2) 12.15± 14.20(1) 12.62± 11.92(3)

Pg–Pogonion 7.17± 9.34(1) 7.24± 9.49(2) 9.62± 8.98(3)

Pg’–Point Soft Pogonion 9.02± 15.80(1) 9.30± 31.05(2) 9.88± 10.73(3)

PNS–Posterior Nasal Spine 9.14± 7.64(1) 9.31± 7.87(2) 11.65± 8.61(3)

Po–Porion 13.44± 15.34(1) 13.89± 16.21(2) 14.89± 12.43(3)

S–Sella Turcica 4.85± 3.58(1,∗) 4.99± 3.76(2) 5.20± 3.60(3)

Sn’–Subnasale 5.68± 5.35(1,∗) 5.84± 6.77(2) 8.02± 6.12(3)

SS–Subspinale (Point A) 11.02± 12.70(1) 11.28± 13.41(2) 14.16± 12.37(3)

SM–Supramentale (Point B) 12.88± 17.02(2) 12.92± 16.90(1) 14.08± 15.03(3)

All landmarks 7.98± 10.57(1,∗) 8.22± 12.82(2) 9.77± 10.29(3)

†—Our implementation of the method.
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We gathered in Tables 8 and 9 the ten most accurately and the ten least accurately
detected cephalometric landmarks by using our proposed SCN-EXT method. Among the
ten best detected landmarks, there are as many as six landmarks (in Table 8 they are circled),
which are also annotated in the ISBI database. The Th’ point from the soft tissue of the
throat was detected with the largest MRE error, which differs significantly from others
(see Table 9). The reason is that the throat is not fully visible on all cephalograms and,
therefore, an expert annotated the Th’ point very inconsistently (i.e., Th’ was annotated
only approximately). If the Th’ point was excluded from the metric calculation, the MRE
for the SCN-EXT method decreased by about 0.7 pixels to 10.57± 13.93 pixels (see also
Table 6). Similarly, the median radial error decreased to 6.44 pixels (previously 6.52) and
the 90th percentile of the radial error to 23.21 pixels (previously 24.13).

Table 8. Ten cephalometric landmarks from the AUDAX database detected most accurately by the
SCN-EXT method. For denotations, see Tables 2 and 6.

Landmark MRE (px) PCTL50 (px) PCTL90 (px)

Ls’–Upper lip 4.49 ± 6.30 3.14 8.49
Li’–Lower lip 4.51 ± 6.77 3.30 8.53

+1i–Upper incisal incisor 4.55 ± 6.72 3.00 8.30
Pn’–Pronasale 4.61 ± 7.13 3.46 9.20
S–Sella Turcica 4.85 ± 3.58 3.97 9.67

APocc–Anterior point of
occlusion 4.95 ± 5.27 3.66 9.60

Si–Floor of Sella 4.97 ± 4.61 3.90 9.97
−1i–Lower incisal incisor 5.06 ± 7.34 3.55 9.90

B’–Point Soft B 5.22 ± 6.69 3.64 10.06
Sn’–Subnasale 5.68 ± 5.35 4.41 11.58

Table 9. Ten cephalometric landmarks from the AUDAX database detected least accurately by the
SCN-EXT method. For denotations, see Table 6.

Landmark MRE (px) PCTL50 (px) PCTL90 (px)

SOr–Supraorbitale 15.81 ± 20.29 7.99 43.83
ZyO–Zy Orbit Ridge 16.90 ± 15.79 11.84 38.37

Te–Temporale 17.03 ± 18.05 12.39 35.41
Ir–Point Ir 17.09 ± 17.22 12.15 37.25

R1–R1 17.25 ± 14.82 13.25 35.61
Gn’–Point Soft Gnathion 18.59 ± 22.10 10.95 46.41

Gl’–Glabella 19.21 ± 20.64 11.91 46.66
R3–R3 19.58 ± 16.82 14.69 41.66

Rh–Rhinion 24.08 ± 33.69 10.49 81.31
Th’–Throat 60.15 ± 76.76 28.97 177.48

6. Discussion

In this study, we upgraded the state-of-the-art SCN neural network to the SCN-EXT
network by adding the J repetitions of both the local appearance (LA) component and the
spatial configuration (SC) component into the original SCN architecture. All J replicates
of each component were summed up simply, and both sums were, finally, combined by
using the Hadamard product. By modifying the architecture in this way, we increased
the capacity, as the new SCN-EXT network is able to learn J2 − 1 more transformation
functions than the basic SCN network. It is completely trivial that if we add J copies of
LA and SC components, then the capacity of such a modified network will, of course,
increase compared to the capacity of the original SCN network (if the same LA and SC
components are utilized). However, the contribution of our approach is that by J-times
repeating and merging the simpler LA and SC components, we can maintain approximately
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the same DoF of the new SCN-EXT network as has the original SCN network with the
more complex LA and SC components, while we simultaneously increase the capacity and
learning ability of the SCN-EXT, respectively. The latter is especially acute if processing
and memory resources are limited; namely, training the large models (i.e., with large DoF)
requires powerful computing units, a large learning set, and a large primary memory.

This research was focused on the problem of detecting many cephalometric landmarks
on diverse lateral skull X-ray images. The SCN-EXT network was designed primarily
for this purpose. We have shown experimentally (see the Section 5) that the SCN-EXT
network components learn well to predict landmark locations. In our current solution,
we do not supervise a training by forcing individual components to learn how to localize
a specific subset of landmarks. The latter would be achieved, for example, by adding
the L1 regularization term for sparsity into the training, which could be one of the future
research guidelines.

The final architecture of the SCN-EXT network was determined according to the
capacity and DoF of the original SCN network. The SCN network was fine-tuned to detect
19 cephalometric landmarks in the ISBI public database. The LA and SC components
utilized there were used as the basis in our work. The goal on the private AUDAX database
was to localize 72 cephalometric landmarks; therefore, we modified the architecture of
the SCN network only slightly, namely, such that the LA and SC components were able
to process inputs with 72 channels. The SCN network that aimed for a detection of 19
cephalometric landmarks (ISBI database) had 6.20 M trainable parameters, while the
DoF increased to 7.90 M in the case of detecting 72 landmarks (AUDAX database). The
SCN-EXT architecture was determined by a simple experiment on the AUDAX database
(see Section 5.1). We varied the number of replicates, J, of the LA and SC components,
and monitored the MRE by cephalometric landmarks’ detection. Much simpler LA and
SC components were applied than in the original SCN. Finally, we chose the SCN-EXT
architecture with J = 6 repetitions of both components with respect to the hypotheses set
out in this study. The SCN-EXT network had 6.88 M trainable parameters when detecting
72 landmarks (AUDAX database), while the DoF decreased to 4.16 M if this architecture
was adapted for the ISBI database (i.e., reducing the number of channels). It can be noticed
easily that the SCN-EXT network had, on both databases, much fewer trainable parameters
than the original SCN.

In order to compare the results of our proposed SCN-EXT method with the results
of related works, we reimplemented the SCN method and the method by Chen et al. [8]
successfully. We also implemented the method by Li et al. [9], but the results, obtained with
our implementation of this method, differed greatly from those reported (see the previous
section). We deduced that a reason for the failure to reproduce the method is as follows: the
method by Li et al. [9] models each landmark as a graph node. Each node is associated with
the landmarks’ positions and a feature vector that is extracted from a processed image at
that position. The feature vector processing is conducted by using the HRNet18 backbone
convolutional network. This method consists of two stages. The first stage estimates a
global perspective transformation to align the mean positions of landmarks, constructed
from the training data with the specific image. Afterwards, the second stage refines local
landmark locations. The estimated global perspective transformation did not improve the
landmarks’ locations regularly, but, rather, it distorted them. A network that predicted nine
free parameters of the perspective transformation matrix was described in [9] explicitly.
However, DeTone et al. argued in [15] that such approach is unreliable and difficult
to train perspective transformations. Therefore, they suggested applying the four-point
estimation approach instead. It is unclear, though, how this four-point estimation would be
applied for the landmark detection. The reason for the ineffectiveness of this method was,
consequently, sought in the poorly estimated perspective transformations. As mentioned
in the Introduction, the method by Song et al. [11] does not scale well to a larger number of
cephalometric landmarks and training images. The authors validated their approach on the
ISBI public database (i.e., on 19 landmarks and 150 testing images). They reported that a
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registration of a single testing image to training images was completed in approximately 20
min. In the AUDAX database, there were 3130 training images per one fold. We estimated
that registration in this case would require about 20 times more processing time, i.e., about
400 min per one testing image. In total, this would mean 3 folds × 1565 images × 400
min per image = 1,878,000 min, or around 1304 days, to carry out the registration. The
latter, of course, is not acceptable, so we have not implemented this method. The remaining
methods from Table 4 were around 40% behind the SCN method in terms of effectiveness,
and were, therefore, not included in the comparison on the private AUDAX database.

First, let us analyze the results on the ISBI public database. The effectiveness of the pro-
posed SCN-EXT method is comparable to the effectiveness of state-of-the-art cephalometric
landmark detection methods. The SCN-EXT is, on testing set 1, less effective by about
8.65% than the best method by the authors Li et al. [9], and on testing set 2 by about 4.26%
than the best SCN method (see Tables 4 and 5). We were unable to reproduce the results
of [9], because important implementation details are missing in this method’s presentation.
Undoubtedly, one of the reasons for the lower effectiveness of our SCN-EXT method is that
the architecture was established by using the AUDAX database (and not the ISBI data on
which the method was actually applied). It should be noted that the DoF of the SCN-EXT
method was almost one-third smaller than the DoF of the SCN method. It can also be seen
on testing set 2 that the SCN and SCN-EXT methods have very similar SDR metrics. A great
similarity between the methods was also perceived on testing set 1. A reason for the higher
MRE of the SCN-EXT method is, therefore, attributed to those landmarks for which the SDR
was >4 mm (i.e., incorrectly detected landmarks were detected more erroneously than in
the SCN method). Finally, let us emphasize that the ISBI database is a small database with
a small learning set (150 images), and with only 250 testing images divided into two sets.

Let us continue with an analysis of the results on the AUDAX private database. This
database is very challenging, as it contains 4695 (testing) images, divided into 3 folds,
in 287 very different sizes. A goal was to localize 72 cephalometric landmarks in each
image. Spatial image resolution data were not available. To the best of our knowledge,
this is the first such public or private database with a large number of X-ray images and
a larger number of landmarks on which the cephalometric landmark detection methods
have been verified. Taking into account all 72 cephalometric landmarks, our proposed
SCN-EXT method proved to be superior compared to other state-of-the-art methods. It
was more effective than the second-ranked SCN method by about 2.68% (see Table 6). The
differences and rankings were confirmed statistically significantly by the nonparametric
Friedman’s test, and by the multiple comparison test of mean ranks. If we took into
consideration from the set of all cephalometric landmarks only those 19 landmarks that
were also annotated in the ISBI public database, then the SCN-EXT method this time
again proved to be statistically significantly the best method. It surpassed the second-
best SCN method by about 2.92% (see Table 7). A similar conclusion was drawn if we
compared methods at the level of an individual cephalometric landmark. In this case, the
SCN-EXT method was demonstrated to be the more effective method on 15 out of the
19 landmarks, and the second best on 4 landmarks. Afterwards, we arranged the detection
effectiveness for the mentioned 19 landmarks with respect to the detection effectiveness
for all 72 landmarks on the AUDAX database, where only our SCN-EXT method was
observed. It was discovered that as many as 6 landmarks ranked among the top ten
(even in the top three, see Table 8), 10 landmarks among the top twenty, and 15 landmarks
among the top thirty-five most accurately detected cephalometric landmarks. The less
accurately localized were the landmarks point A, orbitale, point B, and porion, as the least
accurately detected landmark in 52nd place. On this basis, we argue that the ISBI database
consists of 19 relatively easier to detect cephalometric landmarks. On the other hand, the
AUDAX database can be said to contain at least 33 cephalometric landmarks, which are
more difficult to localize than landmarks in the ISBI database. The latter makes the AUDAX
database much more demanding than the ISBI database.
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Figure 4 depicts the qualitative result of cephalometric landmarks’ detection by using
our proposed SCN-EXT method on the AUDAX private database. Seventy-two estimated
(denoted by a red x) and ground-truth (blue circle) cephalometric landmarks are superim-
posed on the skull X-ray image. The predicted and correct location of the landmarks are
connected by the green line, where the following applies: the shorter the line, the lower
the radial error. It can be noticed that, with the exception of the point on the throat, all the
remaining cephalometric landmarks were localized extremely accurately.

Figure 4. Sample detection result, superimposed on the X-ray image from the AUDAX private
database. Cephalometric landmarks were determined by the proposed SCN-EXT method. Estimated
landmarks are denoted by a red x, while ground-truth locations are superimposed as blue circles.

The rater’s annotations were also analyzed on the AUDAX database. We wanted to
find out the positions of which landmarks varied the most on the skull, and, whether the
results obtained with our SCN-EXT method were consistent with these findings; accord-
ingly, if the position of the landmark varied slightly on the skull and whether this made
our method more accurate, and vice versa. Just a few findings are presented in the sequel,
as this analysis is not the main goal of our research. We thus conducted a statistical analysis
of skull shapes on the AUDAX database. Seventy-two annotated cephalometric landmarks
from all 4695 images were utilized as an input. The aim of this analysis was to determine
how the locations of cephalometric landmarks differ (vary, deviate) in the population (i.e.,
among patients), and how this influenced landmark detection effectiveness. We carried
out a so-called generalized Procrustes analysis [16,17]. In each image, the locations of
cephalometric landmarks were compensated by translation, scaling, and rotation (i.e., by a
rigid transformation), resulting in a mean skull shape (and corresponding mean landmarks’
locations) in the Procrustes space. Subsequently, we fitted the Procrustes mean model to
the annotated cephalometric landmarks in each image by using an approach from [18],
followed by the calculation of the radial error between the fitted model landmarks and the
ground-truth landmarks. This error was summarized for each cephalometric landmark
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over all images with various statistics (i.e., mean, standard deviation, median, and the
75th percentile). It was discovered that the following 10 cephalometric landmarks have
the lowest variability, namely, the landmarks PNS, APocc, W, S, Se, Ci, LLi, +St’, −St’, and
PPocc (see Table 2 for denotations). The ten landmarks with the higher deviation from the
Procrustes mean model are the landmarks Go, B, N’, Gn’, tGo, Ba, Gl’, Rh, Hy, and Th’,
which is the overall highest variability landmark. Both lists remained the same regardless
of any statistics (e.g., mean, median, etc.) used in the comparison.

Finally, we evaluated the influence of variability on the cephalometric landmark de-
tection. We calculated the correlation between the landmark variability and detection
effectiveness by using the SCN-EXT method. For both quantities, we used data regarding
the points order, once in respect to the variability, the second in respect to the detection
effectiveness. There was a positive correlation between the two quantities (the correlation
coefficient equaled 0.505 with a p value 5.99× 10−6). To sum up, the less the landmark
varied, the more accurately it was detected, and vice versa. These findings are also con-
sistent with the importance of landmarks for cephalometric analyses as defined by the
AUDAX company (see Table 2). With the exception of the Gl’ landmark, all the remaining
nine poorly localized landmarks (see Table 9) are less important for the cephalometric
analyses. Similarly, all 10 accurately localized landmarks (see Table 8) are more important
for the cephalometric analyses.

The landmark on the throat soft tissue, Th’, with the MRE error of more than 60
pixels, was detected the least accurately. This MRE is almost 2.5 times higher than for the
second-least accurately detected landmark, Rh. For the cephalometric analyses conducted
by the AUDAX company, the landmark Th’ defines just a point where a face profile ends at
the bottom. The landmark Th’ has no other meaning in these analyses, and, consequently, it
was annotated very carelessly. Figure 5 depicts three examples of Th’ landmark annotation
and localization by the SCN-EXT method. It can be noticed that Th’ was annotated on three
completely different parts of the throat (see blue circles). Accordingly, this means a poorer
ability to learn this landmark and a higher radial error (see the green lines). To illustrate, if
we omitted the Th’ landmark from the statistics, then the MRE for the SCN-EXT method
decreases from 11.26 pixels (see Table 6) to 10.57 pixels, or decreases by 6.13%.

Figure 5. The worst-detected landmark Th’ by using the SCN-EXT method: three examples from the
AUDAX database. Estimated landmarks are denoted by a red x, while ground-truth locations are
superimposed as blue circles.

The CNN training was computationally demanding. The hardware utilized in this
study was presented in Section 4.1. On the ISBI database, the training to detect 19 cephalo-
metric landmarks took about 72 min for 150 epochs, or about 29 s per epoch (on GPU).
The trained network conducted an inference in around 0.76 s per image on the CPU or in
around 0.08 s per image on the GPU. On the AUDAX database, however, the training on
GPU took about 2480 min for 150 epochs, or about 992 s per epoch. The trained network
localized 72 cephalometric landmarks in around 1.02 s per image on the CPU or in around
0.14 s per image on the GPU.
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7. Conclusions

By developing a new method for localizing cephalometric landmarks, we solved a
concrete problem from industry in this research. The existing methods have been adapted
and tested to detect only 19 landmarks; however, in our work we have addressed the
problem of detecting 72 cephalometric landmarks based on industry needs. A large number
of accurately detected landmarks on skull X-ray images is a prerequisite for any quality
cephalometric analysis. In this study, we upgraded the SpatialConfiguration-Net neural
network (SCN), which is one of the state-of-the-art methods for localizing cephalometric
landmarks in X-ray images. The SCN architecture was modified by the integration of
several repetitions of simpler local appearance and spatial configuration components, with
which we increased the capacity of such a modified network (i.e., the SCN-EXT network)
with virtually unchanged degrees of freedom (DoF) compared to the original SCN network
with the more complex components. Primarily, the SCN-EXT network was designed for
localizing a large number of cephalometric landmarks in diverse skull X-ray images.

On the small ISBI public database with 250 testing images, captured by the same X-ray
device and with 19 cephalometric landmarks, our, albeit non-tuned SCN-EXT method, was,
in terms of effectiveness, just slightly behind the state-of-the-art methods. On the other
hand, our fine-tuned SCN-EXT method was statistically significantly the most accurate
method on the much more demanding AUDAX database with 4695 highly variable testing
images (various X-ray devices!) and with 72 cephalometric landmarks. The improvement
of the proposed method was statistically significant, even if we considered out of all 72
cephalometric landmarks only those 19 landmarks that are also in the ISBI database. We
also confirmed that the detection accuracy was correlated positively with the importance
of landmarks for cephalometric analyses.

An aim of this research was indeed to develop a state-of-the-art cephalometric land-
mark detection method, but not at the expense of a raw increase of neural network capacity
by increasing DoF (e.g., by the addition of more filters, etc.). The presented results in this
study were, namely, obtained by using the SCN-EXT network, which had 13% (on the
AUDAX database) or 33% (on the ISBI database) fewer free parameters than the original
SCN network. Maintaining DoF while increasing network capacity is important, especially
for a small learning set and limited computer resources.

Possible improvements to our approach are seen in the use of a more sophisticated
augmentation of learning set and in the use of transfer learning. We expect, reasonably,
also an improvement in the case if we integrate J = 9 or more repetitions of the local
appearance and spatial configuration components to the SCN-EXT network, which would
indeed increase DoF greatly. For the sake of a fair comparison with the state-of-the-art
methods, we have not conducted any of the abovementioned in this study, so these may
provide guidelines for future research.

In addition to lateral skull X-ray images, we also have an option of capturing frontal
skull X-ray images. This is complementary information that allows complementary cephalo-
metric analyses. One of the future research directions will, therefore, be focused on adapting
our method for also localizing cephalometric landmarks on the frontal skull X-ray images.

Finally, let us mention that our detection algorithm is already employed in a clinical
practice as a part of a bigger software product. Accurately determined landmarks on the
skull X-ray images represent the input for every cephalometric analysis. Automatic local-
ization of 72 cephalometric landmarks undoubtedly disburdens the orthodontist greatly, as
manual detection of landmarks means routine and time-consuming work. Nevertheless,
he should be aware that, similar to other software tools in clinical practice, our algorithm
also does not work 100% accurately. Our trained model is well suited to support and aid
manual cephalometric landmarks’ annotation, but is not suited for fully automated systems.
Manual validation is recommended, and manual correction may be required, based on
final application requirements. For this reason, the orthodontist should be able to inspect,
and possibly correct, the locations of automatically detected landmarks. Such functionality
is, of course, built into the abovementioned software product. The user experiences of
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orthodontists with our algorithm are very positive. We conclude with one of the orthodon-
tist’s responses: “I conducted the first analysis. I have not used automated tracing for 3
years, but I saw that it is very improved. Landmarks are set at 99% ideally. Very good”.
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