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Abstract: A micro-expression is a subtle, local and brief facial movement. It can reveal the genuine
emotions that a person tries to conceal and is considered an important clue for lie detection. The
micro-expression research has attracted much attention due to its promising applications in various
fields. However, due to the short duration and low intensity of micro-expression movements, micro-
expression recognition faces great challenges, and the accuracy still demands improvement. To
improve the efficiency of micro-expression feature extraction, inspired by the psychological study
of attentional resource allocation for micro-expression cognition, we propose a deep local-holistic
network method for micro-expression recognition. Our proposed algorithm consists of two sub-
networks. The first is a Hierarchical Convolutional Recurrent Neural Network (HCRNN), which
extracts the local and abundant spatio-temporal micro-expression features. The second is a Robust
principal-component-analysis-based recurrent neural network (RPRNN), which extracts global and
sparse features with micro-expression-specific representations. The extracted effective features are
employed for micro-expression recognition through the fusion of sub-networks. We evaluate the
proposed method on combined databases consisting of the four most commonly used databases,
i.e., CASME, CASME II, CAS(ME)2, and SAMM. The experimental results show that our method
achieves a reasonably good performance.

Keywords: hierarchical convolution; local-holistic; micro-expression recognition; robust principal
component analysis

1. Introduction

With the explosive growth of multimedia materials and the rapid advancement of deep
learning, the technology of face recognition [1–3] and intelligent expression analysis [4–6]
is becoming more and more developed. They have been applied in many fields, such as the
face unlocking of intelligent devices, human–computer interaction, and face-based emotion
understanding. For instance, El Morabit et al. proposed an off-the-shelf CNN architectures
to perform an automatic pain estimation from facial expressions [4].

Meantime, as an important nonverbal cue for emotional understanding, facial micro-
expression (micro-expression) is an involuntary and momentary facial expression, with a
brief duration of less than 500 ms [7]. It reflects one’s genuine emotions that people are
trying to conceal. In contrast to ordinary facial expressions, micro-expression is consciously
suppressed but unconsciously leaked. Moreover, as illustrated in Figure 1, it has the
two distinguishing features of short duration and low intensity. Compared to polygraph
instruments that require equipment, micro-expression-based lie detection is unobtrusive,
and individuals are less likely to counteract it. Therefore, micro-expressions have many
potential applications in many fields, such as clinical diagnosis [8] and national security [9].
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Figure 1. Micro-expression sample with tense emotion: there is a slight inward tucking at the brow,
and the movement duration is less than 300 milliseconds (ms). (Sample from CASME II dataset [10]).

Micro-expression is difficult to detect through the naked eye and requires a trained
professional to recognize [8]. In order to help people recognize micro-expression, Ek-
man et al. developed the Facial Action Coding System (FACS) [11] and defined the muscle
activity of facial expressions as action units (AU). Meanwhile, they also developed the
micro-expression Training Tool (micro-expressionTT) [12]. Since then, micro-expression
has received increasing attention from researchers. However, micro-expression analysis
through humans is still very challenging, and many researchers have tried to develop micro-
expression auto-recognition methods by employing computer vision techniques. Since
2013, Xiaolan Fu’s group has built four spontaneous micro-expression databases: CASME
I [13], CASME II [10], CAS(ME)2 [14] and CAS(ME)3 [15]. In 2016, Davison et al. released
the Spontaneous Actions and Micro-Movements (SAMM) [16] dataset with demographic
diversity.

Based on these published databases, research on micro-expression recognition has been
gradually developed. There are two main types of approaches, i.e., recognition methods
based on handcraft features and methods based on deep learning feature extraction. Due
to the brief, subtle, and localized nature of micro-expressions, it is challenging for both
handcrafted features and features obtained based on deep learning to fully represent
micro-expressions. In addition, since the collection and labeling of micro-expressions are
time-consuming and laborious, the total number of published micro-expression samples
is about 1000. Therefore, micro-expression recognition is a typical small sample size (SSS)
problem. The sample size greatly limits the application of deep learning in this area.
First, deep network models involve a large number of parameters, and training on a
small micro-expression sample may cause overfitting problems in the model. Moreover,
the number of samples in the model and the network parameters are affected by the SSS
problem compared with the algorithms for expression recognition. Furthermore, due to
the complicated characterization of micro-expressions themselves, even methods such as
transfer learning with sample pre-training on other large-scale data sets do not achieve
satisfactory results and cannot be applied to practical applications.

To address the problem that micro-expression features are difficult to learn in deep
networks under small sample problems, we explored the psychological cognitive attention
mechanism. As shown in Figure 2, the process of individual cognitive micro-expressions
moves from global cognition to local-focused attention and finally to global decision
making [17]. Inspired by this theory, we try to algorithmically enhance the ability of the
network to learn features with a limited sample size. Thus, we propose a Deep Local-
Holistic Network (DLHN) with enhanced micro-expression feature extraction capability
for micro-expression recognition. The architecture of the proposed method mainly includes
two sub-networks: (1) a hierarchical convolutional recurrent network (HCRNN), learning
local and abundant features from original frames of micro-expression video clips, and
(2) a robust principal component analysis recurrent network (RPRNN), extracting sparse
information from original frames of micro-expression video clips by RPCA, and then
feeding the sparse information to a deep learning model to extract holistic and sparse
features. The two networks are trained separately and then fused for micro-expression
recognition. In sum, our proposed DLHN network improves the performance of micro-
expression recognition by comprehensively extracting micro-expression spatio-temporal
features from both local detail and global sparsity levels.
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Figure 2. Global (green clipping head) and local area of interest (yellow arrow) tracking of micro-
expression action. (Sample from SAMM dataset [16]).

The rest of this paper is organized as follows: Section 2 reviews the related works on
micro-expression recognition and basic models applied in our method; Section 3 introduces
our proposed algorithm in detail; Section 4 presents the experimental results; and Section 5
concludes the article.

2. Related Works and Background

This section first introduces the related works on micro-expression recognition, then
briefly describes three algorithms as they are employed in our proposed method, includ-
ing deep convolutional neural network, recurrent neural network, and Robust Principal
Component Analysis.

2.1. Micro-Expression Recognition

In the early stages of the study, most methods adopt handcrafted features to iden-
tify micro-expressions. Polikovsky et al. [18] divided the face into specific regions and
recognized the motion in each region using a 3D-Gradients orientation histogram descrip-
tor. Tomas Pfister et al. [19] designed the first spontaneous micro-expression database
(SMIC) and used LBP-TOP [20] to extract dynamic and appearance features of micro-
expressions. Wang et al. [21] adopted robust Principal Component Analysis (RPCA) [22] to
extract sparse micro-expression information and Local Spatiotemporal Directional Features.
Wang et al. introduced a discriminant tensor subspace analysis (DTSA) [23] to preserve
the spatial structure information of micro-expression images. Furthermore, they treated
a micro-expression video clip as a fourth-order tensor and transformed the color infor-
mation from RGB into TICS to improve the performance [24]. Huang et al. [25] show a
spatiotemporal facial representation to characterize facial movements and used LBP to
extract appearance and motion features. Liu et al. [26] proposed a simple, effective Main Di-
rectional Mean Optical-flow features (MDMO) and adopted an SVM classifier to recognize
micro-expression. Huang et al. [27] analyzed micro-expression by proposing SpatioTem-
poral Completed Local Quantization Patterns (STCLQP), which exploits magnitude and
orientation as complementary features. The above recognition methods are not capable
enough to capture subtle facial displacements. This is due to the constant movement of
the observed individual, which is common in typical micro-expression applications. Ad-
dressing this problem, Xu et al. [28] proposed a Facial Dynamics Map method by depicting
micro-expression characteristics in different granularities. Wang et al. [29] proposed a Main
Directional Maximal Difference micro-expression recognition method (MDMD), extracting
optical flow features from the region of interest (ROIs) based on action units. Furthermore,
addressing the SSS problem, Li et al. [30] performed data augmentation based on their
proposed local temporal pattern for micro-expression analysis.

Recently, the outstanding performance of deep learning has attracted the attention of
many researchers to develop micro-expression recognition algorithms. Patel et al. [31] used
the pre-trained ImageNet-VGG-f CNN to extract features of each frame in micro-expression
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video clips. Wang et al. [32] proposed a Transferring Long-term Convolutional Neural
Network (TLCNN) method, which uses Deep CNN to extract spatial features per frame
and Long Short Term Memory (LSTM) to learn micro-expression temporal information.
Xia et al. [33] investigated a low-complexity recurrent convolutional neural network (RCN)
based on cross-database micro-expression recognition. Li et al. [34] performed a joint
local and global information learning on apex frame for micro-expression recognition.
Zhou et al. [35] proposed an expression-specific feature learning and fusion method for
micro-expression recognition However, the small sample size of micro-expression samples
and the subtle and brief nature of micro-expression limit the combination of deep learning
with micro-expression recognition methods. Thus, how to learn the micro-expression
features effectively is necessary research for further performance improvement.

2.2. Deep Convolutional Neural Network

A Deep Convolutional neural network (DCNN) is a hierarchical machine learning
method containing multilevel nonlinear transformations. It is a classic and widely used
structure with three prominent characteristics: local receptive fields shared weights and
spatial or temporal subsampling. These features reduce temporal and spatial complexity
and allow some degree of shift, scale, and distortion invariance when it is designed to
process still images. It has been shown to outperform many other techniques [36].

As introduced in Section 1, the handcrafted micro-expression features are not suffi-
ciently representational. Hence, we apply DCNN to improve the discriminative ability
for micro-expression by targeting learning in local regions where micro-expressions fre-
quently occur.

2.3. Recurrent Neural Network

Recurrent neural network (RNN) can be used to process sequential data through
mapping an input sequence to a corresponding output sequence, using the hidden states.
However, as the network gradually deepens, there will be problems of gradient disappear-
ance and gradient explosion. To solve this problem, Long Short-Term Memory (LSTM)
architecture was proposed [37], which uses memory cells with multiplicative gate units to
process information. It has been shown to outperform RNN in learning long sequences.

In addition, RNN only takes into account the past context. To solve the problems,
a bidirectional RNN (BRNN) is created [38], which can process data in both past and future
information. Subsequently, Graves et al. [39] proposed a bidirectional LSTM (BLSTM),
which has better performance than LSTM in processing long contextual information of
complex temporal dynamics.

Since micro-expressions are very subtle, it is not easy to distinguish them from neutral
faces just by a single frame. The movement pattern in the temporal sequence is an essential
feature for micro-expressions. Therefore, we extract the temporal features from micro-
expression sequence based on BRNN and BLSTM to enhance the classification performance.

2.4. Robust Principal Component Analysis

Currently, there are very many mature techniques for signal and image processing that
can perform the denoising of images fed into deep learning networks, such as wavelet [40]
and compressive sensing [41–43]. In the previous study [44], we tried to retain the principal
components and remove irrelevant information such as noise by PCA. The micro-expression
action information was considered as noise and removed, making it impossible to obtain
valid experimental results by adapting parameters and other means. In the sample pro-
cessing of micro-expressions, we cannot remove noise directly in the acquisition process
because, for micro-expressions, noise is instead common and obvious facial features, such
as face contours that can be used as face identity features.

Donoho et al. [45] demonstrated that the observed data could be separated efficiently
and exactly into sparse and low-rank structures in high-dimensional spaces. Then, an ide-
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alized “robust principal component analysis” problem is proposed to recover a low-rank
matrix A from highly corrupted measurements E:

D = A + E (1)

where A is the reserved data in a low-rank subspace, and E is the error term, usually treated
as noise.

According to the characteristic of micro-expression with short duration and low inten-
sity, micro-expression data are sparse in both the spatial and temporal domains. In 2014,
Wang et.al. [24] proposed E as the deserved subtle motion information of micro-expression
and A as noise for micro-expression recognition. Inspired by this idea, we adopt RPCA
to obtain sparse information from micro-expression frames, and then feed the extracted
information to RPRNN, which learns sparse and holistic micro-expression features.

3. Our Model

As illustrated in Figure 3, our proposed Deep Local-Holistic Network (DLHN) consists
of HCRNN and RPRNN. HCRNN extracts the local and abundant spatial-temporal micro-
expression features by concatenating modified CNN and BRNN modules. Meanwhile,
RPRNN learns the holistic sparse micro-expression features through the combination of
RPCA and a deep BLSTM. Finally, two sub-networks are fused to improve the performance
of micro-expression recognition.

Figure 3. Our proposed Deep Local-Holistic Network. (1) The local network, i.e., HCRNN. The facial
micro-expression image is divided into four regions of interest and then fed into four hierarchical
CNN modules to extract local-still features. In addition, local dynamic features are learned by the
BRNN module. (2) The holistic network, i.e., RPRNN. RPCA is employed to obtain sparse micro-
expression images, which are then used as the input to the RPRNN. A deep BLSTM network created
by multiple hidden layers is applied to learn the holistically sparse features. The activation functions
for DLHN are listed in Table 1.
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Table 1. Activation function for DLHN.

Layer Activation Function

HCRNN
CNN: L1-4 ReLU

BRNN: L5, 8 and 11 Tanh
FC L13 Softmax

RPRNN
BiLSTM: L1 ReLU

FC L2 ReLU
FC L3 Softmax

3.1. HCRNN for Local Features

As illustrated in the top block of Figure 3, the HCRNN Model is constructed by the
CNN Module and the BRNN Module. First, the CNN Module contains four hierarchical
CNNs (HCNNs) to extract local features from ROIs. Then, the BRNN Module learns the
temporal correlation in the local features. Finally, the category of micro-expression is
predicted by a fully connected (FC) layer.

3.1.1. CNN Module

According to the facial physical structure, only four facial regions of interest (ROIs),
i.e., eyebrows, eyes, nose, and mouth, are used for the local micro-expression feature
extraction (Figure 4a). First, the gray-scale micro-expression frames are cropped and
normalized with a size of 112 × 112. Then, the ROIs are determined based on facial
landmarks. The ROI sizes of the eyebrows, eyes, nose, and mouth are 112 × 33, 112 × 20,
56 × 32, and 56 × 38, respectively. Furthermore, considering the integrity of each ROI,
the adjacent ROIs may have overlapping portions.

As shown in the HCRNN block of Figure 3, the structure of CNN module consists of
four HCNNs. For each branch, the input is the ROI gray-scale images, and the network
contains four convolutional layers. All four HCNNs have the same structure, as listed
in Table 2. The output sizes in the table refer to generated tensor shapes by four HCNN.
The CNN module is able to extract local spatial micro-expression features. For a better
visualization, Figure 4b presents the feature maps of L4 in HCRNN.

(a) Four facial ROIs (b) ROI feature maps

Figure 4. ROIs based on eyebrows, eyes, nose and mouth, and the corresponding feature maps of L4
in HCRNN.
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Table 2. The HCNN structure.

Type Kernel Size Stride Output Size

convolution 3× 3× 70 1 112× 33/112×
20/56× 32/56× 38

max pool 2× 2 2 56× 16/56× 10/28×
16/28× 19

convolution 3× 3× 140 1 56× 16/56× 10/28×
16/28× 19

max pool 2× 2 2 28× 8/28× 5/14×
8/14× 9

convolution 3× 3× 280 1 28× 8/28× 5/14×
8/14× 9

max pool 2× 2 2 14× 4/14× 2/7×
4/7× 4

convolution 3× 3× 560 1 14× 4/14× 2/7×
4/7× 4

3.1.2. BRNN Module

In a micro-expression sequence, the past context and future context usually are useful
for prediction. Thus, a BRNN module [46] is adopted to process temporal variation in
micro-expressions.

Figure 5. General structure of BRNN. xt is input data in t time. yt is output data in t time. hp
t and hn

t
represent the hidden state in positive and negative directions, respectively.

The number of neurons in each layer of BRNN Module is listed as follows: L5(30× 4)-
L7(60× 3)-L8(60× 3)-L10(90× 2)-L11(90× 2)-L12(80× 1). First, the extracted ROI features
from CNN module are fed into BRNN module in L5 layer. Then, local temporal information
is concatenated in L6 layer and subsequently processed by two BLSTMs in L7 layers (See
BRNN structure in Figure 5). Similar steps of L6 and L7 are repeated in the L8 and L9
layers. A global temporal feature is obtained through the concatenation in the L10 layer
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and the BLSTM in the L11 layer. We classify micro-expressions by an FC layer in L12 of
HCRNN and obtain probabilistic outputs by the softmax layer in L13 of HCRNN:

P(hi) =
ehi

∑n−1
k=0 ehk

(2)

where hi is the output of L13, and i is the output unit, where i = 0, 1, . . . k. Finally,
the HCRNN is trained by using the cross-entropy loss function:

HLoss = −∑
j

cj · log
(
P
(
hj
))

(3)

where cj is the ground truth, and P
(
hj
)

is the predicted probability of output layer.

3.2. RPRNN for Holistic Features
3.2.1. Input: Sparse Micro-Expression Obtained By RPCA

Due to the short duration and low intensity of micro-expression movement, micro-
expressions could be considered as sparse data. Hence, RPCA [22] is utilized to obtain
sparse micro-expression information. In details, for a gray-scale video clip V(h× w× n),
where h and w are the height and width in pixels of each frame, respectively, and n is the
number of frames. We stack all frames as column vectors of a matrix D with h× w rows
and n columns. It can be formulated as follows:

min
A,E

rank(A) + ‖E‖0 subject to D = A + E (4)

where A is a low-rank matrix, B is a sparse matrix, rank(·) is the rank of the matrix, and
‖ · ‖0 denotes `0-norm, which obtains the number of nonzero elements in the matrix. This
is a non-convex function. Wright et al. adopted the `1-norm as a convex surrogate for the
highly nonconvex `0-norm and the nuclear norm (or sum of singular values) to replace
non-convex low-rank matrix, i.e., the following convex optimization problem:

min
A,E
‖A‖∗ + λ‖E‖1 subject to D = A + E (5)

where ‖ · ‖∗ denotes the nuclear norm; ‖ · ‖1 denotes the `1-norm, which counts the sum
of all elements in matrix; and λ is a positive weighting parameter (λ > 0). Lin et al. [47]
proposed the Augmented Lagrange Multiplier Method (ALM), which includes two algo-
rithms of exact ALM and inexact ALM to process linearly constrained convex optimization
problems. The inexact ALM has a slight improvement in the required number of partial
SVDs than the exact ALM and has the same convergence speed as the exact ALM. Benefiting
from it, we adopt the method of inexact ALM to obtain sparse micro-expression motion
information from original frames.

3.2.2. RPRNN Architecture

The obtained sparse micro-expression images are fed into RPRNN to extract holistic
features. The architecture of RPRNN is shown at the bottom block in Figure 3. Specifically,
in order to learn high-level micro-expression representations, a deep BLSTM network is
created by multiple LSTM hidden layers. The holistically sparse features are extracted
in the L1 of RPRNN, and two FC layers are used to classify micro-expressions. Then,
the emotion type of the micro-expression is estimated by the softmax layer:

P(ri) =
eri

∑C−1
k=0 erk

(6)
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where ri is an output of the softmax layer. Finally, to avoid the overfitting problem, we
combine the cross-entropy loss function with L2 Regularization:

RLoss = −∑
j

cj · log
(
P
(
rj
))

+
n

∑
c=1

θ2
c (7)

where P
(
rj
)

is the predicted probability of the output layer, θ index to weight values.

3.3. Model Fusion

In the final stage of our proposed Deep Local-Holistic Network, HCRNN and RPRNN
are fused by the following function:

O(xi) = aPhi(xi) + (1− a)Pri(xi) (8)

where a is the weight value, and Phi and Pri are the predicted probabilities in HCRNN
and RPRNN, respectively. According to the experiment result, we find that the model can
achieve the best performance when a equals 0.45. Thus, we set a to 0.45.

4. Experiments
4.1. Databases and Validation Protocols

We use the datasets combined of four spontaneous micro-expression databases (CASME I,
CASME II, CAS(ME)2, and SAMM) to assess the performance of our models. Table 3 presents
the details of these four databases.

Table 3. Four spontaneous micro-expression databases. FPS: Frames per second.

Database Sample Size Emotions Class FPS Label

CASME I 195 8 60 emotion/AUs
CASME II 247 5 200 emotion/AUs
CAS(ME)2 57 4 30 emotion/AUs

SAMM 159 7 200 emotion/AUs

• Emotion category: The number of emotion classes is different in these four databases,
and micro-expression samples are labeled by taking different AU criteria. For example,
the combination of AU1 and AU2 defines a micro-expression sample as disgust in
CAS(ME)2 and as surprise in CASME II. In order to alleviate the impact of the different
encoding, we adopt a uniformly AU encoding criterion proposed by Davison et al. [48].
Finally, we select 650 samples from the combined dataset and divide them into four
emotion labels:

emotions = {Positive, Negative, Surprise, Others} (9)

Specifically, Negative consists of anger, disgust, sadness, and fear. Figure 6 shows the
sample size of each emotion category.

• Validation Protocol: Since there are only 650 video samples in the combined database,
the sample size for training, validation, and testing would be small with a straightfor-
ward division. In order to verify the model performance more fairly and eliminate
the effect of individual differences on the results, we adopt a 10-fold cross-validation
method. In particular, the samples are equally randomly distributed into 10 folds,
of which 9 folds are used for training and the remaining one for testing, and the
average of 10 validations represents the accuracy of the model.
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• Evaluation metric: For the evaluation fo the micro-expression recognition results,
a common evaluation criterion is the accuracy of recognition [49], i.e., the proportion
of correct predictions among the total number of micro-expression video samples:

Accuracyk =
∑nb_emo

i TPk
i

nb_MEk
(10)

Accuracy =
∑10

k Accuracyk

10
(11)

where k is the index of the test fold in the 10-fold cross-validation; i ∈ [1, 2, 3, 4],
i.e., the emotion label index; nb_emo denotes the number of emotion categories, i.e., 4
in our article; and nb_MEk represents the total number of micro-expression videos in
the kth test fold.

55

280

50

265

0 50 100 150 200 250 300

positive

negative

surprise

other

C
a
te

g
o
ry

Sample size

Figure 6. Sample size of each emotion category.

4.2. Preprocessing and Parameter Configuration
4.2.1. Possessing

• HCRNN: Since the length of each video sample varies, we performed linear interpo-
lation and extracted 16 frames from it for the subsequent recognition task. The size
of the face image is 112× 112. For HCRNN, the face region is divided into four ROIs
as the input of the CNN module. To guarantee the integrity of each part, ROIs have
overlapping areas, and the size of brow, eye, nose, and mouth regions are 112× 33,
112× 20, 56× 32, and 56× 38, respectively.

• RPRNN: The original micro-expression frames are processed by RPCA to obtain the
sparse micro-expression images. Figure 7 illustrates an example of micro-expression
images processed by RPCA. Then, the sparse images are fed to RPRNN to obtain
holistic features.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. An example of RPCA on micro-expression images: (a–e) are the original micro-expression
images; (f–j) are the enhanced display for the corresponding extracted sparse information by multi-
plying each pixel by 2.

4.2.2. Parameter Configuration for DLHN

• HCRNN: The convolution kernel size of the HCNN is set to 3× 3, and the size of the
pooling kernel is 2× 2. The strides of the convolution and pooling layers are set as 1
and 2. In the training stage, the learning rate adopts exponential decay with the initial
value equal to 0.85. We update all weights in each iteration with mini-batch samples
whose size is 45. The number of epochs is 1500. The iteration curves in Figure 8a
represent the trend of the loss and accuracy values in the testing set.

• RPRNN: In the model, the attenuation method of the learning rate and the update
mode of the weights are the same as the HCRNN, and the value of the learning rate
is initialized to 0.01. Same as in the HCRNN, the number of epochs is 1500. In the
training stage, we update all weights in each iteration. Figure 8b plots the iteration
curves representing the trend of loss and accuracy value in the testing set. In the
whole experiment, we employ a truncated normal distribution with zero mean and a
standard deviation of 0.1 to initialize weights and initialize biases as 0.1.

(a) HCRNN

Figure 8. Cont.
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Figure 8. Network iteration curves.

4.3. Parameter Analysis and Ablation Study
4.3.1. Parameter Analysis

Our proposed DLHN consists of HCRNN and RPRNN. As introduced in Section 3.3,
these two sub-networks are combined by parameter a. We choose different a to evaluate the
results of the fusion network and conduct our experiments with 10-fold cross-validation.
Table 4 show micro-expression recognition accuracy of the fusion network with different
parameter a. It can be seen that when a equals 0.45, the average accuracy of the fusion
network is the highest. Therefore a is set as 0.45 when we compare the performance of the
proposed DLHN with current state-of-the-art (SOTA) methods in the combined dataset.

Table 4. Facial micro-expression recognition accuracy (%) of our proposed DLHN with different
parameter a in 10-fold cross-validation dataset. The maximum value in each fold and the maximum
mean value are bolded.

a 0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9

Fold1 55.38 52.31 55.38 53.85 53.85 58.46 58.46 56.92 55.38 53.85
Fold2 66.15 64.62 69.23 70.77 70.77 70.77 69.23 67.69 63.08 63.08
Fold3 60 60 61.54 61.54 61.54 63.08 61.54 63.08 60 58.46
Fold4 61.54 63.08 63.08 66.15 66.15 64.62 66.15 66.15 64.62 63.08
Fold5 56.92 56.92 55.38 60 60 58.46 58.46 58.46 56.92 56.92
Fold6 63.08 63.08 64.62 63.08 64.62 63.08 58.46 61.54 61.54 60
Fold7 55.38 53.85 52.31 53.85 47.69 41.54 41.54 41.54 41.54 41.54
Fold8 60 58.46 60 60 58.46 58.46 53.85 52.31 50.77 52.31
Fold9 52.31 52.31 52.31 53.85 53.85 56.92 53.85 53.85 56.92 56.92

Fold10 63.08 63.08 63.08 61.54 60 61.54 52.31 52.31 52.31 52.31

Mean 59.385 58.769 59.692 60.308 60.309 60.308 57.385 57.385 56.308 55.847

4.3.2. Ablation Study

To demonstrate the effectiveness of each of our proposed modules as well as combi-
nations, we conduct the following ablation experiments, i.e., data validation on HCRNN,
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RPRNN, and the combination of both, DLHN, based on the same experimental setup.
The experimental results are listed in Table 5. The mean accuracies of the HCRNN and the
RPRNN are 55.08% and 59.53%, respectively. The fusion model, i.e., DLHN, obtains the
best performance by combined local abundant features extracted by HCRNN and holistic
sparse features extracted by RPRNN and achieves a 60.31% mean accuracy. In addition,
RPRNN obtained the best performances in three folds (fold7, fold8, and fold10), which
demonstrates the efficiency of the holistic sparse spatio-temporal feature extraction capacity
of the RPRNN.

Table 5. Ablation study on the HCRNN and RPRNN modules. The maximum value in each fold and
the maximum mean value are bolded.

Method Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Mean

HCRNN 53.85 63.08 58.46 63.08 56.92 56.92 40 52.31 55.38 50.77 55.08
RPRNN 56.82 64.62 60 61.54 56.92 60 56.92 60 56.92 61.54 59.53
DLHN 53.85 70.77 61.54 66.15 60 64.62 53.85 58.46 53.85 60 60.31

4.4. DLHN Performance Analysis
4.4.1. Comparison with SOTA Methods

In the choice of comparison methods, among the handcrafted-feature-based methods,
we choose the classical FDM features and LBP features [50], as well as the variant of
LBP features (LBP-SIP) [51]. Among the deep learning methods, we choose the first
place method for Micro-Expression Grand Challenge 2019 and two deep learning-based
methods with codes released in the last two years, which are STSTNet [52], RCN(_a,_w,_s,
and _f) [33], and Feature Refinement (FR) [35], respectively. Moreover, we all reproduced
these methods with the same data configuration.

Table 6 shows the overall accuracy of all algorithms. The best algorithm based on
traditional methods for micro-expression recognition is LBP-TOP(4× 4), which achieves
58.38% mean accuracy. Among the deep learning approaches, the Feature Refinement
(FR) approach achieved the highest accuracy rate of 56%. Our proposed DLHN method,
with global sparse and local detailed spatio-temporal feature extraction, achieves a better
performance than all methods, i.e., an accuracy rate of 60.31%.

Table 6. The overall accuracy (%) of DLHN and other SOTA methods. LBP1, LBP2, LBP3, and LBP4

reprensent LBP-TOP(2× 2), LBP-TOP(4× 4), LBP-SIP(2× 2), and LBP-SIP(4× 4), respectively. The
maximum value in each fold and the maximum mean value are bolded.

Method Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Mean

FDM+SVM 36.92 41.54 52.31 43.08 33.85 43.08 43.08 52.31 33.85 50.77 43.08
LBP1+SVM 55.38 52.31 50.77 56.92 58.46 47.69 53.85 55.38 56.92 53.85 53.85
LBP2+SVM 66.15 58.46 64.62 58.46 63.08 58.46 49.23 52.31 61.54 61.54 58.38
LBP3+SVM 55.38 58.46 58.46 53.85 46.15 50.77 43.08 58.46 58.46 53.85 43.08
LBP4+SVM 60 55.38 41.54 49.23 60 47.69 46.15 55.38 55.38 49.23 46.15
STSTNet 46.15 60.00 58.46 55.38 50.77 53.85 50.77 49.23 52.31 55.38 53.23
RCN_w 47.69 61.54 53.85 52.31 49.23 56.92 46.15 58.46 55.38 53.85 53.54
RCN_s 38.46 63.08 49.23 56.92 46.15 53.85 46.15 55.38 60.00 36.92 50.61
RCN_a 35.38 61.54 47.69 61.54 46.15 46.15 49.23 64.62 47.69 36.92 49.69
RCN_f 46.15 72.31 56.92 53.85 46.15 50.77 53.85 50.77 58.46 47.69 53.69

FR 46.15 61.54 58.46 66.15 61.54 56.92 50.77 44.62 56.92 56.92 56.00
DLHN 53.85 70.77 61.54 66.15 60 64.62 53.85 58.46 53.85 60 60.31

Two reasons mainly cause the lack of high performance in micro-expression recogni-
tion:

• First, micro-expressions are involuntary and rapidly flowing facial expressions of
individuals, which are subtle, brief, and localized. The recognition rate of micro-
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expressions in videos by the naked eye is less than 50%, even for professionally trained
experts [8]. Similarly, it is very challenging for traditional feature extraction methods
and deep learning methods to extract micro-expression features with representational
properties. Deep learning networks targeting fine-grained feature learning may be
able to improve performance, e.g., by drawing on fine-grained object recognition
network designs.

• Second, the small sample size of micro-expressions limits the ability of deep learning
to further mine micro-expression features. The maximum sample size of a single
database containing micro-expression videos is only 256. In this paper, we combine
three common micro-expression databases for analysis, and there are only 650 samples
in total. However, the amount of data of this size is still very small compared to
face recognition and expression recognition. The performance of micro-expression
recognition should be improved in the future when the amount of micro-expression
data increases.

4.4.2. Micro-Expression Recognition Per Emotion Class

In addition, to evaluate the algorithm’s recognition performance for each emotion
class, we analyze it through the confusion matrix. By showing the number of TPs, FPs,
TNs, and FNs obtained by the algorithm under different classifications, we can analyze
the algorithm’s performance in recognizing different emotions. Figure 9 illustrates the
confusion matrix of our proposed DLHN based on four emotion classes.

Figure 9. Micro-expression recognition performance analysis of DLHN per emotion: confusion
matrix on combined databases.

Given that feature learning is very difficult, when an emotion class has more samples,
its recognition performance will be relatively stronger. This is because the model is able to
learn the corresponding features from more data. According to Figure 6, “Negative” and
“other” have more samples than “positive” and “surprise”. Thus, the recognition accuracy
of “negative” and “other” is higher than the other two emotion classes.

5. Conclusions and Perspective

In this paper, we proposed a Deep Local-Holistic Network for micro-expression
recognition. Specifically, HCRNN is designed to extract local and abundant information
from the ROIs related to micro-expression. According to the sparse characteristic of micro-
expression, we obtain sparse micro-expression information from original images by RPCA,
and utilize RPRNN to extract holistic and sparse features from sparse images. Deep
Local-Holistic Network, which fused by HCRNN and RPRNN, captures the local-holistic,
sparse-abundant micro-expression information, and boosts the performance of micro-
expression recognition. Experimental results on combined databases demonstrate that
our proposed method outperforms some SOTA algorithms. In particular, we achieved an
accuracy of 60.31% in recognition with a combination of four micro-expression databases.
In comparison with other SOTA methods listed in Table 4 (in the manuscript), our method
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outperforms not only the traditional handcrafted feature extraction methods but also the
recently published deep learning-based micro-expression recognition methods.

The recognition performance of DLHN remains to be improved due to the limitation
of the small sample problem and unbalanced sample distribution. In future work, we
will further investigate unsupervised learning as well as data augmentation methods to
improve the performance of micro-expression recognition.
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