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Featured Application: A potential application of the work concerns the development of se-
cure IIoT architectures for smart manufacturing using blockchain technology and machine
learning algorithms.

Abstract: In this paper, a layered architecture incorporating Blockchain technology (BCT) and Ma-
chine Learning (ML) is proposed in the context of the Industrial Internet-of-Things (IIoT) for smart
manufacturing applications. The proposed architecture is composed of five layers covering sensing,
network/protocol, transport enforced with BCT components, application and advanced services
(i.e., BCT data, ML and cloud) layers. BCT enables gathering sensor access control information,
while ML brings its effectivity in attack detection such as DoS (Denial of Service), DDoS (Distributed
Denial of Service), injection, man in the middle (MitM), brute force, cross-site scripting (XSS) and
scanning attacks by employing classifiers differentiating between normal and malicious activity.
The design of our architecture is compared to similar ones in the literature to point out potential
benefits. Experiments, based on the IIoT dataset, have been conducted to evaluate our contribution,
using four metrics: Accuracy, Precision, Sensitivity and Matthews Correlation Coefficient (MCC).
Artificial Neural Network (ANN), Decision Tree (DT), Random Forest, Naive Bayes, AdaBoost and
Support Vector Machine (SVM) classifiers are evaluated regarding these four metrics. Even if more
experiments are required, it is illustrated that the proposed architecture can reduce significantly the
number of DDoS, injection, brute force and XSS attacks and threats within an advanced framework
for sensor access control in IIoT networks based on a smart contract along with ML classifiers.

Keywords: Blockchain; industrial IoT; smart manufacturing; security threats; security solutions;
machine learning; classifiers; privacy; smart contract; access control

1. Introduction

The smart manufacturing is a “form of production integrating manufacturing assets
of today and tomorrow with sensors, computing platforms, communication technology,
control, simulation, data intensive modelling and predictive engineering” [1]. The develop-
ment of smart manufacturing is powered by technological advances relevant to the fourth
industrial revolution (Industry 4.0) [2,3]. Among these technologies, the Industrial Internet-
of-Things (IIoT) is receiving more attention from the researchers’ community due to its
ability to integrate new technologies such as sensors, radio frequency identification (RFID)
and communication protocols. The supervisory control and data acquisition (SCADA)
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system is one example of a system based on the IIoT including sensors and actuators
controlled by programmable logic controllers (PLCs) [4]. However, the integration of these
new digital technologies will lead to an increased number of vulnerabilities and attacks in
the smart manufacturing context [5].

In that context, Machine Learning (ML) and Blockchain technology (BCT) can be
viewed as a potential solution to reduce the new vulnerability introduced in IIoT fields for
smart manufacturing. On the one hand, ML, which is a subfield of artificial intelligence
dealing with the development of algorithms, can improve automatically through experience
and by the use of data [6]. There already exists ML-based security solutions for IIoT [4,7,8].
ML is used in smart manufacturing and IIoT to improve decisions and has therefore become
one key element of smart manufacturing [9].

On the other hand, the use of BCT for the smart manufacturing, which is a technol-
ogy based on recording transactions among participants implemented via blocks inside
databases, can be fruitful, leading to several benefits such as automation process, trace-
ability, data integrity and sustainability. One challenge is the integration of IoT-related
technology by considering the huge diversity of communication protocols, IoT device
variety and the big data exchanged among various IoT applications. Moreover, there is no
common model to support the IoT hardware and software diversity in the context of smart
manufacturing [10]. Likewise, ML algorithms can be integrated in models based on BCT
for data analysis and prediction to enforce security and for attacks detection as well.

The aim of this work is thus to propose a secure IIoT architecture including BCT
enforced with ML algorithms for smart manufacturing applications. The proposed archi-
tecture is based on a previous work [11] developed in the specific context of IoT networks.
Our architecture is compared to similar ones in the literature [12–14] in terms of number
of layers, advantages, disadvantages and security issues. Through experimentations, it
is demonstrated that our architecture can reduce the number of attacks and can mitigate
threats thanks to the BCT inherent features for sensors’ access control. Our experiments
have been realized in two steps. Firstly, a scenario is carried out as a function of ML perfor-
mance metrics. This scenario is led without considering BCT. It is based on a data-driven
study and a classification of threats using various kinds of classifiers by considering a
dataset for Industry 4.0 [15]. Secondly, an advanced scenario, considering a Blockchain
(BC) data structure enforced with ML is used through the definition of a framework. The
results are then compared to the ones of the first scenario to show the added value of the
proposed architecture to mitigate the number of attacks in IIoT networks.

This paper is organized as follows. First, Section 1 presents state-of-the-art related
works. Section 2 details the proposed architecture based on BCT and ML tools by consider-
ing the limitations in the literature. Then, in Section 3, a comparative study is led, and a
discussion is suggested to position and evaluate the proposed architecture with relevant
works in the state-of-the-art. A validation and data analysis with ML is investigated in
Section 4 by considering two introduced scenarios. In Section 5, a discussion is made to
highlight the main results and to point out the limitations of our work as a starting point to
improve the system performance to tackle attacks over IIoT in the near future. Finally, a
conclusion is drawn and prospects are identified.

2. State-of-the-Art: A Review

As introduced, BCT is based on recording transactions among participants imple-
mented via blocks inside databases. Blocks are linked via a Hash function to preserve data
integrity. The creation of a new block is enforced with proof of work (PoW) or proof of stake
(PoS) mechanisms requiring the node to solve a cryptographic puzzle. The append-only
ledger technology related to the BCT was initially proposed for the cryptocurrency systems,
for instance Bitcoin. The concept of BCT was proposed in 2008 [16], and it includes three
main types such as private, public and federated BC [17]. It has attracted much attention
over the past years as an emerging peer-to-peer technology for distributed computing
and traceable and decentralized data sharing. Due to the integration of cryptography
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technology with a decentralized control and decentralized data storage, BCT can avoid
attacks aiming to take control over the system. Later, in 2013, Ethereum, a transaction-based
state-machine, was presented to implement the BCT [18]. Indeed, the latter is defined as a
public and decentralized BC offering smart contract implementation. In addition, a smart
contract is a program composed of code, data and rules that can be manipulated by a user
account to send transactions over network. In this work, a smart contract data structure for
sensor access control and a smart contract code for authentication process and rules are
proposed in the context of smart manufacturing applications.

Due to its unique and interesting features, such as transactional privacy, security,
the immutability of data, auditability, integrity, authorization, system transparency, and
fault tolerance, BCT is an emergent technology applied in a constantly growing set of
various fields. Typically, some of these fields are intelligent transportation [19], supply
chain management [20], agriculture [21], Industry 4.0 [10,22], 3D printing [23], protecting
museum-digital property rights [24] and Internet of Energy (IoE) [12,25,26]. Table 1 contains
the state-of-the-art works based on BCT/ML for IIoT networks, considering smart manu-
facturing applications. The keywords used leading to Table 1 results were “blockchain”,
“Industry 4.0”, “machine learning”, “security”, “smart contract“ and “smart manufactur-
ing”. The results were gathered from Elsevier, IEEE, Springer, Google Scholar and MDPI
databases during 2018–2022.

Table 1. Related works based on Blockchain/ML for Industrial IoT.

Years Authors Focus

2018 Gao et al. [12] Authors have proposed a monitoring system based on smart contract to identify
malicious usage of electrical power.

2018 Li et al. [22] Authors have introduced the energy BC based on the consortium BCT and the
Stackelberg game.

2018 Aitzhan et al. [26] Authors have implemented a token-based private decentralized energy
trading system.

2018 Lin et al. [27] A four-layer framework based on smart contract BCT for fine-grained access control
system is proposed for Industry 4.0.

2019 Dai et al. [13] Authors have proposed a four-layer architecture for the concept of Blockchain of
Things (BCoT) in industrial applications.

2019 Zhao et al. [14] Authors have proposed a new architecture based on smart contract for client and
resource registrations in IIoT.

2019 Liang et al. [25] Authors have proposed a data protection framework based on distributed BC.

2019 Tanwar et al. [28] Authors have proposed a hybrid technique based on BC and ML to detect attacks
for energy-trading applications.

2020 Jameel et al. [29] Authors have proposed a reinforcement learning technique to address the block
time minimization and transaction throughput of blockchain-based IIoT networks.

2021 Shahbazi et al. [15] Authors have proposed a new architecture based on smart contract, BC and ML for
quality control in smart manufacturing application.

2021 Javaid et al. [30] Authors have proposed BCT applications for Industry 4.0 such as manufacturing
data protection, automotive, information and security.

2021 Rathee et al. [31] An IIoT framework based on BC for sensor authentication is proposed
by the authors.

2021 Shrivastava et al. [32] The paper exposes the main enabling technologies for Industry 4.0 such as IoT,
Artificial Intelligence, cloud computing and BC.

2021 Leng et al. [33] Authors present the various metrics for the usage of BC in manufacturing.

2021 Faridi et al. [34] Authors propose BC and IoT-based product traceability system for textile
manufacturing applications.

2022 Chen et al. [35] The review paper discusses the BC applications in Industry 4.0 such as
authentication, asset tracking and smart contract exchange.

In 2018, GridMonitoring, a monitoring system, was introduced by Gao et al. [12], based
on the Smart Grid. It ensures transparency, provenance, and immutability. In addition, the
proposed system is based on smart contract to identify the malicious usage of electrical
power by reporting any violations into a database in the context of a smart grid network.
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Li et al. [22] introduced the energy BC for secure energy trading in Industrial IoT based on
the consortium BCT and the Stackelberg game. Aitzhan et al. [26] implemented a token-
based private decentralized energy trading system in decentralized smart grid energy,
which can be applied to the IoE. Therefore, the IoE provides an innovative concept to
increase the visibility of energy consumption in the Smart Grid. The authors in [27] propose
a framework named BSeIn that is a BCT-based system for secure mutual authentication
to enforce fine-grained access control polices. Furthermore, BSeIn ensures confidentiality,
privacy and multifactor authentication.

Dai et al. [13] proposed a new architecture based on four layers for industrial appli-
cations. In addition, the authors define the concept of merging BC and IoT in one system
named Blockchain of Things (BCoT). Likewise, a new architecture based on three layers for
supplier chain applications among supplier, producer, factor and customer is suggested
by Zhao et al. [14]. The latter architecture is based on a distributed ledger BC to ensure
traceable transactions among untrusted peers. In modern power systems, Liang et al. [25]
proposed a data protection framework based on distributed Blockchain, which can resist
against data manipulation that is triggered by cyber attackers (e.g., false data injection
attacks). To guarantee data accuracy, Liang et al. [25] created a framework that uses the
consensus mechanism, which is automatically implemented by every node and has the
representative characteristics. Additionally, the authors in [28] proposed a hybrid technique
based on BC and ML to detect attacks for energy trading applications. In addition, the
authors suggested in [28] to store datasets used by ML models into a BC network in order
to reduce data errors such as duplication, missing data value and noise.

The authors in [29] suggested a reinforcement learning (RL) technique to address
the block time minimization and transaction throughput of BC-based IIoT networks. The
authors discussed how to obtain a low bias training of the agent in the RL and proposed
some alternative solutions such as Q-learning, multi-armed bandit learning, actor–critic
learning and deep policy optimization techniques. Applications of RL techniques in BC-
based IIoT networks were discussed. They concluded that the Q-learning technique is
appropriate for improving transaction throughput and minimizing forking events. Actor–
critic learning and deep Q-learning techniques were discussed as a possible means to
improve the energy efficiency of IoT devises. Q-learning and multi-armed bandit learning
were also intended to minimize the time to finality and reduce the block time. Finally,
deep Q-learning could be applied by adding an artificial noise in the network to protect
broadcast/acknowledgement messages exchanged among IIoT-BC devices.

Shahbazi et al. [15] proposed a new architecture based on smart contract, BC and
ML for quality control in smart manufacturing. In addition, the authors suggested a BC
distributed ledger to store an information-related automation contract among the supplier,
manufacturer and retailer. Likewise, an architectural diagram of the predictive analysis
based on XGBoost (a flexible and highly efficient algorithm that can avoid overfitting issues)
was proposed by the authors in [15] covering data pre-processing, feature selection and
dividing the dataset into training and testing sets.

Javaid et al. [30] presented a review on BCT applications for Industry 4.0. Likewise, the
authors exhibit the capabilities of BCT implementation in several industrial fields involving the
healthcare domain, education services, logistics and transportation and government sectors.

The authors in [31] propose an IIoT framework based on BC for sensors authentication.
Therefore, a performance analysis is performed by measuring the probability of attack
success, a created hazard by the intruder and authentication accuracy metrics versus the
number of IoT devices via an NS2 simulator.

Leng et al. [33] present the various metrics for the usage of BC in manufacturing
including data-temper resisting, data-provenance, decentralized decision, collaborative op-
timization, system flexibility, cost saving, system sustainability, system resilience, network
transparency and reputation improvement.

Finally, Chen et al. [35] discuss the BC applications in Industry 4.0 such as authentica-
tion, asset tracking and smart contract exchange. In addition, BC concerns are exhibited
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by the authors in terms of higher energy consumption, large storage capacity and the
vulnerability of the last block against attacks.

We provide hereinafter a more in-depth analysis of three of these contributions that
focuses specifically on BCT applied to IIoT. Their potential benefits and limits to counteract
cyber-attacks in the context of smart manufacturing are studied. The choice for these
three contributions was motivated by the will to establish a fair comparison between our
work and similar ones in terms of architectural design (i.e., number of layers and the
functionality of each layer), smart contract data structure and application of smart contract
in the manufacturing field.

The first one is the GridMonitoring system [12], which is based on four layers such
as the user layer, data processing and monitoring layer, registration and authentication
layer and energy and data center layer. The system integrates an implementation of a smart
meter for transparency purposes between the customer and electricity company provider.
The benefit of the proposed solution, besides the usage of BCT, is the employment of
authentication mechanisms and data centers to save all information to report any violations.
Nonetheless, the solution applies a classical smart contract database to report any violations
that can be the object of an injection or/and XSS (cross-site scripting) attack. The solution
can be enhanced with an ML-based solution to prevent and detect injection and XSS attacks.

The second one is the architecture proposed by Dai et al. [13], which is presented
in Figure 1. As depicted, the architecture is composed of perception, communication,
BC-composite and industrial applications layers.

Figure 1. The architecture proposed by Dai et al. [13].

The BC composite layer covers five sub-layers including data, network, consensus,
incentive and services sub-layers. The data sub-layer includes a data block, chain structure,
Merkle tree, Hash function, digital signature and cryptographic algorithms. The consensus
sub-layer contains the architecture-supported consensus algorithms such as PoW, PoS, and
practical Byzantine fault tolerance (PBFT). This architecture presents the advantage of a
well-structured composite BC sub-layer including all components of BC node architecture.
However, merging data and network in one layer can lead to a serious privacy violations
in case of man-in-the-middle (MitM) attacks. The potential benefits of this approach in
the context of smart manufacturing can be applied in supply chain, food industry, smart
city, healthcare and Internet-of-Vehicles (IoV) applications. Meanwhile, some limitations
can be found concerning the fact that the data block, chain structure and network tools are
merged in one BC composite layer.

The third studied architecture was proposed by Zhao et al. [14] and is presented in
Figure 2, considering an application to the supply chain. As shown in Figure 2, the proposed
architecture is based on three layers incorporating BC, data and governance layers. In
the proposed model, all transactions including custom payment, producer registration,
supplier registration, factor registration, contract term condition and refund are recorded
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inside the BC data block structure. In addition, a Merkle tree is employed to save the hash
function for every transaction.

Figure 2. The architecture proposed by Zhao et al. [14].

The latter architecture presents a reduced number of layers (i.e., three), but a high
number of registrations is observed in the BC data structure for the producer, supplier,
factor, delivery, shopping and customer, respectively.

Our review led us to point out some limitations of the existing introduced state-of-
the-art in the context of the smart manufacturing. These limitations concern mainly the
lack of security mechanisms ensuring a sufficient protection level for sensing and control
functions facing for example DoS (Denial of Service), DDoS (Distributed Denial of Service),
injection, XSS and brute force attacks. For instance, the availability security metric is not
preserved for [12] and the privacy security metric is not ensured for [12–14] as well.

Our aim is to propose a complete architecture based on a decentralized BC data structure
along with ML for securing smart manufacturing sensing and control functions. To the best of
our knowledge, this is the first time ML and BCT are suggested to reach this objective for an
IoT sensor access control system in the context of smart manufacturing applications.

3. The Proposed Architecture

The contribution presented in this paper consists of the extension of a previous
work [11], where an architecture to secure IoT applications was suggested, based on
five layers such as physical sensing, network/protocol, transport, application and data and
cloud services. This architecture exhibits the security threats and attacks against the IoT
network and proposes security solutions based on the classification of the proposed layers.

The extended architecture considers the integration of BC components to ensure data
integrity related to the sensors access control system. As shown Figure 3, this extended
architecture contains five layers including a physical sensing layer, protocol network layer,
BC tools and transport layer, application layer, ML, BC data structure and cloud service
layer. The different layers are discussed hereinafter.
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Figure 3. The proposed secured IIoT architecture, considering BCT and ML components.

3.1. Physical Sensing Layer

The physical sensing layer contains physical devices such as sensors, a wireless sensor
network (WSN), a wireless body area network (WBAN), QRCode and RFID components.
The security threats related to the physical layer are eavesdropping, cyber-physical attacks,
jamming, RFID and spoofing. Authentication, Faraday cage and PRESENT are the effective
security solution to preserve IIoT networks from physical sensing threats.

In the proposed architecture, we have classified the common attacks (in the right side)
in the IIoT network according to the corresponding layer. For example, the spoofing attack
could target a sensor in the physical layer. On the other hand, the security solutions are
classified according to the corresponding layer. For instance, the authentication mechanism
is a solution against a spoofing attack.

3.2. Network and Protocol Layer

The network and protocol layer supports most of the communication protocols used
by IIoT networks such as Bluetooth Low-Energy (BLE), Ethernet, Long-Term Evolution
(LTE), LoRA (Long Range), Near Field Communication (NFC), WiFi, Bluetooth, Zigbee,
DNP3 ModBus, and GSM/UMTS. LoRa is an efficient energy radio communication system
effective in IoT configurations. The security threats and attacks toward the network and
protocol layer are DDoS, privacy tracking, MitM and bluebugging. Therefore, Rivest–
Shamir–Adleman (RSA), triple data encryption standard (3DES), digital signature algorithm
(DSA) and elliptic curve Diffie–Hellman (ECDH) are the most important security solutions
that could be implemented to disable the security threats related to the network and
protocol layer.

3.3. Blockchain Tools and Transport Layer

This layer integrates on the one hand the BC tools and the transport layer on the other
hand. The latter incorporates common transport protocols such as TCP/IP and UDP/IP and
TLS/SSL protocols. A lightweight BCT sub-layer equivalent to the Hyperledger Composer
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component is added to verify and control the access to assets by the legitimate owner.
Digital signature, Hash function, and cryptography algorithms are added to the BC tools
and transport layer for enforcing an access control verification and validation process. In
addition, in order to prove the identity of the sender, a digital signature (i.e., message
digest or hash value) is generated by the sender private key and added to the sender
authentication request to the desired sensor. Likewise, a digital signature is proposed at
the level of the BC tools and transport layer to ensure data integrity and nonrepudiation.

3.4. Application Layer

The application layer covers the application protocols used in the IIoT context such
as websockets, Message Queuing Telemetry Transport (MQTT), Constrained Application
Protocol (CoAP), Hypertext Transfer Protocol (HTTP) and Secured Message Queuing
Telemetry Transport (SMQTT). Mirai malware, IRCTelenet, Injection, DoS, DDoS and
buffer overflow are the main threats regarding the application layer. Advanced encryption
standard (AES), RSA, Attribute-Based Encryption (ABE) and input validation are the key
security solutions to tackle the application layer threats.

3.5. Advanced Service Layer

Finally, the upper layer of our architecture, named the advanced service layer including
ML, BC data and cloud services, is composed of the ML algorithms, the BC structure and
the IIoT business clouds services. The BC structure is equivalent to Hyperledger Fabric and
is used to save the access control information related to all assets in the IIoT networks for
new creation. A new block is created for a new device or a change of the owner device or
any changes regarding asset authorization by the legitimate owner.

Smart contract is defined as a finite number of statements with logical condition. Once
the predefined conditions are fulfilled specified actions have to take place. In the literature,
several works consider smart contract in an access control system for Internet service
providing [36], IoT applications [37], and energy systems [38], respectively. Our system
is based on a smart contract to ensure the users authentication process to sensors and to
identify any malicious usage by reporting any violations into a database in the context of
smart manufacturing. The advantage of the proposed solution, beside the usage of BCT,
is the employment of an authentication mechanism that has a role to save all information
and report any violations. Nonetheless, the solution applies a classical smart contract
database and associated functions for authentication control (for example, canRead() and
authenticated()) to report any violations that can be the object of a brute force or/and DDoS
attack. The solution can be enhanced with an ML-based framework to prevent and detect a
brute force attack and DDoS attack as well.

A sample of a smart contract data structure for sensor access control is presented
in Figure 4 in which a sensor structure is composed of SensorID (defined through a Mac
Address format), OwnerID (defined as the identification of the owner), AuthenticationPwd
(i.e., the Hash of the user password is stored in the BC), SensorStatus (defined as the
status of the sensor with two values: active or not active), SensorValue (used to save the
last sensor value), AuthorizedPerson (used to save the authorized persons to manipulate
the sensor with a limit of 10), and the CommandLocation structure used to detect a DDoS
attack involving CommandName, LocationForSameCommand and CommandTimeStamp. A first
rule stating that once the same CommandName is launched from three different locations
(i.e., LocationForSameCommand) in a short period of time (according to CommandTimeStamp),
then a DDoS attack is defined. A second rule statement is defined when three wrong
consecutives userpwd in a short period of time specified in CommandTimeStamp happens,
which is then considered as a brute force attack.
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Figure 4. Smart contract sample data structure for sensor access control.

As depicted Figure 5, a smart contract code for the authentication process is exhibited
to illustrate the condition for a successful authentication and a failed one.

Figure 5. Smart contract code for authentication process.

In the current work, BC is applied to save the relevant information for sensor access
control in the IIoT context. Once the sensor access control information is saved in the BC,
we guarantee the data confidentiality, integrity and traceability thanks to the BCT inherent
features. On the other hand, ML is used to detect any attack from a traffic packet crossing
the IIoT network based on the information stored in the BC to prevent any sensor access
control violations. In order to understand the architecture design of the paper, we suppose a
coming packet where a user is asking for an authentication on a sensor in the IIoT network.
We suppose that we have a client/server application to authorize or deny sensor access.
Since all the sensors information related to the authentication process are saved on the BC,
a client request is sent from the sensor (physical layer) to the BC (data and cloud layer)
via a communication protocol (for instance, LoRA in network/protocol layer) passing
through a TCP/IP connection (in the BC tools and transport layer, which is responsible
for adding a digital signature to the client request) to a web application running under
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HTTP protocol (in the application layer) containing the sensor identification (sensorID),
user identification (userID) and user password (userpwd). Once the application server
received the client request, it will check the correctness of the received information with the
BC data structure (i.e., the sent sensorID should match the sensorID in the blockchain, the
userID needs to match a value in the AuthorizedPerson table and userpwd should match
AuthenticationPwd). In the case where all sent information are correct, the application
server will authorize the client access to the sensor. According to Figure 5, in the case
where the sent password (i.e., userpwd) is different from the stored password in the
BC (i.e., AuthenticationPwd), the smart contract algorithm will increment the variable
Numberoftentativewithwrongpassword related to the sensorID and the application server
will deny the access to the sensor. The latter variable will serve as a feature in the ML
process to detect a brute force attack. Moreover, CommandLocation in the BC structure
will serve as a feature in the ML process to detect a DDoS attack.

By employing BCT components such as digital signature, Hash function and cryp-
tography algorithms in the IIoT networks, various attacks such as eavesdropping, MitM,
poisoning and evasion attacks can be de-activated by exploring inherited features pro-
vided by the BCT components such as the tractability and integrity. In addition, the Hash
function is used to link between the BC nodes to ensure a high traceability when a new
block is added at the level of the advanced service layer, so that injection attacks cannot be
performed or may be reduced by intruders. Finally, a digital signature based on a message
digest can provide authenticity, nonrepudiation and message integrity.

4. Comparison of Our Design Approach with the Existing Literature: Potential Benefits

In this section, a comparison study is performed among the architectures based on
BCT and ML in the literature and the one proposed in this paper from a design perspective.
Table 2 summarizes this comparison.

Table 2. Proposed architecture based on BCT/ML vs. literature: a comparison of design approaches.

Architecture Description Smart Contract Data Structure Design Approach: Discussion

Latif et al. [8]

The authors propose an IIoT
system architecture based on
four layers such as physical,
network, middleware and

application layers.

Not applicable.

Authors suggest a solution based on
ML to detect DDoS, malware, and
advanced persistent threats in the

edge and fog computing. The
architecture can be enforced with BC
to provide traceability and integrity.

Gao et al. [12]
The GridMonitoring system is
based on four layers for smart

grid network applications.

Smart contract is employed for
the recording of the violations
on the smart meter, data on the

smart grid network and the
state of the smart meter.

The benefit of the proposed solution
beside the BCT is the usage of an

authentication mechanism and data
center to save all information to

report any violations. The solution
employed a classical smart contract

database to report any violations that
can be the object of an injection attack.
The solution can be enhanced with an

ML-based solution to prevent
injection and XSS attacks.

Dai et al. [13]

The architecture is composed
of perception, communication,

Blockchain-composite and
industrial applications layers.

The survey paper exhibits the
life cycle of smart contracts

including creation, deployment,
execution and completion.

The architecture is highly structured.
BC-composite layer includes data,
consensus and network sub-layers.
Merging data and network in one
layer can lead to serious privacy

violations in case of MitM attacks.
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Table 2. Cont.

Architecture Description Smart Contract Data Structure Design Approach: Discussion

Zhao et al. [14]

The proposed architecture is
based on three layers

incorporating BC, data and
governance layers.

A smart contract is used for
both client and

resource registrations.

The number of layers is optimized.
The solution lacks a cloud data

storage to recover data from
disaster situations.

Shahbazi et al. [15]

The suggested architecture is
based on a smart contract

between manufacturer and
supplier for quality control

applications in
smart manufacturing.

The proposed BC data structure
is used to store manufacturer

and supplier data.

The proposed architecture is
composed of three layers such as

sensor layer, smart contract layer and
distributed ledger layer.

Zaidi et al. [37]

Authors propose an access
control contract to control the

request sent by subjects to
IoT objects.

Authors propose three types
such as object attribute

management contract, subject
attribute management contract

and policy
management contract.

ML is not suggested in the
proposed architecture.

Our architecture

The architecture is based on
five layers including physical
sensing, network/protocols,

Transport-BC, application and
advanced service layers.

A smart contract data structure
and algorithm are proposed for

sensor access control system,
DDoS and brute force

attacks prediction.

The BC components are dispatched
into two layers such as BC tools and
transport layer and advanced service
layer. On the one hand, BC tools and

transport layer provides data
integrity. On the other hand,
advanced service layer offers

data traceability.

The conclusion of this comparison is that our design approach outperforms other
architectures in terms of decentralized architecture and the capability to detect the most
dangerous attacks in IIoT networks such as DDoS, injection, brute force and XSS attacks by
proposing a smart contract data structure and algorithm for sensor access control system.
In addition, in our architecture, the BC tools and transport layer provides data integrity by
offering a digital signature. Furthermore, the advanced service layer provides traceability
by adding pertinent authentication data inside the BC.

Table 3 presents the comparison between our system and similar ones in the literature
in terms of security metrics such as integrity, availability, immutability, confidentiality
and privacy.

Table 3. Comparison between our system and similar one in terms of security metrics.

Security
Metric GridMonitoring [12] Zhao [14] BSeIn [27] ABAC [37] Our Proposal

Integrity 3 3 × 3 3

Availability 3 × × 3 3

Immutability 3 3 3 3 3

Confidentiality 3 3 3 3 3

Privacy × × 3 3 3

In our model, integrity is considered in the BC tools and transport layer through a
digital signature generated by the sender private key and added to the sender authentica-
tion request to the desired sensor. Availability and immutability are granted thanks to the
inherent features of BCT. Confidentiality and privacy is preserved by using a symmetric
key encryption for all messages transferred across the IIoT network.

The next section describes a two-step experimental study that is aimed to illustrate
these potential benefits.
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5. Validation and Data Analysis with ML
5.1. Selected Attacks

To test and validate our contribution, we selected and tested several types of attacks on
IIoT networks. For that purpose, we based our selection on the work of Ferag et al. [39] who
presented the major attacks on a BC/ML-based application for IoT networks. Therefore,
Table 4 exhibits the set of selected attacks, which are structured with respect to the concerned
layers of our architecture.

Table 4. Layer-based attacks in IIoT networks.

Layer Attacks Description

ML, Data and
cloud services

Poisoning
Attack against ML via injecting

adversarial samples to the training data
in order to distort the model prediction

Evasion Samples are changed at the inferring
phase to evade detection

Impersonate
Prefers to imitate data samples from
victims, in particular for application

scenarios related to image recognition

Application

Injection Untrusted data that are sent to an
interpreter or database

Brute force
Buffer overflow

XSS

An attempt to guess a password via
sending various passwords

This attack is targeting SCADA system
and tries to overwrite a buffer to

disrupt controller activity
A kind of injection attack sent via a

browser script

Transport Flooding
Repeating the request of a new

connection until the IIoT system
reaches maximum level

De-synchronization Disruption of an existing connection

Network/protocol

DoS Attempt to stop or reduce activity
of an IIoT

DDoS A distributed DoS attack from
several location

MitM Violating data confidentiality or
integrity during transfer

HELLO flood Uses HELLO packets as weapon to
launch the attack on IIoT system

Physical sensing

Eavesdropping Deducing data sent by IIoT devices
across network

RFID tracking
Jamming

Modifying a content of a tag or trying
to disable it

Creating radio interference and
exhaustion on IIoT devices

The upper layer concerns various attacks such as poisoning, evasion, impersonate
and inversion attacks. The application layer incorporates the most important attacks
against IIoT applications such as injection, brute force, buffer overflow and XSS attacks.
Flooding and desynchronization are examples of transport layer attacks. Attacks against
the network/protocol layer are considered as the bulky portion of attacks by including DoS,
DDoS, MitM, HELLO flood and Sybil attacks. Finally, eavesdropping and RFID tracking
jamming belong to physical sensing layer attacks.
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5.2. First Scenario: Experimentation without BCT

We experimented with ML classifiers in order to enforce the proposed architecture by
detecting attacks as a provided functionality by the upper advanced service layer without
considering BCT in the first scenario. The performance metrics that were used are: accuracy,
precision, sensitivity and MCC performed under a WEKA data-mining environment.

WEKA is an open source environment used by researchers worldwide to manipulate
various kinds of ML algorithms such as classification, regression and clustering. In this
work, WEKA 3.8 under Windows 64 bits is used to perform the experiments.

The TON_IoT dataset is used for attack detection in the context of IIoT. It is composed
of 35975 instances, 127 attributes and considers attacks such as DoS, DDoS, injection, MitM,
brute force, XSS and scanning attacks [40], as presented in Table 5. In this experiment, the
employed dataset is generated by a testbed based on a virtual machine to represent the IoT
networks and a KALI offensive system to represent hacker attacks. To gather the packet
traveling inside the network to identify whether it is a normal activity or an attack, the
Netsniff-ng and Zeek (Bro) tools are used. The experiment results have been carried out on
a hardware characterized by a processor Intel Core i7 2.8 GHz and a 16 Go RAM.

The choice of the TON-IoT dataset is motived by grouping two mains features such
as representing an IoT network by containing packet information traffic and gathering
the most common attacks targeting manufacturing environment by simulating a hacker
attacker with a KALI offensive system.

The TON_IoT dataset attributes are grouped into six categories such as processor
information, process information, packet information, memory information, logical disk
information and type and label for attack detection attributes:

• The attributes related to processor information include Processor_pct_User Time,
Processor_pct_Processor_Time, Processor_pct_Privileged_Time and so on.

• The process information attributes cover Process_IORead_Operations_sec, Process_IO
_WriteOperations_sec, Process_IO_Write_Bytes_sec and so on.

• The packet information attributes involve Network_I(IntelR_82574L_GNC)Packets
ReceivedUnknown, Network_I(IntelR_82574L_GNC, Packets Outbound Errors, Net-
work_I(Intel R _82574L_GNC), PacketsSentUnicastsec and so on.

• Memory information attributes are (but are not limited to) MemoryAvailable Bytes,
Memory Cache Bytes and MemoryPage Faultssec.

• Logical disk information attributes contain LogicalDisk(_Total)pct_DiskReadTime,
LogicalDisk(_Total)DiskWritessec and LogicalDisk(_Total)CurrentDiskQueue Length,

In our approach, a supervised ML based on attribute type and label to classify the
various attacks was defined, according to Table 5.

During the experimentation, the training and testing phases while using a training
set were performed. To illustrate the whole life cycle performed to carry out the predictive
ML metrics, Table 6 highlights the time to build a model (in second) and the time to test a
model on the training data (in second) for the various classifiers to classify the different
attacks in an IIoT network.

On the one hand, as provided in Table 6, the ANN classifier requires the highest time
for the training phase to build the ML model. However, NB takes less time to build the
model. On the other hand, DT classifier presents the minimum time to test the model and
NB presents the maximum testing time.

Figure 6 represents the partition of the normal activity and attacks among DoS, DDoS,
injection, MitM, brute force, XSS and scanning attacks during training and testing phases.

To assess the performance of the model, metrics have to be defined without considering
the data provided by the BC structure in this scenario. Indeed, the evaluation of the
performance of a model informs us about the effectiveness of the predictions of a dataset
by the trained model. For that purpose, a confusion matrix of a binary classification
assessment is used. As shown in Table 7, the confusion matrix is a table showing the
number of instances belonging to each of four categories (represented by TP, FP, FN and
TN). The ML performance metrics used in this study are as follows:
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• Accuracy defined as:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
× 100 (1)

• Precision defined as:

Precision =
TP

(TP + FP)
× 100 (2)

• Sensitivity defined as the proportion of actual positives which are predicted positive:

Sensitivity =
TP

(TP + FN)
× 100 (3)

• Matthews Correlation Coefficient (MCC): defines the correlation between the predicted
value and the observed one [4]. MCC measures the quality of a classifier to perform a
classification task.

MCC =
TP × TN − FP × FN

2
√
(TP + TN)× (TP + FN)× (TN + FP)× (FP + FN)

× 100 (4)

Table 5. Type and label attributes for attack detection.

Type Label Description

0 normal Normal activity

1 ddos Distributed denial of service attack

2 dos Denial of service attack

3 injection Injection attack

4 mitm Man in the middle attack

5 password Brute force attack

6 xss Cross-site scripting attack

7 scanning Port scanning attack

Table 6. Required time for training and testing phases for the studied classifiers.

ANN DT SVM RF NB AdaBoost

Time to build the model (s) 3232.14 30.59 2.31 13.6 0.55 3.81
Time to test model on training data (s) 2.72 0.12 0.22 0.42 3.06 0.55

The different required steps to perform the various ML metrics are depicted in Figure 7.
Therefore, the life cycle of ML evaluation metrics involves six steps: dataset selection, pre-
processing, classifier model selection, model training, test phase and ML evaluation metrics.
In the pre-processing step, a correlation-based feature selection (CFS) is employed with the
best first search approach. Indeed, the CFS algorithm starts with an empty node and can
go up to five nodes. In addition, subsets are evaluated with 10-fold cross-validation on the
training dataset.

For instance, the different steps needed for simulation experiments to carry out predic-
tive accuracy for the ANN classifier are defined as follows:

1. Upload the TON_IoT dataset.
2. Data pre-processing (a CFS is selected for the attribute evaluator and best first is

selected for the search method).
3. Select the classifier type and configure the classifier parameters.
4. Model training.
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5. Test phase and select the test options (cross-validation = 10-fold).
6. Run the simulation to evaluate predictive accuracy.

The parameters set on the WEKA environment for the different used classifiers in the
experiments are the following.

• The name of the ANN classifier in the WEKA environment is called multilayer per-
ceptron: a classifier using the backpropagation technique to classify instances. In our
experiments, the multilayer perceptron classifier parameters were set as follows: Multi-
layerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a. Here, the LearningRate (the
learning rate for weight updates) is equal to 0.3, Momentum = 0.2, TrainingTime = 500,
Validation threshold = 20, HiddenLayer (to define the hidden layers of the neural net-
work) equal to a (attributes + classes)

• Regarding the decision tree classifier under the WEKA environment, REPTree classifier
was selected and defined as a fast decision tree learner with the following setting:
REPTree -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0. Here, numFolds (the specified number of
folds of data used for pruning the decision tree) equals 3, minNum (minimum number
of instances per leaf) equals 2 and minVarianceProp (the minimum proportion of the
variance on all the data that need to be present at a node) equals 0.001.

• In the WEKA environment, the SVM classifier is called SMO and it implements John
Platt’s sequential minimal optimization algorithm for training a support vector clas-
sifier. For SMO, the following options are active: SMO -C 1.0 -L 0.001 -P 1.0E-12 -N
0 -V -1 -W 1 -K “weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007”
-calibrator “weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4”.
Here, epsilon (the epsilon for round-off error) is set to 1.0E-12, SVM kernel (i.e., polyno-
mial kernel) is set to -K “weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C
250007” and calibrator (the calibration method to use) is set to “weka.classifiers.functions.
Logistic -R 1.0E-8 -M -1 -num-decimal-places 4”.

• The Random Forest classifier under WEKA was selected, which is defined as a class
for constructing a forest of random trees with the following setting: RandomForest -P
100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1, where bagSizePercent (size of each
bag, as a percentage of the training set size) equals 100, numIterations (the number of
trees in the random forest) equals 100 and maxDepth (the maximum depth of the tree,
0 for unlimited) is equal to 0.

• Naïve Bayes classifier, a statistical classifier, has been adopted. It assumes that the
values of attributes in the classes are independent. This assumption is called class
conditional independence and it is based on Bayes’ theorem. Under WEKA, the NB
classifier is called Naive Bayes using estimator classes. Therefore, the Naive Bayes
parameters were set as follows: useKernelEstimator (use a kernel estimator for numeric
attributes rather than a normal distribution) is set to false, numDecimalPlaces (the
number of decimal places to be used for the output of numbers in the model) is set to
2, and batchSize (the preferred number of instances to process if batch prediction is
being performed) is set to 100.

• Finally, AdaBoost classifier is used for comparison purposes. It is defined as an adap-
tive boosting algorithm based on minimizing the exponential loss function. Therefore,
the AdaBoost parameters in WEKA were set as follows: AdaBoostM1 -P 100 -S 1 -I
10 -W weka.classifiers.trees.DecisionStump, where the base classifier to be used is
DecisionStump and batchSize is set to 100.

Figure 8 represents the comparison of the Accuracy of studied classifiers performed
under a WEKA data-mining environment.
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Figure 6. Dataset instances repartition used during training and test phases.

Table 7. Confusion matrix.

Confusion Matrix
Target

Normal Attack

Model
Normal

True Positive False Positive
(TP) (FP)

Attack
False Negative True Negative

(FN) (TN)

Figure 7. ML metrics evaluation life cycle.

Figure 8. Accuracy percentage for studied classifiers.
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As shown in Figure 8, the accuracy percentage is equal to 99.97%, 99.96%, 99.95%,
99.76% and 78.1% for artificial neural network (ANN), DT, SVM, RF and NB classifiers.
ANN classifier outperforms Decision Tree, SVM, Random Forest and Naive Bayes classifiers
in terms of accuracy percentage.

Figure 9 presents the results obtained for the second and third metrics (Precision
and Sensitivity) for the studied classifiers, considering the number of TP and FP. One can
note that ANN, DT and SVM present the best performance in terms of TP, precision and
sensitivity metrics. NB classifier shows the worst performance in terms of FP, precision and
sensitivity metrics.

Table 7 contains the fourth metrics (MCC) for the studied classifiers over the different
classes. Tests shows that the ANN, DT and SVM classifiers provide the best quality among
the studied classifiers regarding MCC.

According to Table 8, NB presents the worst MCC value to classify MitM and Scanning
attacks with a percentage of 11.8% and 25.1%, respectively.

5.3. Second Scenario: Experimentation with BCT

Several research works consider both BC and ML-based solutions to protect their
network against security attacks. For instance, the authors in [41] suggested classifying
an attack on BC with the deep learning (DL) approach based on historical security data,
SHA256 encryption to hash public key and a secret key to sign transaction. The authors
in [42] proposed AES encryption to protect IoT-generated data and a BC-based solution to
ensure the dataset and ML algorithms integrity for e-health applications. Furthermore, a
DL approach was suggested by the authors in [43] to detect security attacks for Ethereum
classic network-based BC. Likewise, the authors in [44] proposed the usage of BC for
collaborated federated learning (CFL) in order to preserve the privacy of data edge devices.
Indeed, a CFL is defined as a distributed implementation of centralized ML in which each
edge device trains their local model and then sends their model parameters to the central
controller in order to develop an aggregated ML model.

Figure 9. Average classifier measured metrics.

In this section, a framework based on a hybrid solution in which a BC structure based
on smart contract is used to store sensor access control information and an ML classifier is
employed to detect DDoS, DoS, injection, MitM, brute force, XSS and scanning attacks.

As depicted Figure 10, a BC access control data structure is now used to collect all
assets needed for identity authentication, authorized persons to use sensors, location for
the same command to detect DDoS attacks and number of tentative providing a wrong
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password to detect brute forcing attacks. On the one hand, by considering a BC data
structure and thanks to the inherent features of BCT such as immutability and transparency,
the number of injection and XSS attacks could be reduced considerably. On the other hand,
the data stored into the BC can be used as an input to create the dataset.

Table 8. MCC value per class for the studied classifiers related to the first scenario.

% Normal
Activity DDoS DoS Injection MitM Brute

Force XSS Scanning

ANN 100 100 99.3 100 100 100 100 99.7
DT 99.9 100 99.9 99.4 100 100 100 99.8

SVM 100 100 100 100 100 99.8 100 100
RF 99.5 99.7 99.3 99.6 57.7 99.8 99.4 99
NB 61.9 95.8 56.6 82.4 11.8 98.2 87.8 25.1

To validate our model in this context, a five-step-based scenario is proposed as follows:

1. Data sensing gathered from physical layer (including read/write of new sensor value
and authentication request).

2. Data control and validation performed by the access control system in the transport
layer level (i.e., the client process will prepare the sensorID, userID and userpwd to
be sent to server process for an authentication request).

3. BC access control data structure will be used to save relevant data related to sensor
authentication process (i.e., including authentication identity, authorized persons,
location for the same command and the number of tentative with wrong password.
All collected data are used to create a smart contract describing the sensor information
asset performed by the application layer to provide sensor authentication service.

4. ML tools and optimization technique. This process is carried out by the advanced ser-
vice layer based on the information provided by the BC access control data structure
to detect DDoS and brute force attacks by using the gathered data (i.e., LocationFor-
SameCommand and Numberoftentativewithwrongpassword will serve as features).
The optimization technique is employed through the usage of the SMO classifier (a
kind of SVM classifier) by implementing John Platt’s sequential minimal optimization
algorithm for training a support vector classifier.

5. Data analysis and performance metrics: this step is required to determine the per-
formance evaluation of the proposed model in terms of the four introduced metrics
(accuracy, precision, sensitivity and MCC).

In the second scenario, the same classification process as in the first scenario (as
described in Figure 7) was selected, considering extra features (authenticationIdentity,
AuthorizedPersons, Numberoftentativewithwrongpassword and CommandLocation) pro-
vided by the smart contract data structure.

Figure 11 describes the data instance repartition for the various studied attacks. The
BC access control data structure is considered in terms of normal activity and the detected
attacks in the IIoT networks. Based on the BC access control data structure, the results
illustrate the ability of the system to detect brute force attacks by counting the number of
times tentatively guessing a password that exceeds a number of times (this value has been
set to five in our experiments). Several locations for the same command are considered as a
DDoS attack against an IIoT network (i.e., greater or equal to two locations).

By considering BC for sensor access control, DDoS, injection, brute force and XSS
attacks are reduced considerably: as depicted in Figure 11, the DDoS, Brute force, injection
and XSS attacks are reduced by a factor of 34.98%, 25.93%, 37.90% and 46.57%, respectively.
Brute force attack cannot be detected for 100% due to the wrong number of times tentatively
entering a password performed by an authorized user. In addition, DDoS could not be
detected due to the huge variant of this kind of attack.
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Figure 10. Advanced scenario by considering BC data structure and ML tools.

Table 9 contains the results regarding the MCC metric for the studied classifiers over
the different classes based on a BC data structure.

Figure 11. Data instance repartition with considering BC data structure.

According to Table 9, an improvement in terms of MCC performance metric to classify
normal activity, DDoS, injection, brute force and XSS attacks for DT, SVM, RF and NB
classifiers can be identified. Moreover, an improvement of 0.1% and 1.8% is observed
regarding RF and NB to classify DDoS attacks. Likewise, an enhancement of 0.2%, 0.1%
and 1.8% is observed regarding DT, RF and NB to classify injection attack. Furthermore,
the MCC value is increased by 0.1%, 0.2% and 1.3% for SVM, RF and NB to classify brute
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force attack. Finally, an improvement of 0.1% and 2.6% is observed regarding RF and NB to
classify XSS attacks.

Table 9. MCC value per class for the studied classifiers related to the second scenario.

% Normal
Activity DDoS DoS Injection MitM Brute

Force XSS Scanning

ANN 100 100 99.3 100 100 100 100 99.7
DT 99.9 100 99.9 99.6 100 100 100 99.8

SVM 100 100 100 100 100 99.9 100 100
RF 99.6 99.8 99.3 99.7 57.7 100 99.7 99
NB 63.2 97.6 56.6 85.4 11.8 98.5 90.4 25.1

6. Discussion

In this section, we discuss the results obtained. Firstly, the first scenario revealed
that the ANN classifier outperforms Decision Tree, SVM, Random Forest and Naive Bayes
classifiers in terms of accuracy percentage. Additionally, ANN, DT and SVM presented
the best performance in terms of TP, precision and sensitivity metrics. However, the NB
classifier showed the worst performance in terms of FP, precision and sensitivity metrics.

Secondly, regarding the second scenario based on the provided BC access control data
structure, the use of the proposed architecture led to an increase in the ML performance
metrics in terms of MCC to detect DDoS, injection, brute force and XSS attacks thanks
to extra features provided by the smart contract. The best results were given by the NB
classifier to classify an XSS attack while the worst results were provided by RF and SVM
classifiers to classify DDoS, injection and brute force attacks, respectively.

Table 10 presents an ML metrics comparison for the studied classifiers versus a similar
study in the literature [15] in terms of time for training (s), time for prediction (s) and
accuracy. On the one hand, ANN is compared to the K-nearest neighbors (KNN) classifier,
NB is compared to our work and in [15]. On the other hand, two classifiers based on
ensemble model techniques such as AdaBoost and XGBoost [15] are compared as well.
The XGBoost classifier is based on a genetic algorithm that is used essentially to find the
differentiable loss function concern.

Table 10. ML metrics comparison for various classifiers.

Metrics ANN KNN [15] NB NB [15] AdaBoost XGBoost [15]

Time for
training (s) 3232.14 1.119 0.55 1.115 3.81 1.412

Time for
prediction (s) 2.72 1.482 3.06 1.112 0.55 1.118

Accuracy 99.97 91.73 78.1 68.5 81.943 95.56

As shown from Table 10, ANN outperforms the KNN [15] in terms of accuracy. How-
ever, it requires more time for training and prediction. The NB classifier in [15] presents an
accuracy of 68.5% compared to 78.1% in our study. In addition, XGBoost [15] outperforms
the AdaBoost classifier in terms of accuracy due to its capability to include an arbitrary loss
function optimization. Nonetheless, XGBoost requires more time for prediction compared
to the AdaBoost classifier.

Some limitations of our work can be found. First of all, the number of experiments
must be increased to enable future complete statistical studies; this paper contains only
preliminary works that can only illustrate, at the writing of the paper, the potential benefits
of the proposed architecture to mitigate various cyber-attacks in smart manufacturing
applications.

Several prospects can be identified. First, a more complete experimental protocol
must be led to statistically prove the performance of our architecture, which was only
illustrated in this paper on a limited set of experiments. Another prospect concerns the
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implementation of an optimization technique such as ant colony optimization, genetic
algorithm, heuristic and particle swarm optimization to improve and refine the ML layout
analysis. Optimization technique can be a potential solution to enhance the performance
metrics provided by the ML tools. For instance, the number of neurons as well as the
weight and bias in each neuron can play a crucial role in the performance evaluation of
the ANN classifier. Another prospect is related to the improvement of our framework
using an RL technique to detect new kinds of threats and attacks in the IIoT network.
Finally, our architecture can be augmented with new emerging technologies such as the
5G/6G communication system in the network/protocol layer supporting cloud radio access
network (CRAN) and fog radio access network (FRAN) architectures.

7. Conclusions

In this work, an IIoT architecture based on smart contract-based BCT and ML was
proposed for smart manufacturing applications. The architecture is composed of five layers
including sensing, network/protocol, transport enforced with BCT components, application
and advanced services (ML and BCT data and cloud services) layers. A comparative study
was carried out with contributions from the literature to position our approach in terms
of architectural design, smart contract data structure and application of smart contract
in the manufacturing field. To illustrate the potential benefits of our architecture, a data-
driven study based on the TON_IoT dataset was investigated. The performance metrics
of ML classifiers against common attacks in an industrial context were considered with
two scenarios. A first scenario considered a data-driven analysis without BC by taking
into account ML classifiers to classify the common attacks in IIoT in terms of accuracy,
precision, sensitivity and MCC metrics. A second scenario used an advanced framework
based on a BC smart contract data structure, smart contract code and rules for sensor access
control along with ML classifiers in the context of IIoT to detect DoS, DDoS, injection,
XSS, scanning and brute force attacks. It was demonstrated in our experiments that by
implementing a framework based on the second scenario, the number of DDoS, injection,
brute force and XSS attacks were reduced considerably. The DDoS, brute force, injection
and XSS attacks are reduced by a factor of 34.98%, 25.93%, 37.90% and 46.57%, respectively.
An improvement of 0.1% and 1.8% was also observed for the MCC metric regarding RF
and NB classifiers to classify DDoS attacks. Finally, the MCC value is increased by 0.1%,
0.2% and 1.3% for SVM, RF and NB classifiers to classify brute force attack.
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