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Abstract: There is a drive within the cosmetic industry towards the development of more sustainable
products, supported by consumer awareness of the environmental footprint. The cosmetic industry
is rising to meet consumer demand by following practices, such as the use of by-products from agro-
industrial waste. Quercus suber is a tree prevalent in the Mediterranean basin. The extraction of cork
is considered sustainable, as this process does not harm the tree, and the amount of cork produced
increases with the number of extractions. Beyond this, the cork industry produces by-products that
are used to sustain the industry itself, such as cork powder, which is reused for generating energy.
Additionally, cork and cork by-products contain bioactive compounds mainly with antioxidant
activity that can be of use to the cosmetic industry, such as for antiaging, anti-acne, anti-inflammatory,
and depigmenting cosmetic products. We provide the reader with an overview of the putative
cosmetic applications of cork and its by-products as well as of their bioactive compounds. It is
noteworthy that only a few cork-based cosmetic products have reached the market, namely antiaging
and exfoliant products. Clearly, the use of cork upcycled cosmetic ingredients will evolve in the
future considering the wide array of biological activities already reported.

Keywords: Quercus suber; cork; cosmetics; sustainability; by-products; circular beauty; upcycling

1. Introduction

For several years now, planet Earth has been facing a significant increase in human
activity, reaching worrying levels regarding the consumption of natural resources and
other environmental issues, such as climate change, pollution, destruction of forests, and
consequently, a decrease in biodiversity [1,2]. Sustainable development is defined by the
United Nations as meeting the needs of the present without compromising the ability of
future generations to meet their own needs, which is directly related to the preservation of
natural resources [1,3]. Many industries started to adopt this concept following the rising
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interest of consumers in eco-friendly natural products, and the cosmetic industry was no
exception [4–6]. Sustainability has been a challenge for this industry since formulating
products with new eco-friendly ingredients can lead to stability, aesthetics, and effectiveness
issues [7].

With the growing environmental concerns about climate change and sustainability,
consumers expect cosmetic products to contain ingredients of natural origin from sus-
tainable and renewable resources [8]. Thus, cosmetic industries have created innovative
green products and have increasingly focused on strategies to reduce their environmental
footprint using a life cycle assessment (LCA) [9]. The LCA is an approach that takes into
account the environmental impact, namely resources and emissions at all stages of the
production of a product [9]. The stages analyzed go from the sourcing of the raw materials
to a post-consumer phase, where recycling and waste disposal take place [9]. Also, the reuse
of by-products that are considered waste for the agronomic industry has gained increasing
attention from the cosmetic industry, adopting the concept of circular beauty [10]. The use
of these upcycled raw materials are one of the great pillars to reduce the environmental
impact [9,10].

2. Quercus suber and the Cork Industry

Quercus L. is a genus that belongs to the Fagaceae family and includes several species
of trees, around 450 different species scattered throughout the world [11,12]. This genus
can be divided into two subgenera: one composed of species that live in temperate regions
generally in the Northern Hemisphere, named Quercus, and another group that includes
trees typical from subtropical regions in Asia, mostly in the east and southeast, called
Cyclobalanopsis [13].

Quercus suber, the cork oak, is a slow-growing evergreen tree that can live up to
200 years or more and is native to Mediterranean countries, such as European-like Portugal,
Spain, France, Italy and North-African-like Tunisia, Algeria, and Morocco [14,15]. Q. suber
has a unique bark, thick and porous and with fissures, that protects the tree cells from
the aggressions of the outside environment, such as forest fires [16]. This bark, known as
cork, is exploited by humans without endangering the tree vitality since it has the ability to
regenerate as it is being harvested through the years [17]. Additionally, cork oak has the
capacity to prevent soil erosion and desertification, to regulate the hydrological cycle, and
to reduce CO2 emissions, protecting the biodiversity around it. For those reasons, this tree
is part of an agroforestry system called “montado” in Portugal and “dehesa” in Spain that
brings together forests, livestock, and agriculture [17–20].

Cork oak was highly used for its wood to build ships or manufacture tools, although
nowadays, the primary use of this tree is the extraction of cork, the common name given
to the cork oak outer bark that has outstanding properties, making it an important raw
material for numerous applications [12,16]. Cork is a light material, is impermeable and
compressible, is a good acoustic insulator, has low thermal conductivity, and has a high
capacity to absorb energy and to resist impact and friction [17]. Thus, the main applications
of cork are insulation, flooring, cork agglomerates and natural cork stoppers [21,22]. As
several studies have shown, cork is also a source of bioactive compounds [13,23–29].
Cork extracts revealed the presence of substances with biological activity that could be
incorporated in pharmaceutical and cosmetic formulations [4,13,27–36]. Therefore, we
can consider that cork is a renewable and sustainable resource, currently gaining more
interest as a raw material [7,9]. Nowadays, the cork industry is important in the economy of
countries, such as Portugal and Spain. Portugal detains about 55% of the world production
of cork [22]. The whole process begins with the first cork harvest. When the tree reaches
between 25 and 30 years, the process of extraction of cork starts [12,16,17,22]. The first
harvested cork is called “virgin cork”, has poor quality, and cracks easily; thus, it is not
used in most applications [16,37]. Then it takes 9 to 12 years to extract subsequent layers of
cork from the same tree; thus, the bark obtains the adequate thickness [16,37]. The second
extracted cork is called “first reproduction cork” and has better quality; however, it is used
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essentially to produce cork agglomerates [16,37]. Only in the third extraction, the “second
reproduction cork”, cork is used for its major purposes, such as to produce cork wine
stoppers [16,22,37]. To avoid any damage to the tree, cork stripping is only done manually
when the tree has perfect physiological conditions to remove the cork, being a seasonal
activity in the transition from spring to summer [17]. On the other hand, as can be seen, this
process is fully sustainable since the tree remains intact, and throughout each extraction it
produces more and more cork [19].

Subsequently, the cork industry produces a lot of waste to manufacture the final
products. However, this industry is sustainably developed since, for example, the cork
powder is used as a fuel in generators to produce heat and energy in the factories that
process cork [17,19,25,38]. Cork waste is often reused, and it is increasingly valued both
for the production of new materials and for incorporation in pharmaceutical and cosmetic
products since its chemical composition is being highly studied, revealing interest in
certain bioactive compounds that it presents [19,25]. Therefore, this industry presents high
ecological, economic, and social value; thus, cork oak forests and cork waste need to be
correctly managed to continue to be sustainable [17].

3. Cork By-Products and Applications

One of the main problems inherent in the cork industry is related to the amount of
waste that is generated by the processes of cork production and transformation, reaching
values close to 50,000 tons per year [4]. Therefore, it is important to overcome this situation
to reduce waste through its valorisation on many industrial applications. Figure 1 show
the main by-products of the cork industry.
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Figure 1. Main cork by-products.

In the production of cork disks and stoppers, some of these remnants are appropri-
ate to obtain agglomerates through the application of high pressure and temperature in
autoclaves [24]. Agglomerates, as the final product, keep some characteristics from the
natural cork, such as elevated resistance and low thermal, acoustic and vibrational conduc-
tivity [39]. As expanded agglomerates result from exposure to superheated steam without
using synthetic adhesives, this material is considered an environmentally sustainable
by-product [19,39].
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Accompanying industrial transformation processes, cork powder emerges from the
granulometric separation once these particles are not viable to produce agglomerates [25].
This by-product is considered the main waste, representing about 25% of the raw materials that
gather particles with dimensions lower than 0.25 mm [40]. Cork powder has a high heating
value which is commonly used as a combustion on boilers for energy production [24,41].
Furthermore, cork powder can also be used as a filling agent to improve the quality of
cork stoppers, incorporated in agglomerates and briquettes, on linoleum production, in
agriculture, in the fabrication of explosives, and as a source of relevant chemicals [4,41,42].
Recent studies point to the pertinent ability of cork waste to prepare biomass materials [43].
Activated carbon can be prepared from the chemical or physical activation of cork where
its adsorption properties are improved [44]. This transformation has proven to be effective
to control the atmospheric levels of CO2, storing carbon for long periods and reducing their
release to the atmosphere [45]. In addition, cork-based activated carbon has been shown
to be able to remove some pharmaceuticals from water, such as paracetamol, isoprofen,
or iopamidol, and is a relatively fast adsorber of methylene blue [46,47]. This biosorbent
has begun to gain some notoriety, constituting a sustainable alternative for contaminants
removal, including heavy metals, such as Cu (II), Zn (II), Cr (VI), and Ni (II), due to the low
costs, great efficacy, and environmental protection legislation [41,47,48].

Black condensate is another by-product that comes from the production of black ag-
glomerate in the insulation corkboard industry. These corkboards result from the treatment
of cork particles under elevated pressure and temperature conditions (250–500 ◦C) which
originates a dark liquid that works as an adhesive and vapours that condensate in autoclave
pipes, and black condensate that is removed as a pasty solid [24,49]. It is currently used to
produce energy from its combustion, although its hydrophobic character can be used as a
potential protective coating [49].

In one of the initial stages of cork stopper production, cork planks are boiled in water
to increase its elasticity and to remove impurities, where cooking wastewaters are obtained.
Usually, industries reuse these waters for several cycles resulting in a dark effluent known as
cork-boiling wastewaters, with a high content of water-soluble compounds [50]. Although
the composition of these waters is dependent on the type of cork and the number of boiling
cycles, the main components that are present include phenolic compounds, tannins, and
2,4,6-trichloroanisol without suberin [51]. This by-product needs a previous treatment
before disposal because it exceeds the legal limits of contaminants imposed for residual
wastewaters [50]. Therefore, several methodologies, essentially based on chemical, physical,
and even biological processes, have been tested over the years to decrease the level of
contaminants [50]. For cork industry applications, gamma radiation treatment values this
effluent by increasing the antioxidant potential of phenolic compounds whose recovery
can be beneficial to other industries [51].

4. Bioactive Compounds on Cork and Cork By-Products

The composition of cork includes a variety of compounds from different chemical fam-
ilies, namely terpenes, sterols, saccharides, suberin, lignin, and other phenolic compounds,
whose concentrations are dependent on several factors, such as climate, region, age, or the
part of the tree [23,52]. Cork extractives are constituted by compounds with low molecular
weight that are not connected to structural elements [33]. Aliphatic extractives, also known
as waxes, are originated using nonpolar solvents, such as hexane or dichloromethane, while
phenolic extractives are obtained from polar solvents, such as water or ethanol [53].

Suberin is the major component found on cork cell walls (30–50%), responsible for the
low permeability and elasticity of this material, working as a protective barrier from the
environment [54]. Cork suberin is a lipophilic polyester macromolecule, where monomers,
such as long-chain fatty components, glycerol, hydroxyfatty, and phenolic acids are con-
nected by ester groups [54–56]. The analysis of its monomeric fractions is possible thanks
to depolymerization methods, concluding that suberin is constituted by an aromatic and
an aliphatic domain. Among them, long-chain ω-hydroxyfatty acids and α,ω-dicarboxylic
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acids are the main aliphatic components, while ferulic acid is the principal aromatic compo-
nent [57]. Despite being normally discarded due to its poor quality, virgin cork usually has
more suberin than reproduction cork. In addition, cork powder is another rich source of
suberin that can be valued in new applications [58]. For example, the aliphatic components
from suberin are scarce in nature and can favour their industrial interest for the synthesis
of polymeric materials [56,59]. Suberin extracts also showed antimutagenic properties and
skin-firming properties [36] and acted in a desmutagenic manner [60].

Lignin is another hydrophobic polymer present on cork which works as the mechanical
support of cell walls, believed to be the principal aromatic fraction of cork [61,62]. Studies
indicate that lignin appears in the three layers from cork cell walls, although at different
concentrations [63]. Cork powder often contains greater amounts of lignin than the original
cork [64]. Additionally, lignin contains UV-absorbing properties which make it interesting
to incorporate in sunscreens [65].

The minor components, cellulose and hemicellulose, are hydrophilic polysaccharides
that confer structural rigidity to cork cells [66]. Even so, the bark of Q. suber L. is essentially
composed of the monomeric units of glucose, xylose, and arabinose, contrary to what
happens with other species [23].

Waxes include lipophilic, aliphatic, and aromatic compounds that along with suberin
contribute to cork impermeability [67]. Triterpenes are the most abundant compounds
found on waxes in addition to still having n-alkanes, n-alkanols and fatty acids [53]. Cerin
(1), friedelin (2), betulin (3), betulinic acid (4), and sterols are examples of triterpenes that
can be used as bioactive components (Figure 2) [68,69]. Dichloromethane cork extracts
have been found to have a high amount of friedelin (2), betulin (3), betulinic acid (4), and
β-amyrin (5), as well as sterols, such as sitost-4-en-3-one (6) (Figure 2) [28]. However, a
higher number of sterols can be obtained using supercritical CO2 as a solvent. Cork extrac-
tion using a dichloromethane/methanol mixture demonstrated that the most abundant
triterpenes on cork are cerin (1) and friedelin (2), while betulinic acid (4) and friedelin (2)
are the main components from cork powder and black condensate, respectively [59,67].
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Phenolic compounds are important secondary metabolites that present a wide range of
biological activities [70]. In fact, many epidemiological studies point to the health benefits
of fruit and vegetable intake, owing to the presence of many antioxidant phytochemi-
cals [71]. They represent the second most abundant group of organic compounds in the
plant kingdom produced as a response to the influence of biotic and abiotic factors and
whose main functions include support, hormonal regulation, seed gemination, protection
against pathogens, with herbivores and UV radiation also being involved in flavour, smell
and colour [72].

These compounds have at least one hydroxyl group attached to the aromatic ring with
great structural diversity ranging from simple to complex structures obtained through the
shikimate pathway [73]. Phenolics, also known as phenylpropanoids, can be classified
into essentially two large groups named as flavonoids and nonflavonoids. Chemically,
flavonoids have a fifteen-carbon backbone (C6-C3-C6) with two phenyl rings, A and
B, attached through a three-carbon chain that normally arises as a heterocyclic pyran
ring [74]. On the other hand, nonflavonoids encompass phenolic compounds, usually with
a relatively simpler structure than flavonoids, such as phenolic acids, coumarins, stilbenes,
hydrolysable, and condensed tannins and lignans [75].

The antioxidant, anti-inflammatory, antimicrobial, and anticancer properties of phe-
nolic compounds make them very attractive for pharmaceutical, cosmetic, or food appli-
cations [76]. Hence, the valuation of this raw material and its by-products increasingly
involves the identification of their phenolic composition [27].

Cork phenolics are obtained by polar solvent extraction, and even though its com-
position is variable within trees and geographic location, it essentially includes phenolic
acids and aldehydes, coumarins, flavonoids, and tannins [31]. Methanol/water mixtures
are the most frequently employed methods to extract cork phenolics, often followed by
an organic solvent [32,76]. The cork extracts can also be prepared through sequential
extraction with increasing polarity solvents [77]. In 2015, Bouras and co-workers reported a
microwave-assisted extraction method, using different proportions of water, methanol, and
ethanol, demonstrating that the use of these alcohols promotes a significant improvement
of polyphenol recovery. Among them, p-coumaric (7), syringic (8), and sinapic (9) acids are
the major compounds on bark extracts (Figure 3) [78]. In the same year, a new method for
the extraction of phenolic compounds from cork granulates using a mixture of water with
propylene glycol was reported [76,79].

Hydrolysable tannins and low molecular weight phenolic compounds are suggested
as the potential bioactive compounds from Quercus suber bark [27]. The most common
phenolic acids in cork are ellagic (10), protocatechuic (11), gallic (12), vanillic (13), ferulic
(14), and caffeic (15) acids, whereas phenolic aldehydes include vanillin (16), protocatechuic
aldehyde (17), and coniferyl aldehyde (18) (Figure 3) [80,81].

Tannins can be monomeric or polymeric and even condensed or hydrolysable, which
are related to bitterness and astringency of wines as a result of binding to salivary pro-
teins [82]. Several studies indicate that these phenolics, namely castalagin (19), grandinin
(20), vescalagin (21), and roburin (22) are capable of migrating from cork stoppers to wine
solutions after bottling and may interfere with its organoleptic properties, such as taste,
colour, or bitterness or participate on wine oxidation (Figure 4) [83–85].
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The first reported HPLC analysis of cork extract prepared with a methanol/water
mixture showed that the most abundant phenolic compounds are the phenolic acids,
ellagic (10), and protocatechuic (11) [32]. Aldehydes, such as protocatechuic aldehyde
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(17), coniferyl aldehyde (18), and vanillin (16) and coumarins, such as scopoletin (23) and
aesculetin (24), also appear, although in much smaller amounts (Figure 5) [24,32].
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Santos et al. prepared cork extracts by two distinct extraction routes using a mixture
of methanol 20% followed by diethyl ether fractionation and sequential extraction with
methanol and water and analysed the differences in the phenolics extracted according
to the solvent [80]. Thus, even though the aqueous extract had the higher phenol and
p-hydroxybenzoic acid (25) (Figure 3) contents, the amount of ellagic acid (10) was vestigial,
while some compounds, such as coumaric (7), vanillic (13), or ferulic (14) acids did not
appear [4].

The cork hydroglycolic extract prepared by Batista and co-workers was shown to be
mainly constituted by ellagic acid (10) and ellagitannins, such as castalagin (19), vescalagin
(21), and roburin (22), as well as protocatechuic acid (11) and gallic acid (12) [79].

In 2013, Santos and co-workers extended the identification of cork phenolics to extracts
prepared from cork powder and black condensate using methanol/water mixture (50%).
Ellagic acid (10), gallic acid (12), protocatechuic acid (11), quinic acid (26) (Figure 6), and
aesculetin (24) were present in all extracts. However, ferulic acid (14) only appears on
cork powder extract, while coumaric acid (7), vanillin (16), coniferyl aldehyde (18), and
p-hydroxyphenyllactic acid (27) (Figure 6) emerged on black condensate extract [24]. The
major compounds on cork extract were ellagic (10) and gallic (12) acids, while on cork
powder extract they were gallic acid (12) and aesculetin (24), and finally on black condensate
they were gallic acid (12), coniferyl aldehyde (18), and aesculetin (24).
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As mentioned before, cork-cooking wastewaters are also rich in phenolic acids, mostly
ellagic (10) followed by gallic (12), protocatechuic (11), and ferulic (14) [26,86].

Biological Activity of Cork Extracts and Cork By-Products

Cork and its by-products constitute a source of bioactive compounds with antioxidant
activity that can be of use to the cosmetic industry [87]. In the scientific literature, some
studies have already described the extraction of compounds from cork, cork acorns, and
cork by-products, such as cork powder, black condensate, and cork-cooking wastewater.
These extracts showed the presence of phenolic acids, such as ellagic (10), protocatechuic
(11), gallic (12), vanillic (13), ferulic (14), and caffeic (15) and ellagitannins with antioxidant
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and protective DNA activity as well as collagenase and elastase inhibitory activity that can
be interesting for antiaging cosmetics (Table 1) [4,79,88,89].

Table 1. Chemical composition and biological activity of cork extracts and cork by-products.

Extraction Solvent
and Source Material Composition Quantification Biological

Activity References

methanol/water
(80:20); diethylether

granulated cork from
Spain

Ellagic acid (10) 228.4

µg of compound/g
of dry cork

——– [32]

Protocatechuic acid (11) 48.8
Vanillic acid (13) 27.4
Gallic acid (12) 18.3
Scopoletin (23) 12.7
Vanillin (16) 16.1
Coniferaldehyde (18) 11.2
Protocatechuic aldehyde (17) 8.1
Caffeic acid (15) 12.1
Ferulic acid (14) 10.7
Aesculetin (24) 7.5
Sinapaldehyde 4.5

supercritical CO2

granulated cork

Friedelin (2) 30.6

mg of com-
pound/extract

——– [28]
Sitost-4-en-3-one (6) 22.5
β-Sitosterol 6.59
Betulinic acid (4) 4.93
Betulin (3) 3.13

dichloromethane

granulated cork

Friedelin (2) 30.2
mg of com-

pound/extract
——– [28]

Sitost-4-en-3-one (6) 4.1
Betulinic acid (4) 10.5
Betulin (3) 3.9

Protocatechuic aldehyde (17)
Vanillin (16)
Protocatechuic acid (11)
Gallic acid (12)
Conyferaldehyde (18)
Caffeic acid (15)
Ferulic acid (14)
Ellagic acid (10)
Ellagic acid-pentose
Ellagic acid-deoxyhexose

wine solution (12%
ethanol, 5.0 g/L

tartaric acid, pH = 3.2);
ethyl acetate

granulated cork

Ellagic acid-hexose

——– ——— [31,83,84]
Valoneic acid dilactone
HHDP-glucose
Valoneic acid
Dehydrated
tergallic-C-glucoside
HHDP-galloyl-glucose
Trigalloy-glucose
Di-HHDP-glucose
HHDP-digalloyl-glucose
Tetragalloyl-glucose
Castalagin (19)
Vescalagin (21)
Di-HHDP-galloyl-glucose
Trigalloyl-HHDP-glucose
Pentagalloyl-glucose
Mongolicain A and B
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Table 1. Cont.

Extraction Solvent
and Source

Material
Composition Quantification Biological Activity References

water;
water/ethanol

(50:50)

granulated cork

Castalagin (19) 46.9
mg of

compound/g
extract

Antioxidant activity
(DPPH (EC50) = 5.32 ± 0.45 µg of
extract/mL; ORAC = 2.11 ± 0.24

mgTeq/gextract)

[29]
Ellagic acid (10) 26.7
Vescalagin (21) 22.4
Gallic acid (12)

2.9

dichloromethane;
methanol/water

cork powder

Betulinic acid (4) 11719

mg of com-
pound/kg of
cork powder

——– [67]

Cerin (1) 2060
Friedelin (2) 2009
Ellagic acid (10) 1347
Betulin (3) 875
β-Sitosterol 254
Ursolic acid 104
Lupeol 60

subcritical water

granulated cork

Gallic acid (12) 4.9 ± 0.9 mg of
compound/g

extract)

Antioxidant activity
(EC50 = 0.25 mg extract/mg DPPH) [76]Ferulic acid (14) 0.6 ± 0.1

Caffeic acid (15) 0.5 ± 0.1

Ellagic acid (10) 6800–
8200

Antioxidant activity
(ORAC = 22,603 ± 2097 ymolET/L;

HORAC = 15,712 ± 1419
µmolEAC/L; HOSC = 22,678 ± 3225

pmolET/L; DPPH = 1.68 (IC50)
mL/L; O2

− = 11.08 (IC50) mL/L)
Antiaging activity: inhibition of

MMP-1, MMP-3, MMP-9 activity;
inhibition of ROS formation in
keratinocytes and fibroblasts.

Depigmenting activity: inhibition of
tyrosinase activity;

inhibition of melanin production in
melanocytes.

Anti-inflammatory activity:
inhibition of NO production;

reduction of IL-6, TNF-α, CCL5
levels;

reduction of the activation of NF-kB.
Inhibition of lipid accumulation in

keratinocytes (inhibition of SREBP-1
gene expression)

Roburin (22) and

Grandinin (20)

500–3200

water/propylene
glycol (40:60)

granulated cork

Castalagin (19) 1800–
2100

µg of
compound/g

of dry cork
[79]

Vescalagin (21)

800–1900

Protocatechuic acid (11)

100–130

Gallic acid (12 )

60–100

methanol/water
(80:20); diethyl

ether

granulated cork from
Portugal

Ellagic acid (10) 2031.5

mg of com-
pound/kg of

dry cork

Antioxidant activity
(DPPH (IC50) = 2.79 ± 0.15 µg of

extract/mL)
[80]

Caffeic acid (15) 57.6
Salicylic acid 32.7
Gallic acid (12) 30.6
Eriodictyol 27.4
Protocatechuic acid (11) 17.5
Vanillin (16) 14.3
Aesculetin (24) 4.9
Naringenin 2.6
Vanillic acid (13) Trace
p-coumaric acid (7) Trace
Ferulic acid (14) Trace
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Table 1. Cont.

Extraction Solvent
and Source

Material
Composition Quantification Biological Activity References

methanol

granulated cork from
Portugal

Ellagic acid (10) 1576.9

mg of com-
pound/kg of

dry cork

Antioxidant activity
(DPPH (IC50) = 3.58 ± 0.20 µg

of extract/mL)
[80]

Aesculetin (24) 106.7
Protocatechuic acid (11) 59.0
Gallic acid (12) 48.1
Vanillin (16) Trace
Vanillic acid (13) Trace
Quinic acid (26) Trace

water

granulated cork from
Portugal

Ellagic acid (10) 526.5

mg of com-
pound/kg of

dry cork

Antioxidant activity
(DPPH (IC50) = 5.84 ± 0.29 µg

of extract/mL)
[80]

Gallic acid (12) 241.6
Protocatechuic acid (11) 118.3
Caffeic acid (15) 12.9
p-hydroxybenzoic acid
(25) 1.0

p-hydroxyphenyllactic
acid (27) Trace

Ellagic acid (10) 1246.46 ± 0.18

of dry cork

[24]

Ellagic acid-pentoside 770.16 ± 0.15
Gallic acid (12) 736.48 ± 1.63
Aesculetin (24) 391.59 ± 1.10

methanol/water
(50:50)

granulated cork

Quinic acid (26) 372.86 ± 1.94
mg of com-
pound/kg

Antioxidant activity
(DPPH (IC50) = 4.77 ± 0.02 µg

of extract/mL)

Methyl gallate 251.43 ± 0.06
Brevifolin-carboxylic
acid 102.03 ± 0.08

Protocatechuic acid (11) 79.26 ± 0.10
Ferulic acid (14) Trace
Coniferyl aldehyde (18) Trace
p-hydroxyphenyllactic
acid (27) Trace

Valoneic acid dilactone 168.01 ± 0.70
Caffeic acid isoprenyl
ester 127.98 ± 0.28

Isorhamnetin-
rhamnoside Trace

Eriodictyol Trace
Isorhamnetin Trace

methanol/water
(50:50)

cork powder

(by-product)

Ellagic acid (10) 527.59 ± 1.70

mg of com-
pound/kg of

dry cork
powder

Antioxidant activity
(DPPH (IC50) = 3.33 ± 0.02 µg

of extract/mL)
[24]

Gallic acid (12) 263.04 ± 0.52
Aesculetin (24) 176.80 ± 0.60
Quinic acid (26) 137.02 ± 0.50
Methyl gallate 96.93 ± 0.56
Ellagic acid-pentoside 46.18 ± 0.15
Valoneic acid dilactone 46.05 ± 0.11
Protocatechuic acid (11) 16.44 ± 0.01
Ferulic acid (14) 14.77 ± 0.02
Coniferyl aldehyde (18) Trace
Caffeic acid isoprenyl
ester 82.47 ± 0.29

Brevifolin-carboxylic
acid 53.72 ± 0.15

Isorhamnetin-
rhamnoside Trace

Isorhamnetin Trace
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Table 1. Cont.

Extraction Solvent
and Source

Material
Composition Quantification Biological Activity References

methanol/water
(50:50)black
condensate

(by-product)

Coniferyl aldehyde (18) 194.34 ± 0.56

mg of com-
pound/kg of

dry black
condensate

Antioxidant activity
(DPPH (IC50) = 1.57 ± 0.01 µg

of extract/mL)
[24]

Aesculetin (24) 125.28 ± 0.65
Gallic acid (12) 118.46 ± 0.61
Quinic acid (26) 117.17 ± 0.30
Ellagic acid (10) 52.52 ± 0.18
p-hydroxyphenyllactic
acid (27) 49.36 ± 0.12

p-coumaric acid (7) 35.76 ± 0.22
Vanillin (16) 32.47 ± 0.25
Caffeic acid (15) 17.68 ± 0.05
Protocatechuic acid (11) 9.97 ± 0.03
Ferulic acid (14) Trace
Eriodictyol Trace

water/ethanol

granulated cork

Castalagin (19) 47.2
mg of

compound/g
of extract

Antioxidant activity
(DPPH (EC50) = 7.9 ± 0.02 µg of

extract/mL; ORAC = 1533 ±
147 mgTeq/gextract; FRAP =
1963 ± 126 mgTeq/gextract;

TEAC = 802 ± 8 mgTeq/gextract)

[90]
Vescalagin (21) 22.8
Ellagic acid (10) 26.5
β-O-ethylvescalagin 24.4
Gallic acid (12 )

0.6

HHDP—hexahydroxydiphenyl. ——–: unreported biological activity.

In addition to the in vitro studies that already exist and prove the biological activity of
these extracts, there is also an in vivo study that proves the tensor and smoothing effect that
cork extracts have on human skin [36]. Additionally, due to the presence of these phenolic
compounds in cork and its by-products, there is the possibility of incorporating these
ingredients in sunscreens, as it has been proven that these compounds, namely lignin [65],
can absorb UV radiation.

Another known activity of phenolic compounds and flavonoids is the inhibition of
tyrosinase in melanocytes by in vitro and in vivo studies [4]; hence, its interest in the devel-
opment of depigmenting cosmetics is predictable. Thus, correlating the existence of these
compounds in cork, namely ellagic (10) and gallic (12) acids, protocatechuic aldehyde (17)
and ellagitannins, with their depigmenting activity, one of the possible cosmetic applications
of cork is in depigmenting products for the treatment of skin blemishes [4,79,91].

Polyphenols can also inhibit the accumulation of lipids in keratinocytes and inhibit
the expression of the SREBP-1 gene, which makes them promising in combating acne [92].
A cork hydroglycolic extract has also been studied for this activity, with favourable re-
sults [79]. In addition, cork powder has bioabsorbent properties, removing pollutants and
oily substances. For this fact, it is being studied for protection of the environment and for
the treatment of acne, absorbing the accumulated sebum on the skin [4,41,79]. In addition,
for skin problems, such as acne, anti-inflammatory and antimicrobial cosmetics can be used.
Compounds present in cork, such as suberin, friedelin (2), polysaccharide, and phenol (gal-
lic acid (12) and ellagitannins) extracts have also demonstrated anti-inflammatory activity
by the NO inhibitory activity in the presence of a pro-inflammatory stimulus and inhibitory
activity of NF-kB transcription factor activation of a cork hydroglycolic extract [4,79]. On
the other hand, cork extracts present bioactive compounds, namely protocatechuic (11)
and gallic (12) acid, as well as ellagitannins, that have antimicrobial properties [80,93,94].
The antimicrobial activity of cork was also proven by preliminary studies, mainly against
Staphylococcus aureus, with a MIC value of 6 mg/mL [4,95].
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5. Current Cosmetic Applications of Cork

Cork and its by-products have been increasingly sought as a source of new ingredients
for pharmaceutical and cosmetic use (Figure 7). In terms of commercial applications, cork is
the main ingredient in a brand of anti-aging cosmetics which claims that the suberin present
in the cork extract has a lifting effect on the skin [4,96]. There is only one cork cosmetic
ingredient with established in vitro [79] and in vivo [36] activity on human skin described
in the “CosIng” database, namely Quercus suber bark extract. This ingredient may be used
alone as a unique ingredient or combined with other ingredients, such as plant extracts.
The “CosIng” database is a cosmetic ingredients database from the European Commission,
and it provides information on cosmetic ingredients, including their regulatory status
according to the Regulation (EC) No 1223/2009 [97]. Several cork-based ingredients are
available from different suppliers. The ACTISCRUB™ Cork by Lipotec is a cosmetic raw
material constituted by a Q. suber bark extract and has exfoliant and peeling activity [98].
The Suberlift™ by Ashland Specialty Chemical is another cork raw material containing Q.
suber bark extract with tensor and firming effects on human skin [99]. One last example, the
DIAM Oléoactif® by Hallstar, is a raw material constituted by a mixture of Cocos nucifera
oil, oak root extract, and Q. suber bark extract with soothing, antiaging, anti-redness, and
anti-inflammatory effects [100].
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Furthermore, cork was also studied to be used in skin exfoliants. A granulated
cork was studied and considered suitable as a mild exfoliant due to its morphology and
properties. Cork particles were also tested as stabilizers of a Pickering emulsion for topical
application with antioxidant and anti-elastase activity [4,34].

6. Conclusions

Cork obtained from Q. suber bark represents a natural and sustainable resource for
various applications since its extraction does not harm the tree. The cork industry is also
considered sustainable since most of the cork by-products that are formed during the
process are reused to self-sustain the factory. However, the main problem inherent to this
industry is the amount of waste generated throughout the process. For this reason, a new
perspective on the potentialities of cork by-products aroused to take full advantage of its
properties. Cork and its by-products are currently being studied for pharmaceutical and
cosmetic application. Cork extract composition encompasses several compounds from
different chemical families, thus attracting attention due to the different biological activities,
translating into a variety of possible applications.

The growing concern for the environmental footprint is also reflected on the skin care
market where consumers started to demand more natural and sustainable products. Cork
extracts have a considerable number of bioactive compounds, especially phenolics. Cork
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phenolics, such as caffeic, gallic, ellagic, ferulic, vanillic, and protocatechuic acids, show
remarkable antioxidant activity, owing to their radical-scavenging properties. Currently,
cork and some cork extracts are already used in antiaging cosmetics and as mild exfoliants
and are registered as cosmetic ingredients in official databases.

Even taking into account all the studies already carried out regarding cork and its
by-products and their current applications, there is still room for innovation in this area.
Although the results of in vitro studies on cork extracts are promising, they are still very
preliminary, and it is necessary to conduct more studies to prove their effectiveness and
safety for skin applications, namely studies to support skin depigmentation and anti-
acne and antimicrobial claims as well as toxicological studies, according to the European
Cosmetics Regulation No 1223/2009, “The SCCS Notes of Guidance for the Testing of
Cosmetic Ingredients and their Safety Evaluation” and “Technical Document on Cosmetic
Claims” [101–103]. In addition, more specific studies are needed regarding the analysis of
bioactive compounds in cork by-products, such as cork powder, “black condensate”, and
cork-cooking wastewater. Clearly, cork is an important resource for the cosmetic industry,
but further studies are needed to unveil and confirm the full spectrum of its potentialities.
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