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Abstract: Sales of electric vehicles, for commercial use and personal use, keep rising. In parallel of the
development of the associated Electric Vehicle Charging Infrastructure (EVCI), systems for controlling
the charging of EVs will have to be developed in order to reduce the impact of such a development
on the power grid. In this paper, we present a supervision system that controls the electric vehicle
charging of employees of CEA Cadarache research center. The EVCI of Cadarache, set up in 2016, is
constituted of more than 80 22-kW AC charging points spread over 30 zones. This EVCI currently
supplies more than 376 vehicles including taxis, service vehicles as well as employees’ vehicles. This
infrastructure is one of the largest private EVCIs in the region. The supervision system controls
electric vehicle (EV) charging in real-time according to two objectives: respecting user preferences,
by fully charging the EV battery, and synchronizing the power consumption of a fraction of the
EVCI, i.e., 24 charging points, with the power production of a solar photovoltaic plant. This paper
details the supervision system that is used to carry out these experiments and presents experimental
results. These results show that it is technically feasible to increase (up to 60 percentage points) the
self-production ratio while satisfying EV users.

Keywords: electric vehicles (EVs); photovoltaic (PV) production; smart charging; planning algorithm;
field test; self-production

1. Introduction

The European Commission plans to ban the sale of new non zero-emission commercial
and passenger light vehicles from 2035 [1]. This decision will accelerate the development
of full Battery Electric Vehicles (BEV), which represented 9% (880k units) of sales of light
vehicles in Europe over 2021 [2]. This growth needs to be supported by a rapid development
of the Electric Vehicle Charging Infrastructure (EVCI). By the end of 2021, there were
225,000 charging points available in the European Union [3] but by 2030, a total of four
million charging points are expected [4], for around 34 million BEVs and 14 million Plug-in
Hybrid Electric Vehicles (PHEVs). The impacts of this growth on the power grid must
to be carefully anticipated: greater electricity production will be needed, and electricity
transmission and distribution networks will have to be improved [5,6]. For example, the
French transmission system operator, named RTE, has estimated in a recent study [7]
that, in France, the electricity production will have to be increased by 100 TWh in 2050
in a “reference scenario”, considering that 95% of light vehicles and 21% of duty vehicles
are electrified. This energy will represent approximately 15% of the projected electricity
consumption in this scenario. Nonetheless, in the same study, RTE concludes that the
control of the charge of electric vehicles (EVs) is a “no regret” solution from a technical and
economic standpoint, i.e., it is profitable in all situations.

Many control algorithms and associated systems have been proposed in the litera-
ture [8,9]. For example, authors propose to provide primary reserve [10,11], i.e., to change
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the charging power of the EV according to the frequency deviation of the network, or to
limit EV load to the power network capacity available [12–14]. Other authors propose to
provide reactive power [15] or to minimize the effects on the grid of the rapid photovoltaics
(PV) production output fluctuations due to cloud transients [16] or even to balance wind
energy [17]. Other control algorithms aim to minimize the charging cost for the user [18],
for a fleet manager [19] or for a parking operator [20]. Some studies also analyze the
EV charging when integrated in a microgrid with the consumption of household or/and
commercial buildings, solar carport and/or solar plant and eventually an energy storage
system [21–27]. All these articles are either based on synthetic data (i.e., generated from
mathematical models only) or use real data (i.e., obtained from physical measures) as inputs
for simulations. Such real data are obtained from laboratories or from field scale demon-
strators. Marinelli and al. propose a review of projects that deal with such demonstrators
in Europe [28]. Descriptions of other demonstrators may also be found in [29–34].

Nonetheless, the literature lacks papers or public reports that describe in detail experi-
ments that control the charge of EVs in a field scale demonstrator, except in the following
four studies. In [30], the authors described tests that have been conducted from January
2017 to December 2018 in the UK with more than 600 EV drivers involved. During one of
these tests, called “Trial 3”, the users were financially incentivized to let the system charge
their EVs outside the peak hours. The results show that the incentive, combined with smart
charging, had a significant impact on drivers’ behavior. In [35], the authors describe an
experimental set-up with commercial EVs and two commercial unidirectional charging
stations in the test-site of University Campus Lyngby. The authors demonstrate that it
is technically feasible to control the unidirectional charging of EVs to provide primary
frequency regulation. The project ChargeForward [31,36] has managed a set of more than
400 EV-driving households (approximately 250–300 at a given time in the project) that
have participated in real-world experiments in the San Francisco Bay area. Several use
cases of EV grid integration were studied. One of them, called “Earth Week Renewable
Energy Use Case”, consisted of inciting the participants to charge in the middle of the
day to use the excess of solar energy. This use case lasted one week in 2018. The project
showed that 55% of the charging powers came from renewable energy, compared to the
national average of 23%. In [37], the authors describe the results of an experiment that was
conducted during a year on a test-site constituted with six 22-kW AC charging stations.
They show that their algorithm ensures a fair distribution of the charging power between
the six charging stations even when the grid connection only allows two EVs to charge
concurrently. In [32], the same kind of test was realized but on a larger scale, i.e., an EVCI
constituted of more than 1000 public charging points in the Netherlands. The researchers
showed that it was possible to limit the speed of the charging of the EV in order not to
exceed the power network capacity available.

This paper describes the set-up and the results of smart charging tests on a CEA
Cadarache site. During these tests, we controlled the charge of EVs in order to recharge the
EV batteries and to maximize the self-production rate of the system composed of 24 22-kW
AC charging stations and a 160-kWp photovoltaics (PV) plant. These tests involved more
than 300 users that own more than 40 different EV models.

The remainder of the paper is organized as follows. The experimental set-up is
detailed in Section 2, with a part that focuses more on the control algorithm. The main
results obtained over a four-month period and the lessons learned are presented in Section 3.
Section 4 presents the conclusion of these experiments and discusses the perspectives.

2. Context of the Experiments
2.1. R&D Center of Cadarache

The experiments take place in the Cadarache research center of the French Alternative
Energies and Atomic Energy Commission, or CEA (the French acronym for “Commissariat
à l’Énergie Atomique et aux Énergies Alternatives”). It is a 60 year-old research center
located near Aix-en-Provence. This center is spread over 1600 Ha of which 900 Ha are
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fenced (by a 22 km fence). Cadarache center consists of 480 buildings, including office
buildings but also research laboratories. The center is directly connected to the electricity
network. The CEA manages its own water network, heat network, and medium voltage
electricity distribution network (made up of 18 15-kV loops). The research center plays
the role of Distribution System Operator (DSO). A public lighting network and an EVCI
are connected to this power network. Two thousand five hundred CEA employees work
at the Cadarache site, as well as partner companies. In total, around 5000 people work at
Cadarache. The CEA offers a private bus service to its employees for commuting. Thus,
Cadarache center can be seen as a small town privately owned and managed by the CEA.

The CEA conducts research on solar thermal energy and on solar photovoltaics. There
are therefore PV solar plants installed on the Cadarache site in two different locations,
called the internal solar platform and the Mégasol platform. On the internal platform, the
CEA tests and evaluates innovative PV solutions ranging in size from modules to a few
tens of kilowatts systems. On Mégasol’s platform, the CEA tests these innovative solutions
on four PV plants totalizing 12 MWp, owned by industrial partners.

2.2. EVCI

The CEA’s EVCI was set-up during the summer of 2016. It involves 40 Diva-type
terminals, produced and installed by G2Mobility, which was bought out by TotalEnergies
in 2018. Each Diva terminal has two 22-kW AC charging points. Each of these charging
points has a Type 2 socket for mode 3 connection and a Type E socket for mode 1 and
2 connections. These charging stations have been installed alone or in groups of up to four
Diva terminals, to create 30 charging stations, spread out through the whole center. Each
charging station has an IoT gateway embedded that enables communication through 3G
networks by using Open Charge Point Protocol (OCPP) commands.

The CEA maintains and operates this EVCI. The CEA therefore plays the role of
Charging Point Operator (CPO). The user must use a badge to authorize charging of the
EV. To obtain his badge, the user has to be registered and has to specify his contact details,
such as mobile phone number, as well as his car’s model. Thus, the CEA assumes the role
of e-Mobility Service Provider (e-MSP).

2.3. EVCI Charging History

Before performing our experiments, we have collected data from an OCPP supervisor
for 4 years (from June 2016 to June 2020). During this period, 17,045 charging sessions were
recorded, totalizing 253 MWh of energy consumption. The mean duration and the mean
energy consumption of each charging session were respectively 12 h and 14.8 kWh. We
also have computed the histograms of the start and end times of the charging sessions.
Figure 1 reports the results. The X-axis represents the local time. The start times of the
charging sessions are in blue and the end times are in orange. It appears that there are three
main periods when the charging sessions start: mostly at the beginning of the working
day (around eight in the morning), then at lunchtime when people charge their car at the
business restaurant, and at the end of the afternoon when service cars come back from
business trips. There are also three main periods for the end of charging sessions. The
first one is at 9 am when the service cars that have been connected the day before are
disconnected to be used for business trips, the second one is at lunchtime and the last
period is at the end of the working day (around 5–6 pm) when employees leave the center.
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Figure 1. Histograms of start and end times of charging sessions.

2.4. EVCI Users

As at 1 February 2022, 376 RFID badges were issued for EV (including PHEV) owners.
The number of badges is steadily increasing by around 100 badges per year. Two hundred
and sixty cars are used by employees for their personal use. There are also 84 service cars.
Cadarache site has also set up a taxi service provided by three Zoé cars. Besides, the CEA
authorizes external companies to charge their 29 EVs.

There are three involvement levels of the users in our experimentations:

• Seventy-five EV owners (i.e.,about 78% of the volunteer experimenters) agree to
give us control over the charging power of their charging sessions. They have also
consented to send information about the State of Charge (SOC) of their battery and
their forecast departure time. They also provide details on their car’s features (capacity
of the battery and maximum power of the onboard charger). The set of these cars is
further called “PControlled”.

• Twenty-one employees have not given us control over the charge of their car, but have
agreed to send us information about their SOC and their forecast departure time. They
also give us details on their car. The set of these cars is further called “PUncontrolled”.

• The other users do not participate to the experiments. They are named ”Others”.

The union of the first two categories of people is further called “Participants”. The
union of the last two categories is called “Uncontrolled”.

In terms of car models, there is a very clear predominance of Renault Zoé. Such a
model represents 38% of all the EVs. There are also, among others, 10% of Peugeot e208, 7%
of Renault Twingo and 8% of Tesla (Model 3 and Model S) and 5% of Nissan Leaf vehicles.

2.5. OCPP Supervisor

From June 2021, the CEA has set up an IT architecture to control part of its EVCI.
Twenty four (out of 80) charging points have been connected to an information system
developed by the CEA, called SIGE for “Système d’Information pour la Gestion optimisée
de l’Energie” in French (or EMIS for “Energy Management Information System” in English).
This information system stores all the data necessary to control the charge of the EVs (data
on EVs, data on the electrical network, characteristics of PV plants and charging stations,
etc.). SIGE can also automatically download external data. For example, SIGE is connected
to servers, in order to retrieve the PV production forecasts, and to PV plants, in order to
retrieve the values of PV production. SIGE and the Diva stations communicate through a
3G connection by using the OCPP 1.6 protocol. The interactions of SIGE with the managers
of the EVCI and the EV users are described after.
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2.6. SIGE for the Managers of the EVCI and for the EV Users

SIGE offers a web user interface for the managers of the EVCI. It allows the operators
not only to know the state of all the charging stations, but also to act on them. For example,
the operator can stop the current charging session or restart it. The operator can also unlock
a plug or set the maximum charging power. The web interface also provides statistics by
user, by area, by charging station and by charging point.

The EV user must authenticate himself using the RFID badge issued by the CEA in
order to be able to connect his vehicle to one of the charging points. This badge is first
presented to the RFID reader of the Diva. The latter reads the ID number stored in the
badge and the Diva station queries SIGE. If the badge ID is in the database and if the
user participates in the experiments, SIGE sends a text message inviting him to fill in
his forecast departure time (further noted tdep) and the SOC of his car at the start of the
charging process (further noted SOCinit). Without a response from the user, SIGE considers
default values (i.e., tdep = 5:00 p.m. and SOCinit = 25%). At the same time, SIGE sends the
authorization of charge to the charging station while the user plugs his EV to the Diva
terminal connector. The charging station then communicates with the vehicle via the cable,
by carrier current, in accordance with the IEC 61851 standard, an international standard
for electric vehicle conductive charging systems. Then, SIGE sends a charging test profile
to the Diva constituting of two phases. The first phase, called the “discovering phase”,
involves charging the EV battery at its maximum power during a short period. This phase
enables SIGE to estimate the maximum charging power of the EV, noted PMax, but it also
confirms to the user that his vehicle is electrically connected. Afterwards, in a second phase,
SIGE controls the charge of the EV according to given objectives (see Section 2.7). When
the charge is finished, SIGE sends a text message to the user, inviting him to disconnect his
vehicle and to clear the parking place.

2.7. Control Algorithm
2.7.1. Objectives

The CEA has developed a software module in SIGE, which controls the charge of the
EVs that are connected to a set of charging stations. This controls processes according to
given objectives and from all the data stored and retrieved by SIGE. The main objective
is to satisfy the EV user, i.e., his EV battery is fully charged at his forecast departure time.
The second objective is to maximize the self-production rate of the system constituted by
24 charging points and of 1.3% of the production of electricity produced by the Mégasol
platform (160 kWp). The self-production rate is commonly defined as the value of the
PV energy consumed when it is produced, divided by the value of the total consumption.
However, in order to separate the effect of the EV charging control algorithm and the effect
of the PV forecast algorithm, we decided not to consider the PV production in this definition
but to consider the best forecast of this production, further called the “available power” and
detailed in Section 2.7.4. Thus, we consider in the following that the self-production rate,
SP, is defined as the value of the energy consumed when it is forecasted to be produced Eav,
divided by the value of the total consumption Econs. It is defined as the following equation:

SP =
Eav

Econs
(1)

2.7.2. Charging Power Models

In the considered set-up, controlling the charge of an EV involves the control of its SOC
by modifying over time the power that the station can deliver. The set of these maximum
power values over time is called “SetPoints”. The function that links the SetPoints and
the SOC is very complex. It depends on the maximum power accepted by the car when
it is charging with an AC connection. This parameter depends on the car model, on the
size of its onboard charger, on the type of connection with the charging station and on
the cable that is used to connect the car to the station. It also depends on the external
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temperature and on the traction battery temperature. Besides, the user may use a software
(generally an application on a smartphone) that may also limit the value of PMax. In the
experiments, the participants are encouraged to deactivate such external control. In the
following, we consider that PMax is constant and that it is equal to the value measured
during the “discovering phase”. The energy that can be stored in the traction battery,
further called “Capacity” and noted EMax, is also a key parameter that depends on the
vehicle model and on options. For example, a Tesla Model 3 may have four sizes of battery:
55, 62, 75 and 82 kWh. In our case, we consider that Capacity is constant and equal to
the value declared by the participants. For the cars of people not participating in the
experiments, Capacity is considered as the maximum size of the battery for the EV model.
Other parameters exist, such as the number of phases that are used to charge the car. We
consider public information to obtain these data. In general, if the onboard charger is
less than 11 kW, it is one phase, otherwise, it is a three-phase charger. However, there are
exceptions: for example, the Seat Mii charge at 7.4 kW with a two-phase charger.

2.7.3. Control Principle

The planning algorithm is executed at each start of a new charging session but also
periodically every 10 min. Let us consider that t0 is the current time, that the 24 h after
the current time are discretized by time step of ∆t = 10 min and that those points in time
are noted tn. As, in our set-up, it is not possible to directly measure the SOC of the cars,
the planning algorithm first estimates the SOC of all the EVs at current time t0. These
estimations are based on the initial values of the SOC and on the measurements of the
energy meters of the charging stations (see details in Section 2.7.5). Then, for all tn, the
control algorithm follows two steps:

1. The available power values are calculated, as detailed in Section 2.7.4.
2. These values are allocated amongst the cars that are connected and that are waiting

to be charged (i.e., their SOC estimate is lower than 100%). The allocating process is
based on a basic scheduling mechanism, i.e., “earliest deadline first” [20], which was
adapted to achieve our objectives. In our context, we consider that the “deadline” of a
car, also called “lead-time”, is the difference between the time before departure (tdep)
and the time needed to recharge the battery without a charging control (tend). The
computation of this lead-time is detailed in Section 2.7.6. Then, the planning algorithm
estimates the lead-time of all the EVs. The available power is first allocated to the EVs
that are not under control (i.e., EVs in set “Uncontrolled”) and to the cars that have a
negative lead-time. The maximum charging power is allocated to each of these cars.
Then, the remaining power is distributed in the inverse order of the lead-time. The
maximum charging power is allocated to the cars that have the smallest lead-time. If
there is not enough available power for the cars that have the highest lead-time, they
do not recharge during this time step but they will be charged during the next ones.
The powers allocated to each EV, for each time step, are the SetPoints that are sent
over the 3G network to the charging points.

The following simple example enlightens the principle of the control algorithm. Let us
consider an EV owner, not participating in the experimentations, who connects his car (a
Zoé with a battery capacity of 50 kWh) to the EVCI. Since SIGE has no information about
the initial SOC of the car battery, it takes SOCinit = 25% as a default value. Thus, SIGE
considers that around 40 kWh are needed to fully charge the battery. In this example, we
assume that there is enough available power to supply the car battery at PMax (here 22 kW)
during the time needed to fully charge the battery, i.e., about 1 h 50. In such a case, the
planning algorithm send the associated set points (i.e., 22 kW during 1 h 50) to the station.
Then, SIGE estimates the charging power as explained in Section 2.7.5. Two cases arise
during the charge:

1. The car may either stop charging because it is full prematurely (i.e., before 1 h 50 of
charge). SIGE has underestimated the real SOC. It may happen when the real initial
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SOC is greater than 25%. In that case, the set points are null power values and the
charging power is allocated to another car.

2. Or it may continue to charge even after 1 h 50 of charge. SIGE has overestimated the
real SOC. It may happen when the real initial SOC is less than 25%. In that case, the
set points do not change until the charge stops.

We have simulated the effect of this control algorithm on the historical charging session
data presented in Section 2.3. This simulation step allowed confirmation of the choice of
the different parameters and proved the effectiveness of the control algorithm.

2.7.4. Available Power

Figure 2 illustrates how the power considered as available in the future for the charge
of the EVs is computed. It shows the solar production data of 1 November 2021. First, the
PV production forecasts, based on weather forecasts, are retrieved every two hours from
the web server of the National Oceanic and Atmospheric Administration in the USA. These
data are called “rawPowerForecast” and are reported as orange dots in Figure 2. Second, the
power production of the PV plant considering that the sky is clear, is computed through a
homemade software based on the public software library PV_LIB [38]. These data are called
“clearskyPower” and are reported as a dark blue line. This curve is bell-shaped because
solar production increases during the morning until it reaches solar noon (time when solar
production is at its peak), then decreases at the same rate as it increased a few hours earlier.
Third, a “bell-shaped” interpolation of the “rawPowerForecast” is computed. These values
are called “powerForecast” and are reported as a black line. The power measured on
the PV plant is collected with a System Control And Data Acquisition (SCADA) and is
transmitted over the 3G network. These data are called “Power” and are reported as a blue
line. From all these data, SIGE computes the “correctedPowerForecast” represented by a
green line. Roughly speaking, these last data are equal to the “powerForecast”, unless the
previous values (i.e., in the near past) of “powerForecast” are too far from the previous
values of “Power”. In that case, “correctedPowerForecast” is computed through “Power”
and through the persistence method (i.e., the weather in the near future is considered the
same as the weather in the near past). Finally, the power considered in the near future as
available for the charge of the EVs is the “correctedPowerForecast”.

Figure 2. Illustration of the computation of the available power.

2.7.5. SOC Estimation

The value of the SOC estimated at a given time t0 is further noted SOCestimate(t0). This
estimation is computed using the initial value of the state of charge SOCinit and using the
values of the energy meter, read every dt equal to 2 min. For many charging stations, it is
the minimum time to retrieve data without any problem of synchronisation or timestamp
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issue. The power withdrawn by the car Pw(t0) is first estimated from the values measured
by the energy meters at the considered time t0, noted Ew(t0), and Q dt minutes before t0,
noted Ew(t−Q). The power Pw(t0) is computed according to the following formula:

Pw(t0) =
Ew(t0)− Ew(t−Q)

Q × dt
(2)

Q is a parameter chosen equal to 3 to obtain an accurate value of the power as quickly
as possible (i.e., every 6 min). We consider that if the car does not withdraw energy during
the six minutes before t0, the measured withdrawn power Pw(t0) is equal to zero. This
phenomenon occurs because the car battery is fully charged, and then the SOCestimate is
equal to 100%.

If Pw(t0) is not equal to zero, we compute SOCtemporary(t0) according to Equation (3).
In this equation, we consider tinit being the time at the start of the charging process, and Y
being the yield of the charging process (supposed to be equal to 95%).

SOCtemporary(t0) = SOCinit + Y × 100 × Ew(t0)− Ew(tinit)

EMax
(3)

If the car keeps charging (i.e., Pw(t0) > 0) while SOCtemporary(t0) equals a threshold
value (typically 99%), we consider that the value of SOCtemporary is overestimated compared
to the real SOC. In that case, without any other information about the real SOC, we
consider that SOCestimate stays equal to the threshold value. In other cases, we consider
that SOCestimate is equal to SOCtemporary.

2.7.6. Lead-Time

As explained above, the lead-time is the difference between the time before departure
and the time needed to fully charge the battery without a charging control. This lead-time
has to be estimated at each time step tn. The set points from t0 and tn−1 have been computed
by the previous iteration of the planning algorithm. We note SetPoint(tp) the power set
point computed for the period [tp; tp + ∆t]. During this period, we consider that the car
charges at the constant value SetPoint(tp). Thus, at t0, the value of the SOCfuture, in a future
point in time tn, is calculated according to the following formula:

SOCfuture(tn) = max

(
100, SOCestimate(t0) +

100 × Y
EMax

×
p=n−1

∑
p=0

SetPoint
(
tp
)
× ∆t

)
(4)

Then, from time tn, we consider that the EV charges at PMax until its battery is fully
charged. Given this SOCfuture value, we are able to compute the point in time tend such the
battery is full when charged with the following formula:

tend(tn) = tinit + (100 − SOCfuture(tn))×
EMax

100 × PMax
(5)

The lead-time is the difference between the time before departure tdep and the time
tend to charge the battery at PMax.

LeadTime(tn) = tdep(tn)− tend (6)

3. Results
3.1. Preliminary 1: Data Selection

The following experimental data were recovered between 1 October 2021 and 1 Febru-
ary 2022 inclusive (124 days in total). We consider that 73 days give exploitable results.
The other days are either without any EV charging session (34 days) or with measurement
errors or communication or hardware breakdowns (17 days). During these field tests,
887 charging sessions were recorded in total, and, altogether, 12.4 MWh were transferred
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to the EVs. The battery of the EVs were all charged before the departure time forecasted by
the users, except in very few cases (mainly short sessions of 1 h or 2 h). In these cases, the
users were informed by email or phone that there were issues with their charging sessions.

In order to estimate the efficiency of the control algorithm, we compared two self-
production rates. The first one, SP, is computed from the available power and from the
energy consumption measured by the charging stations, as explained in Section 2.7.1. The
second rate is computed in the same way, except that we consider the energy consumption
as the simulated consumption of all the EVs, under the assumption that none of them are
controlled. In other words, we quantify the total energy in the case where the EVs charge at
their PMax from the start of the charging sessions until their batteries are fully charged. The
associated self-production ratio is denoted “Uncontrolled Self-production ratio” or SPu.

Figure 3 displays a scatter plot with the self-production ratio SP on the Y-axis and the
uncontrolled self-production ratio SPu on the X-axis, computed both on the same days. As
the points are clearly above the line Y = X, this scatter plot clearly shows that the control
algorithm globally increases the self-production ratio. A small (resp. great) difference
between SP and SPu corresponds to a minor (resp. large) increase in the self-production
ratio thanks to the control algorithm.

Figure 3. Distribution of the self-production ratio in both controlling scenarios on a scatter plot (red
dots correspond to days that will be described in the next paragraphs).

The days associated with the red dots in Figure 3 are chosen according to their different
locations on the plot (on the middle, in the upper right corner, and at top left). Indeed,
these red dots represent cases that will be outlined in the following paragraphs:

• On the middle: low values for both SP and SPu
• In the upper right corner: high values for both SP and SPu
• At top left: high value for SP and low value for SPu

3.2. Preliminary 2: Description of Figures 4–7

Figures 4–7 are partly made up of three curves related to PV production, as described
in Section 2.7.4:

• The blue curve corresponds to the “ClearskyPower”.
• The red curve represents the “CorrectedPowerForecast” which is considered as the

available power.
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• The green curve represents the measured PV production noted as “Power”. The mea-
surement system of these data breaks down sometimes, as can be seen in Figures 4–7
(when the green line is flat or missing).

Figure 4. Results of 19th October 2021: (a) Stacked energies without control. The self-production rate
SPu is equal to 34%; (b) stacked energies with control. The self-production rate SP is equal to 90%.

Figure 5. Results of 6th January 2022: (a) Stacked energies without control. The self-production rate
SPu is equal to 31%; (b) stacked energies with control. The self-production rate SP is equal to 93%.
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Figure 6. Results of 4th November 2021: (a) Stacked energies without control. The self-production
rate SPu is 83%; (b) stacked energies with control. The self-production rate SP is 97%.

Figure 7. Results of 21st October 2021: (a) Stacked energies without control. The self-production rate
SPu is equal to 39%; (b) stacked energies with control. The self-production rate SP is equal to 60%.

Those figures also depict the charging sessions over time for an entire day. The
graphical representation of the power withdrawn by the car over time (estimated as
explained in Section 2.7.5) is further called the “load curve” of the charging session. The
area under this load curve corresponds to the energy transferred to the car. In the following,
we associate each such area (and so, each charging session) with a different color. At last,
we stack all these areas on top of one another. Thus, the top of the stacking at a given time
corresponds to the total charging power at this time.

Each figure is composed of two graphs, (a) and (b). They respectively correspond to
the load curves that would have been obtained without control, and the measured load
curves obtained with the control algorithm. In each case, we also report the total energy
transferred to the EVs and the PV production during the day.
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3.3. The Control of Charge Increases Drastically the Self-Production Ratio

Figure 4 represents the results obtained on 19 October 2021. During this cloudy
day, 17 charges occurred, for a total energy consumption of 141 kWh and for a total PV
production of 221 kWh.

Figure 4a shows that the charges, without any control, would have been carried out
mainly between 7:30 and 10:30 a.m. Figure 4a shows that the cumulative load curve is
located rather above the red curve, which means that the self-production rate is low (in
that case, it is equal to 34%). On the contrary, Figure 4b shows that the loads are happening
mainly below the red curve, which suggests that the self-production rate is high (here 90%).

Figure 5 represents the results obtained on 6 January 2022. On this particular sunny
day, 15 charges occurred, for a total energy consumption of 227 kWh and a total of forecast
PV production of 551 kWh. This particular day, the self-production rate increase from 31%
to 93% thanks to the control algorithm.

These results emphasize that the charging control may increase drastically the rate of
self-production during both sunny days and cloudy days.

3.4. The Self-Production Rate Can Be High, Even without Control

Figure 6 illustrates the results obtained on 4 November 2021. During this sunny
day, nine charges occurred, for a total energy consumption of 165 kWh and for a total PV
production of 715 kWh. This particular day, both self-production rates, with or without
control, were high (here 97% and 83% respectively). This is because the charging sessions
start mostly at the beginning of the working day, as explained in Section 2.3. Thus, most of
the charging sessions take place in the morning, when the PV production is increasing. This
example emphasizes that the self-production rate may be high, with or without control.

3.5. The Self-Production Ratio May Be Relatively Low, Even with Control

Figure 7 illustrates the results obtained on 21 October 2021. During this sunny day,
19 charges occurred, for a total energy consumption of 214 kWh and for a total PV produc-
tion of 174 kWh. This particular day, the self-production rates, with or without control, are
both relatively low (here 60% and 39% respectively). This is because two EV users (one
Tesla Model S user, and one Zoé user), who did not give us control over the charge of their
EVs, charged their EVs at high power, i.e., 22 kW for both cars, early in the morning. Such
a result stresses that the users’ behavior strongly influence the results.

4. Conclusions and Perspectives

The experiments conducted on CEA Cadarache site benefits from the city-size of the
research center and from its CPO, eMSP and DSO roles. They involve nearly 100 out of the
376 EV users and more than 40 different car models. The objectives of these experiments
were to fully recharge the battery of the users before their forecast departure time and to
maximize the self-production rate of the system, which is constituted by 24 charging points
and of part of the production of a PV plant.

The first goal was reached, except in very few cases. We consider that the second goal
was partially reached. Indeed, we compared the self-production rates obtained with or
without control. Our analysis showed that the charging control always increases this ratio.
Some days, especially during grey ones, the ratio drastically increased (we gain sometimes
more than 60 points of percentage). However, there are several days, especially sunny ones,
when the increase was rather low. We also showed that, sometimes, the ratio was rather low,
even with control. From our point of view, this is mostly due to the users that do not give
us control over the charge of their EVs. One way to improve the ratio is to convince these
users to change their mind. This could be done, for example, by organizing “solar charging”
contests, by communicating intensively in the Cadarache center on obtained experimental
results or by offering a financial incentive. Another way would be to enforce smart charging
for all EVs but the risk is to reduce the users’ satisfaction and their involvement in the
experiments. We believe that such an option could be counterproductive because this
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involvement is mandatory to get access to key data such as the initial SOC and the forecast
time of departure.

As perspectives, we plan to improve our planning algorithm in three main ways.
First, we plan to improve the models that relate the value of the set points and the power
withdrawn by the car, as suggested in [39]. These models are used during the allocation
of the available power. In the current implementation of our algorithm, any error in the
model translates into in a loss of power. In other words, this loss of power is not allocated
to other cars. To improve such models, we expect to increase the number of charging
points, of users, and thus, of car’s models. We also forecast to monitor other physical
variables useful for the modeling, such as the SOC and the battery temperature. Second, we
consider turning the planning algorithm into an optimization problem and then to apply,
for example, Mixed-Integer Linear Programming (MILP) methods. At last, the retrieved
data could serve as a basis for defining other Key Performance Indicators, such as the state
of health of car battery, the occupancy rate of each charging station or the amount of power
not extracted from the grid thanks to the charging control. This latter could be used to
quantify the economic benefit of EV solar charging. The satisfaction of users is also a key
issue that could be estimated. This is especially true when users are fully involved and are
accustomed to giving their charging features at the beginning of the charging sessions. In a
more long-term horizon, we plan to assess the EV capability to provide flexibility services
to the electricity network and to estimate the benefit for the grid.
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