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Abstract: Chemical compounds from plants have been used as a medicinal source for various dis-
eases. Aromachology is a unique field that studies the olfactory effects after inhaling aromatic
compounds. Aromatherapy is a complementary treatment methodology involving the use of es-
sential oils containing phytoncides and other volatile organic compounds for various physical and
mental illnesses. Phytoncides possess an inherent medicinal property. Their health benefits range
from treating stress, immunosuppression, blood pressure, respiratory diseases, anxiety, and pain
to anti-microbial, anti-larvicidal, anti-septic, anti-cancer effects, etc. Recent advancements in aro-
matherapy include forest bathing or forest therapy. The inhalation of phytoncide-rich forest air has
been proven to reduce stress-induced immunosuppression, normalize immune function and neu-
roendocrine hormone levels, and, thus, restore physiological and psychological health. The intricate
mechanisms related to how aroma converts into olfactory signals and how the olfactory signals
relieve physical and mental illness still pose enormous questions and are the subject of ongoing
research. Aromatherapy using the aroma of essential oils/phytoncides could be more innovative and
attractive to patients. Moreover, with fewer side effects, this field might be recognized as a new field
of complementary medicine in alleviating some forms of physical and mental distress. Essential oils
are important assets in aromatherapy, cosmetics, and food preservatives. The use of essential oils as
an aromatherapeutic agent is widespread. Detailed reports on the effects of EOs in aromatherapy
and their pharmacological effects are required to uncover its complete biological mechanism. This
review is about the evolution of research related to phytoncides containing EOs in treating various
ailments and provides comprehensive details from complementary medicine.

Keywords: aromachology; aromatherapy; essential oils; phytoncides; forest bathing

1. Introduction
Aromachology and Aromatherapy

The emerging study of aromachology first began in the late 20th century, initiated
by a scientist from Japan, Shizuo Torii. Torii studied the association between aroma and
emotion and found that the fragrance of lavender and chamomile enhances relaxation. The
term aromachology was first coined by the Sense of Smell Institute in 1982. Aroma has
the extraordinary power to amend our physical, mental, and emotional state of well-being.
More than 3500 years ago, the fragrance was used in human life rituals by ancient Egyptians.
Our modern frenetic, chaotic lifestyle has brought back the use of aromas to obtain better
physical and mental health [1]. Aromachology is the study of the interrelationship between
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aroma and psychology. In detail, it is the effect of aroma on the brain, the subsequent subtle
neurological and behavioral changes, and the intertwined psychological variations. It has
been an emerging and fascinating subject in scientific society for the past few years. The
influence of aroma on humans is a new scientific discipline; hence, the need for independent
research papers regarding aromachology is clear [2–4].

Aromatherapy is an ancient concept used by the Chinese, Egyptians, and Romans in
incense, their baths, and embalming the dead. The word aromatherapy was first coined by
the French chemist Rene-Maurice Gattefosse in the 1920s. His first discovery of the healing
nature of lavender essential oil was through serendipity when he accidentally soaked
his burnt hand in pure lavender oil and found that his hand was rapidly healing. His
exploration of essential oils and his experiments in their healing nature was initiated then.
In addition to their healing nature, these aroma oils can influence mood, behavior, and
wellness [2]. Scientifically defined, aromatherapy is a complementary treatment methodol-
ogy [5] using essential oils containing phytoncides [6] as a tool for therapeutics [2,3].

Essential oils (EOs) are the secondary metabolites [7] of aromatic plants, representing
a complex mixture of volatile organic compounds (VOCs) [4]. The plants hold these oils
throughout their thallus structures, such as reservoirs, glandular hairs, special cells, and
intracellular spaces. Plants are also protected from pathogenic encounters and temperature
fluctuations with the help of these essential oils [8]. EOs are a concoction of chemical
groups such as alcohols, ketones, esters, ethers, aldehydes, oxides, phenols, saturated
and unsaturated hydrocarbons, and terpenes [9] that can be extracted from different
regions of plants, such as the bark of plants, flower petals, stems, leaves, roots, and
distillation from resins [10]. EOs’ extraction can be carried out by conventional methods
such as steam distillation, hydro-distillation, hydro-diffusion, and solvent extraction, and
by advanced methods such as supercritical fluid extraction, subcritical extraction, solvent-
free microwave-assisted extraction [11], and also by the physical crushing of the outermost
waxy layer where oil glands are situated [12]. Several studies have evaluated the therapeutic
effects of EOs [13] as additives and packaging materials in the food industry [14] and as air
quality enhancers in indoor environments [15]. Some of the well-known aromatic essences
are lavender oil, rosemary oil, jasmine oil, and peppermint oil, which have been found to
improve cognitive functions, memory retention, pain relief, and mood enhancement and
play a role in enhancing physical and psychological conditions affected by stress [16–18].
EOs may be administered through massage, inhalation, or direct application over the skin
or internally [19,20]. However, although inhaling aromas in treating ailments or stress is
approved as aromatherapy, its effectiveness is still in question.

Though little evidence supports its efficacy and uncertainty because of the scarcity of
studies and insufficient understanding related to aromatherapy [2,21], studies have shown
that inhaling aroma at night elicits feelings of sensuality and relaxation, happiness, or
exhilaration [2,4,22]. Phytoncides are volatile organic substances extracted from plants that
possess antimicrobial activities and help in enhancing immune functions through NK cell
activity and anti-inflammatory properties. ‘Phyton’ refers to plants, and ‘cide’ refers to
killing in Greek, thus highlighting the anti-microbial activities [23]. However, the lack of
convincing studies is also accountable for our insufficient understanding. Hence, as part
of the emerging investigations focused on aromachology and aromatherapy, the present
review is designed to assess the effects of aromatherapy on physiological functions.

2. Chemistry of Essential Oils

Essential oils are a complex mixture of volatile lipophilic aromatic and aliphatic
compounds [24]. They are colorless liquids, soluble in alcohol, ether, and fixed oils but
insoluble in water, and they possess a particular odor [25]. EOs combine more than
100 single substances, including terpenoids, phenylpropanoids, and short-chain aliphatic
hydrocarbon derivatives. The structure of EOs can contain allylic, bi-, tricyclic, mono-,
and sesquiterpenoids of different functional groups, such as hydrocarbons, ketones, and
alcohols as well as oxides, aldehydes, phenols, or esters [9]. The loss or absence of any
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one of the components in the EOs can change their aroma. Oxygenated EOs are more
fragrant than the EOs containing monoterpene hydrocarbons [26]. EOs with C5 units are
termed monoterpenes. Monoterpenes are the major component of EOs, responsible for
aroma and flavor, and they act as important ingredients in the agricultural, pharmaceutical,
cosmetic, and food industries [27]. They include different types, such as nerol, linalool,
citronellol, citronellal, and citral [28]. Sesquiterpenes usually contain 15 carbons in their
skeleton structures with different functional groups such as hydrocarbons, aldehydes, and
alcohols [29]. Sesquiterpenes are responsible for anti-microbial, anti-fungal, anti-tumor, and
anti-inflammatory activities [30]. Many factors influence the chemistry of EOs, including
the plant organ, genetic factors, geographical variations, environmental conditions, type of
species the plant belongs to, mode of production, storage conditions, etc. [31–33]. Many
components, such as citral, myrcene, ocimene, menthol, D-limolene, α-pinene, α-thujone,
β-thujone, farnesol, α-bisabolol, humelene, etc., are present in EOs and have been proven
to be responsible for the effects of EOs. Any small change in these components may change
the aroma properties of EOs. The chemical structure of EO components is given in Table 1.

Table 1. Structure of the representative volatile aromatic terpenes. Structures have been adapted
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) (accessed on 9 April 2022).

S. No Type of Terpenoids Component 2D Structure 3D Conformer

1 Acylic
Monoterpenes

Citral
Pubchem ID 638011

1 https://pubchem.ncbi.nlm.nih.gov/
compound/Citral#section=2D-Structure

2 https://pubchem.ncbi.nlm.nih.gov/
compound/Citral#section=3D-

Conformer
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1 Source link for 2D structure of the compounds; 2 Source link for 3D structure of the compounds.

3. Methodology

The keywords ‘aromachology’, ‘aromatherapy’, and ‘aromatherapy and phyton-
cides’ were used to search the scientific databases PubMed, Google Scholar, Medline,
and PsycINFO. The search for aromatherapy returned 3296 results consisting of both re-
views and research articles spanning the choice of aromatherapy for dementia, depression,
stress, cognitive dysfunction, anxiety, cardiovascular diseases, etc.

The search for aromatherapy and phytoncides yielded less than a hundred articles,
highlighting forest bathing, phytochemicals, essential oils, and volatile organic compounds,
and their effects on the immune system and against certain viral infections. The total
number of search results for aromachology was nil in PubMed. Hence, it was searched in
Google Scholar. Approximately 671 results related to aromachology were found in Google
Scholar. The abstracts of these articles were read and sorted according to their relevance
to health benefits in humans. Non-relevant articles were excluded, and relevant studies
were used for writing the manuscript. Only research articles and abstracts in English were
considered. Reports published up until December 2021 were collected. This combinational
review is a collective compilation of information on aromatherapy and aromachology,
encompassing all the necessary details about these fields to date. The PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses) chart explains the selection
criteria of the collected articles (Figure 1).
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4. How Does Aroma Work with the Brain?

Aromas are inhaled into the body through the nose, where they pass the blood–brain
barrier and affect the central nervous system [34,35], the autonomic nervous system, and the
endocrine system [2]. Aromas can elicit quick emotional changes in humans [36]. When the
aroma from essential oils is inhaled, the volatile molecules bind to the olfactory receptors
in the cilia cells. Hence, the electrochemical message is transmitted through the olfactory
tract and olfactory bulb to reach the brain’s olfactory regions, which stimulates autonomic
function and a strong emotional response regarding the received aroma stimuli [37]. The
aroma elucidates different pathways: orthonasal (odor passes through the nose) and
retronasal (odor enters the nostrils through the oral cavity) pathways. Both possess different
sensory experiences [38,39]. Generally, the perception of aromas through these two different
routes excites two different sites in the human brain. Likewise, the different odorant types
elicit different responses that depend upon the routes through which the odorants are
administered [40]. Retronasal perception occurs only when the food has been chewed.
The inhaled aroma is influenced by factors such as temperature and water-soluble and
non-volatile components of the oral cavity [41,42]. Hummel and Heilmann stated that the
perception response was larger when an odor was presented retronasally [43].

The aroma enters through the orthonasal or retronasal routes, reaches the olfactory
receptors in the olfactory epithelium of the nasal cavity, and spreads over the olfactory bulb
cells. There, it enters the primary olfactory cortex, which comprises the anterior olfactory
nucleus, piriform cortex (PC), peri-amygdaloid, and entorhinal cortices (EC) [44]. From the
PC, subcortical projections spread out to the thalamus [45], hippocampus, and orbitofrontal
cortex (OFC) [46]. The entorhinal cortex leads to the hippocampus [47] and thalamus nuclei.
Furthermore, the thalamus extends its projections into the OFC and insular cortex [48–50].
This network of nerve fibers connects the PC, thalamus, OFC, EC, amygdala, hippocampus,
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insular cortex, and the olfactory bulb [51] and controls the incoming olfactory inputs,
producing quick signals (Figure 2).
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Figure 2. Schematic representation of the perception of aroma. Aroma enters via either the orthonasal
or retronasal paths, reaching the olfactory centers of the brain through a signal cascade. Aroma
transfers from olfactory epithelial neurons into the olfactory bulb. The olfactory efferent enters the
piriform cortex (PC), entorhinal cortex, periamygdaloid cortex, and hippocampus. Olfactory neurons
from the PC enter the orbitofrontal cortex (OFC) and thalamus. Thalamus and OFC neurons are
connected to the insular cortex [52].

Depending upon the odor delivered through the ortho- or retronasal passages, the
responses of the neurons may vary, which were recorded by functional magnetic resonance
imaging (fMRI). In our study, neural responses were received from the insula/operculum,
thalamus, hippocampus, amygdala, and caudolateral cortex during the orthonasal delivery
of the odors. In contrast, responses were received from the perigenual cingulate and medial
orbitofrontal cortex during the retronasal delivery of the odors [52]. Any VOCs that enter
the bloodstream through the nasal or lung mucosa diffuse into the olfactory nerves and
the brain’s limbic system [53,54]. Odors induce perception, emotional learning, belief,
cognitive, behavioral, and other associated emotions [55,56]. Any pleasant or unpleasant
odors can elicit olfactory emotions [57–59] and can produce positive or negative moods,
which eventually result in behavioral changes. A positive mood increases productivity and
tends to help [60–62]. A negative mood suppresses prosocial behavior [63]. If any odor
triggers anxiety, it creates a fear associated with that odor [64]. Thus, the olfactory efferent
is wired to the brain to produce a sequence of psychological-emotional responses resulting
in emotions, memory processing, and mind–body interactions [65].

5. Phytoncides and Their Functions

Phytoncides are a naturally available, complex blend of EOs or VOCs produced
from plants and trees, explained as “exterminated by the plant” [66,67]. Approximately
400,000 known aromatic and medicinal plants have essential oils [68]. Phytoncides were
first devised by a Russian biochemist, Boris P. Tokin, in 1928. They are volatile chem-
icals emitted by plants to defend against viruses, bacteria, saccharomyces, molds, and
protozoans [69] or to prevent decay and herbivore attacks. Phytoncides also exhibit other
beneficial effects, such as anti-microbial, antibacterial [70], anti-fungal, anti-inflammatory,
anti-stress, analgesic, and anti-spoilage activities, and they can be used as food preserva-
tives [36,71–82]. They also exhibit anti-mycoplasmal activity [83], anti-larvicidal activity
against malaria [84,85] and dengue [86], anti-septic activity, and anthelminthic activity;
in addition, they facilitate wound healing [87], can act as cholesterol inhibitors [88], can
enhance sleep [89–91], and even enhance bacterial susceptibility to antibiotics [92,93]. Phy-
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toncides exert allelopathy effects, where these secondary metabolites from plants affect
microorganisms, acting as a defence mechanism for plants. Hence, phytoncides are recog-
nized as allelochemicals [94]. Phytoncides can prevent mucosal damage in the digestive
tract and have been proven to have anti-inflammatory effects in the stomach, colon, and
other digestive parts such as the esophagus, small intestine, and duodenum [70] (Figure 3).

Appl. Sci. 2022, 12, 4495 10 of 22 
 

ogenic situation [105]. The aroma of bitter orange (C. aurantium) has shown anxiolytic ac-
tivity in chronic myeloid leukemia patients [106], crack cocaine users [107], and rodents 
[108]. 

 
Figure 3. The beneficial effects of phytoncides/essential oils. 

3-carene has a sweet and pungent odor and has been used as raw material in per-
fumes and cosmetics [109,110]. Like α-pinene, the oral administration of 3-carene is re-
ported to have a sleep-enhancing effect [90,91]. Previous studies show that the Non-Ran-
dom Eye Movement Sleep (NREMS) augmented by α-pinene and 3-carene prolongs GA-
BAergic inhibitory postsynaptic signaling. Thus, phytoncides enhance sleep with fewer 
side effects than conventional hypnotics [98].  

Additionally, phytoncides also have antioxidant and anti-cancer activities and en-
hance natural killer (NK) cell activity [72,90,92]. A study in human prostate cancer 
(LNCaP) cells showed the antiproliferative effects of aroma oil extracted from Citrus ja-
ponica Thunb. (C. japonica) [111]. Additionally, phytoncides decrease stress hormones [112] 
and induce physiological relaxation in humans [113]. The aroma of C. aurantium restores 
learning and memory in scopolamine-induced memory impairment and aids in treating 
Alzheimer’s disease [114]. Citrus limon (L.) Osbeck (C. limon) enhances cognitive perfor-
mance, mood, attention level, and memory [115]. 

5.1. Phytoncides in Dental Care 
Phytoncides have been used for treating periodontal disease and against bad breath 

[94]. Microbial attacks on dentures cause denture stomatitis and aspiration pneumonia 
[116]. Candida albicans (C. albicans) is responsible for this effect on dentures [117]. Lee and 
his co-workers used a phytoncide-incorporated polymethyl methacrylate (PMMA) bio-
compatible dental polymer [118]. Their results confirm that the fungal attachment on the 
dental surface was reduced significantly compared with the control. Phytoncides-incor-
porated PMMA material can be used as a dental base resin to execute anti-fungal effects 
and reduce oral biofilm deposition. Eugenol is widely used in dental treatments because 
of its antibacterial and anesthetic properties. Eugenol has been used in root canal sealers, 
temporary fillings, and paste for pulp capping. It is also helpful in tooth canal treatment 
[119]. Incorporating phytoncide within microcapsules (PTMC) into the denture base resin 
can combat denture stomatitis. Phytoncide is released from PTMC at an acidic pH and 
inhibits the growth of C. albicans [120].  

5.2. Anti-Cancer Activity of Phytoncides 

Figure 3. The beneficial effects of phytoncides/essential oils.

The human brain can process olfactory stimuli even during sleep [95,96]. The sleeping
brain and waking brain receive the aroma and react differently. In our study, the temporal
activity of the brain was found to increase upon the inhalation of lavender aroma during
sleep. Sleep quality was also found to increase depending upon the aroma stimuli [97].
Many plants, such as pine, garlic, cedar, and onion, can emit phytoncides [98]. Woo
and his team studied the sleep-enhancing effects of phytoncides derived from pine oils.
Pine essential oil’s most important volatile terpenoid phytoncides are myrcene, α- and
β- pinene, β-thujene, bornyl acetate, and 3-carene [99]. Amongst these terpenoids, α-
pinene is the most abundant and a significant phytoncide with a characteristic odor, hence
its use in perfumes [100]. In our study, inhalation or oral administration of α-pinene
showed enormous biological activities, such as anxiolytic, sleep-enhancing, anti-microbial,
anti-nociceptive, and anti-inflammatory activity [89,90,101–104]. The aroma of sweet
orange (Citrus sinensis; C.sinensis) produces an anxiolytic effect in individuals exposed
to an anxiogenic situation [105]. The aroma of bitter orange (C. aurantium) has shown
anxiolytic activity in chronic myeloid leukemia patients [106], crack cocaine users [107],
and rodents [108].

3-carene has a sweet and pungent odor and has been used as raw material in perfumes
and cosmetics [109,110]. Like α-pinene, the oral administration of 3-carene is reported to
have a sleep-enhancing effect [90,91]. Previous studies show that the Non-Random Eye
Movement Sleep (NREMS) augmented by α-pinene and 3-carene prolongs GABAergic
inhibitory postsynaptic signaling. Thus, phytoncides enhance sleep with fewer side effects
than conventional hypnotics [98].

Additionally, phytoncides also have antioxidant and anti-cancer activities and enhance
natural killer (NK) cell activity [72,90,92]. A study in human prostate cancer (LNCaP) cells
showed the antiproliferative effects of aroma oil extracted from Citrus japonica Thunb.
(C. japonica) [111]. Additionally, phytoncides decrease stress hormones [112] and induce
physiological relaxation in humans [113]. The aroma of C. aurantium restores learning and
memory in scopolamine-induced memory impairment and aids in treating Alzheimer’s



Appl. Sci. 2022, 12, 4495 9 of 20

disease [114]. Citrus limon (L.) Osbeck (C. limon) enhances cognitive performance, mood,
attention level, and memory [115].

5.1. Phytoncides in Dental Care

Phytoncides have been used for treating periodontal disease and against bad breath [94].
Microbial attacks on dentures cause denture stomatitis and aspiration pneumonia [116].
Candida albicans (C. albicans) is responsible for this effect on dentures [117]. Lee and his co-
workers used a phytoncide-incorporated polymethyl methacrylate (PMMA) biocompatible
dental polymer [118]. Their results confirm that the fungal attachment on the dental surface
was reduced significantly compared with the control. Phytoncides-incorporated PMMA
material can be used as a dental base resin to execute anti-fungal effects and reduce oral
biofilm deposition. Eugenol is widely used in dental treatments because of its antibacterial
and anesthetic properties. Eugenol has been used in root canal sealers, temporary fillings,
and paste for pulp capping. It is also helpful in tooth canal treatment [119]. Incorporating
phytoncide within microcapsules (PTMC) into the denture base resin can combat denture
stomatitis. Phytoncide is released from PTMC at an acidic pH and inhibits the growth of
C. albicans [120].

5.2. Anti-Cancer Activity of Phytoncides

About 50 different terpene components are found in pine tree essential oil [121].
Thirty-seven monoterpenes have been reported for their anti-cancer properties [122]. α-
pinene possesses anti-cancer activities against various cancer types, including human
hepatocellular carcinoma [123,124] and prostate cancer [125]. α-pinene induces apoptosis in
human ovarian cancer [126] and suppresses the expression of matrix metalloproteinase-9 in
human breast cancer cells, thus inhibiting cancer invasion [100]. These anti-cancer activities
of α-pinene are possible through increased CD56 and CD107a, resulting in enhanced NK
cell activation. The activated NK cells release perforins, which easily attach to the cell
membranes of cancer cells and induce pores on its surface, leading to the diffusion of
granzyme B proteins, resulting in the apoptosis of cancer cells [89]. Aroma components
in the oils of sweet orange (Citrus aurantium var. dulcis; C. aurantium var. dulcis), grape
(Citrus paradise; C. paradise), and lemon (C. limon) were also found to induce apoptosis in
human leukemic (HL-60) cancer cells [127]. Blood orange (C sinensis) essential oil inhibits
the vascular endothelial growth factor (VEGF), prevents cell proliferation, and induces
apoptosis in colon cancer cells [128].

5.3. Benefits of Exposure to the Forest Environment

Another method of aromatherapy is forest bathing or forest therapy. Forest bathing
is the inhalation of phytoncides by breathing the phytoncides-rich forest air. Smelling the
aromatic phytoncides from the forest environment reverses stress-induced immunosup-
pression and normalizes the immune function and neuroendocrine hormone levels [129].
During stress, cortisol secretion increases through the increased activation of the sympa-
thetic nervous system and hypothalamus–pituitary-adrenal system. Phytoncides have
many positive effects, such as stress reduction, reducing cortisol levels, minimizing blood
pressure, and enhancing the immune system and autonomic nervous system [130]. A hand-
ful of studies evaluated the effect of phytoncides on improving immune function [131–133].
The biogenic VOCs were profoundly found to regulate blood pressure and endocrine activ-
ity, reduce blood glucose, maintain mental health by relieving stress, boost immunity, treat
respiratory diseases, and fight cancer [73,93,134–141]. Additionally, forest bathing aids pa-
tients with hypertension [142], chronic obstructive pulmonary disease [143], chronic heart
failure [144,145], and chronic stroke [146]. Forest bathing with phytoncides promotes brain
function by producing relaxation, reducing mental stress, promoting cognitive ability, and
stabilizing the mood [147]. In recent studies, more attention has been given to the physio-
logical relaxation effects of forest environments [148,149]. The forest environment enriched
with phytoncides will increase parasympathetic nervous activity (a sign of relaxation),
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suppress sympathetic nervous activity (a sign of reduced stress) [130,150,151], reduce blood
pressure [152], reduce heart rate [153], and diminish the level of stress hormones such as
salivary cortisol [148].

6. Essential Oils and Their Health Outcomes

The essential oils taken from plants without extracting peculiar phytoncides are used
to treat stress and pain. The aroma-enriched essential oils possess some rejuvenating effects
in humans. Major health disorders, such as hypertension and cardiovascular diseases, are
associated with stress and anxiety. Stress disturbs cognitive function, behavior, mood, and
thinking skills. Mental, physical, and emotional problems interfere with individuals’ learn-
ing capabilities, where stress and anxiety presumably cause hypertension and mortality.
The combination of four essential aroma oils, lavender (Lavandula angustifolia; L. angustifolia),
ylang-ylang (Cananga odorata; C. odorata), marjoram (Origanum majorana; O. majorana), and
neroli (Citrus aurantium; C. aurantium), can decrease systolic and diastolic blood pressure
and reduce salivary cortisol in prehypertensive and hypertensive patients [154].

Chronic mental stress also initiates sudden death or myocardial infarctions [155].
Besides health disorders and irreversible diseases, stress also negatively impacts human
emotions. Managing stress can address those negative consequences [156]. Aroma oils can
be inhaled or massaged over the skin; the applied oil vaporizes and stimulates the olfactory
system [157]. L. angustifolia aroma oil reduces mental stress and increases arousal [158].
Likewise, Yuzu essential oil (Citrus junos Sieb. ex Tanaka) reduces negative emotional
stress [159,160] and inhibits platelet aggregation, which could be helpful in individuals
with a high risk of cardiovascular disease [161].

Essential oils promote de-stressing effects such as relaxation and sleep. Jung and
his team reported that the inhalation of ylang-ylang essential oil decreases blood pres-
sure [162], reduces vibrations and promotes relaxation [163], and increases alertness [164].
Aromatherapy reduces blood pressure, anxiety [165], and agitation [166] in dementia pa-
tients. Aromatherapy with essential oils such as linalool, santalol, cedrol, piperonal, true
lavender, and sweet orange oil improved sleep in the elderly with dementia [167]. The
inhalation of essential oils seems to lessen depression and increase the sleep quality of post-
partum mothers [168,169]. The essential oils of sandalwood, sweet marjoram, and lavender
are purportedly used in sedation, relaxation, treating anxiety, and relieving irritability,
loneliness, insomnia, and depression [170–172].

Marjoram lowers the activity of the sympathetic nervous system and kindles the
parasympathetic nervous system, which increases vasodilation and reduces blood pressure.
Neroli essential oil soothes emotions, gives comfort, and reduces vibrations resulting from
shock or fear [163]. Chamine and Oken evaluated the stress-reducing effect of lavender
aroma. The results show that lavender aroma promoted post-stress cognitive performance.
Hence, the protective effects of lavender aroma on working memory prove that aromas pro-
tect cognitive function after stress [173]. Lavender aroma lessens cardiac excitation, reduces
BP, and is effective in hypertension and palpitations [154]. The aroma from Litsea cubeba
(L.cubeba) is used in treating cognitive discomfort. It was found to improve mood and re-
duce stress and confusion by reducing the salivary cortisol level in healthy individuals [174]
(Table 2).

Pain is another discomfort, not only caused by physical illness but also by psycholog-
ical distress. In a contradictory way, psychological distress can induce progressive pain.
Saunder’s concept of pain explains that pain is a person’s suffering in social, physical,
psychological, and spiritual aspects [175]. Pain induces fear, which further deteriorates
social interactions and produces anxiety, depression, and stress [176–178]. The aroma of
agave (Polianthes tuberosa; P. tuberosa) essential oil reduced test anxiety [179]. The aroma of
lavender and bergamot EO can act as an antidepressant and relaxant. Pleasant odors en-
courage a positive mood [170] and alleviate negative emotions [180]. Bitter orange essential
oil (C. aurantium) reduces first-stage labor pain and anxiety in primiparous women [181].
Ginger (Zingiber officinale; Z. officinale) and orange essential oil (C. sinensis) reduce knee
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pain in older adults [182]. Bergamot (Citrus bergamia; C. bergamia) essential oil possesses
anti-nociceptive and anti-allodynic properties and modulates the sensitive perception of
pain [183]. Bitter orange (C. aurantium) and damask rose blossom (Rosa damascena mill L.;
R. damascena) aromas, together, were found to improve the symptoms of premenstrual
syndrome [184,185]. Neroli, lavender, and bitter orange EOs reduce anxiety and blood
pressure in postmenopausal women [186,187].

Table 2. The therapeutic effects of essential oils.

Scheme 1. Essential Oil (EO) Scientific Name of the Plant Function References

1

Lemon EO,
Mandarin EO,
Grapefruit EO,

Orange EO

Citrus limon (L.) Burm. f.
(C. limon), Citrus reticulata L. var.
(C. reticulata), Citrus paradisi L.,

Citrus sinensis (L.) Osbeck (C. sinensis)

Anti-bacterial, antioxidant activity. [73,74]

2 Pumelo EO,
Sweet orange EO

Citrus maxima
C. sinensis

Anti-fungal, anti-aflatoxigenic,
and antioxidant. [75]

3 Kumquat EO Citrus japonica Thunb. Anti-bacterial and anti-fungal activity. [76]

4 Neroli EO C. aurantium Anti-microbial and antioxidant activity
against various bacterial species. [78]

5 Mandarin EO C. reticulata Anti-bacterial, anti-fungal activity;
food preservative. [81]

6 Essential oils
Melaleuca species

Citrus species
Cupresses species

Anti-Candida activity. [82]

7 Bergamot EO C. bergamia Anti-mycoplasmal activity. [83]

8 Lemon EO C. limon,
Melissa officinalis

Active against vector,
Anopheles stephensi. [84]

9 Bitter orange EO, Sweet
orange EO

C. aurantium
C. sinensis

Larvicidal activity against malarial
vector Anopheles labranchiae. [85]

10 Sweet orange EO,
β-cyclodextrin complexes C. sinensis Larvicidal activity against dengue

vector, Aedes aegypti. [86]

11 Bergamot EO C. bergamia Antiseptic and anthelminthic activity
facilitates wound healing. [87]

12 α-Pinene -

Increases the anticancer effect by
accelerating the activation of natural
killer (NK) cells and cytotoxicity via

ERK/AKT signal pathways.

[88]

13 Sweet orange EO C. sinensis Anxiolytic effect in individuals
exposed to an anxiogenic situation. [105]

14 Bitter orange EO C. aurantium Anxiolytic effect in chronic myeloid
leukemia patients. [106]

15 Bitter orange EO C. aurantium Anxiolytic effect in crack cocaine users. [107]
16 Bitter orange EO C. aurantium Anxiolytic activity in rodents. [108]

17 Kumquat EO Citrus japonica Thunb. Anti-proliferative effect against human
prostate cancer cells. [111]

18 EO from Hinoki,
Japanese cedar

Chamaecyparis obtusa
Cryptomeria japonica

Decreases production of the stress
hormone and increases NK cell activity. [112]

19 Hinoki cypress leaf EO Chamaecyparis obtusa
Induces physiological relaxation by

increasing parasympathetic
nervous activity.

[113]

20 EO of flower extract C. aurantium

Restores learning and memory in
scopolamine-induced memory

impairment and in treating
Alzheimer’s disease.

[114]

21 Sweet orange EO,
Grapefruit, Lemon

Citrus aurantium var. dulcis
Citrus paradisi, C. limon

Induces apoptosis in Human leukemic
(HL-60) cells. [127]

22 Blood orange EO C. sinensis

Inhibits vascular endothelial growth
factor (VEGF), prevents cell

proliferation, and induces apoptosis in
colon cancer cells.

[128]

23
A mixture of lavender,

ylang-ylang marjoram and
neroli EO

Lavandula angustifolia (L. angustifolia),
Cananga odorata (C. odorata), Origanum

majorana, Citrus aurantium L. (C.
aurantium)

Decreases systolic and diastolic
blood pressure.

Reduces the salivary cortisol level in
hypertensive subjects.

[153]

24 Lavender EO L. angustifolia Reduces mental stress and increases
arousal rate. [157]
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Table 2. Cont.

Scheme 1. Essential Oil (EO) Scientific Name of the Plant Function References

25 Yuzu EO Citrus junos Sieb. ex Tanaka
(C. junos)

Reduces negative emotional stress.
Decrease total mood disturbance,

tension, anxiety, anger, hostility, and
fatigue during the premenstrual stage.

[158,159]

26 Yuzu EO C. junos Inhibits platelet aggregation. [160]
27 Ylang-ylang oil C. odorata Decreases blood pressure. [161]

28 Bitter orange EO C. aurantium

Anti-spoilage, antibacterial, antifungal,
and antioxidant activity.
Flavoring property for

food preservation.

[162]

29 Peppermint EO,
ylang-ylang EO

Mentha piperita
C. odorata Increases alertness. [163]

30 Lavender EO L. angustifolia Alleviates agitated behaviors in
dementia patients. [165]

31 Lavender and
Rosemary EO

L. angustifolia
Rosmarinus officinalis

Reduces anxiety and produces
relaxation and alertness. [169]

32 Bitter orange EO C. aurantium Aids in treating insomnia, epilepsy,
and anxiety. [170]

33 Lavender EO L. angustifolia Relieves stress. [171]

34 Litsea EO Litsea cubeba Reduces confusion and stress;
improves mood. [174]

35 Agave EO Polianthes tuberosa Reduces anxiety. [178]

36 Bitter orange EO C. aurantium Alleviate first-stage labor pain and
anxiety in primiparous women. [180]

37 Ginger EO,
sweet orange EO

Zingiber officinale
Citrus sinensis Reduce knee pain in elder people. [181]

38 Bergamot EO Citrus bergamia Risso et Poiteau
(C. bergamia)

Antinociceptive and
antiallodynic activity.

Aids in treating chronic pain.
[182]

39 Bitter orange EO, damask
rose blossom EO

C. aurantium
Rosa damascena mill L.

Improves the symptoms of
premenstrual syndrome. [183,184]

40 Neroli EO C. aurantium

Relieves menopausal symptoms,
reduces blood pressure, and increases

sexual desire in
postmenopausal women.

[185]

41 Neroli EO C. aurantium Reduces anxiety in
postmenopausal women. [186]

7. Challenges and Opportunities

EOs are the secondary metabolites produced by plants to protect themselves from
microbial pathogens, pests, and weeds. In addition to these effects, EOs have been used in
therapies for treating insomnia, anxiety, depression, dental problems, stress, blood pressure,
and cardiovascular diseases. However, the elucidation of the molecular mechanisms of the ef-
fects of EOs on stress, sleep, and depression requires more in vivo research. The mechanism
behind the intracellular signaling between essential oils and higher-order brain functions
remains unknown and warrants matching experiments to reveal the pharmacological ef-
fects of aroma on the human brain and physiology. EOs deserve more attention due to their
traditional healing properties. The synthesis of EOs from plant organs has become more
trustworthy and affordable nowadays. The anti-microbial, anti-inflammatory, antioxidant,
and anti-cancer activities of EOs were well-documented through pharmacological targets.
The only challenge is the insufficient number of human studies in evaluating the potential
therapeutic effects of EOs. Henceforth, future research works using clinical studies might
encourage the field of aromatherapy as a strong complementary treatment methodology.

8. Conclusions

The “back to nature” trend has increased the use of plant extracts and oils in the health
care and cosmetic industries. The pleasant aroma of EOs is of use in cosmetics production
and bioactive agents. Inhaling a delightful aroma can be a pleasurable experience. The
aroma can be relaxing and may be able to reduce stress physically and mentally. Aroma-
chology and aromatherapy do not show preferential differences between these modalities.
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Treatments using aromas have huge health benefits. The aroma of essential oils is found
useful in medicinal applications, with fewer side effects. Future studies should ideally
focus on the phytoncides and their substantial health effects in all aspects of treatments,
ranging from anti-microbial, anti-inflammatory, anti-stress, anti-hypertensive, anti-tumor,
and analgesic effects to physical, behavioral, psychological, social, and cognitive therapies.
This manuscript might provide information that aids further detailed studies on essential
oils and phytoncides in terms of their beneficial effects on human health and in treating
or alleviating some health complications and maintaining physical, social, and mental
well-being.
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