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Abstract: The use of thermal and non-thermal atmospheric pressure plasma to solve problems related
to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used
where heat is required. In agriculture, it is used to treat soil and land contaminated by the products
of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological
phenomena that have recently been observed, such as droughts, floods and storms, leading to
environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect
living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma
reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and
biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of
cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility
of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is
also suitable in the treatment of living tissues and sterilisation of medical instruments made of
materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges
at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure
plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper
presents an overview of agriculture and soil protection problems and biomedical and health protection
problems that can be solved with the aid of plasma produced with electrical discharges. In particular,
agricultural processes related to water, sewage purification with ozone and with advanced oxidation
processes, as well as those related to contaminated soil treatment and pest control, are presented.
Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer
treatment and dental problems are briefly discussed.

Keywords: cold plasma technologies; biomedicine; ozone generation; soil purification; pest control;
antimicrobial effects; wound healing; tumour treatment; dentistry applications

1. Introduction

Many problems in agriculture and biomedicine are the result of the generation, distri-
bution, and conversion of multiple forms of energy. They not only cause climate change, as
a result of environmental pollution and greenhouse gas emissions, but are also the cause
of many of diseases such as asthma, cardiovascular diseases, respiratory diseases, lung
and skin cancers, and new variants of previously unknown viruses and bacteria and their
accompanying diseases. Fighting these problems is the most important challenge of the
21st century [1–4].

Agricultural and biomedical problems can be solved using plasma technology, which is
still being exploited; ozone, UV radiation, and other excited and ionised plasma particles are
used in disinfection and sterilisation processes, tissue treatment, and in healing processes.
Some of these technologies are very mature, such as the treatment of drinking water, but
they are still being used and developed along with technological advancements related to
new materials and power electronics [5–9].
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Although the effectiveness of other technologies has been confirmed in applied re-
search, and reactor prototypes have been demonstrated in conditions similar to real condi-
tions, such technologies have not yet been implemented. The reason for this is probably
due to the existence of proven non-plasma-based technologies, which are often cheaper
but sometimes less effective and more harmful to the environment, e.g., the treatment of
sewage of various origins, or the treatment of water in swimming pools using chlorine and
its derivatives [10,11].

The application of plasma technologies, such as in the treatment of contaminated
soils and their fumigation [12–21]; cultivation and storage of agricultural products and
food [22–26]; removal of insects, fungi, and mould [27,28]; sterilisation and disinfection of
materials non-resistant to high temperatures [29–32]; and living tissue treatment [33–37],
have a chance to be implemented in the near future. This is because of their features, such
as reliability, ability to conduct plasma processes at atmospheric pressure, energy selectivity
and progress in the field of power electronics, which allow for the construction of more
efficient, smaller, and cheaper power supply plasma reactors [7,8,38–45].

Since the beginning of the 20th century, research on plasma technologies has mainly
been devoted to discharge physics as a source of non-thermal atmospheric pressure plasma,
power supply systems for plasma reactors, and applications in drinking water treatment
and air pollution control [46–59]; while, research into technologies relating to agricul-
ture and medicine started in the current century [12,14,17,19,22,23,28,32,60–72]. This pa-
per presents an overview of the applications of plasma technology in agriculture and
biomedicine. Selected technologies using both thermal and non-thermal plasma, produced
at atmospheric pressure, are presented.

2. Plasma as a Medium for Application in Agriculture and Biomedicine

In the physical sciences, plasma–which is ubiquitous in the universe–refers to the
fourth state of matter, in addition to solid, liquids and gas. It is an ionised gas containing
positive and negative ions, as well as electrons and inert gas molecules, and it has a net
electric charge that is equal to zero.

In the biomedical sciences, intercellular plasma is known as the non-cellular fluid
component of blood. The unique physicochemical properties of biological plasma and the
coagulation factors it contains are the basis of the haemostasis process—stopping bleeding
when one cuts themselves or breaks the continuity of their blood vessels in some other way.

Due to the properties of physical plasma and its analogy to the ubiquity of ionic liquid
in biology and medicine, Irving Langmuir [59] introduced the term “plasma” for ionised
gas. As a technological medium, plasma can be produced in a wide range of temperatures
and pressures. The moment of change in the physical properties of the gas, accompanied
by the appearance of electrical conductivity and loss of insulating capacity, is considered
as the most important. It is a state of matter with the broadest particle energy band. The
electrons are partially or completely detached from the atoms and play a crucial role in
initiating chemical reactions in the plasma. Other plasma particles may be weakly, partially
or fully ionised including excited particles, positive and negative ions, neutral particles,
and photons, the nature of which depends on the gas in which the electrical discharge
occurs, have much lower energies than electrons. Their properties and interactions are
used in a variety of technological processes.

An important criterion for the classification of plasma is the thermodynamic equi-
librium of the particles, which means that electrons, ions, and neutral particles have an
approximately equal energy. When talking about the thermodynamic equilibrium of a
plasma, we usually mean the so-called local balance. Discharges, which are the source of
plasma in local thermodynamic equilibrium, are characterised by relatively high temper-
atures and are used where heat is required. It should be emphasised that although high
pressure usually means thermal and equilibrium plasma, and low pressure means non-
thermal and non-equilibrium plasma, the final criteria for determining the classification of



Appl. Sci. 2022, 12, 4405 3 of 30

plasma as thermal or non-thermal are the products of the gas pressure, p, and the electrode
gap, d, of the plasma reactor [46].

In recent years, research has been conducted on the use of thermal plasma in the
combustion of municipal waste (biomass, plastics, post-hospital, pharmaceutical, etc.)
containing hazardous organic compounds, such as phenols, chlorinated biphenols and
dioxins [73–76], which can contaminate the soil, making it barren and incapable for plants
to breed. The sources of thermal plasma are arcs, plasma torches and microwave reactors.

In biomedical applications, especially in the decontamination of heat-sensitive de-
vices and the tissues of living organisms, thermal plasma is used in the so-called remote
mode [56,77,78]. The plasma does not reach the contaminated object directly, but the
radicals, chemical compounds and UV radiation produced in it enable the treatment of
heat-sensitive objects.

Non-equilibrium and non-thermal (cold) plasmas are used in agriculture and biomedicine
where heat may adversely affect technological processes. The thermodynamic imbalance of
cold plasma makes it suitable for organic syntheses due to the low power requirements
and the possibility of conducting chemical reactions in the gas at relatively low and close to
ambient temperatures. This type of plasma is used directly to carry out plasma–chemical
processes in facilities, such as living tissues and medical instruments, that are made of mate-
rials non-resistant to high temperatures. Such non-thermal and non-equilibrium discharges
at atmospheric pressure most often include barrier dielectric discharges [18,29,60–63], at-
mospheric pressure plasma jets APPJs [35,62], and gliding arc GAD [25,39,40,45,49–51,56];
these are currently the subject of advanced research in many scientific centres around
the world.

The antimicrobial agents generated in plasma, such as charged and excited molecules,
reactive oxygen species (ROS), atomic oxygen (O), reactive forms of nitrogen (RNS), atomic
nitrogen (N), nitric oxide (NO) and, in the case of electrical discharges with water admix-
tures, also hydroxyl ions (OH) and hydrogen peroxide (H2O2), can be used in agricultural
and biomedical processes.

Physical and chemical phenomena, such as etching processes, high-energy UV radia-
tion, heat and alternating electric fields, as well as their role in processes of decontamination,
sterilisation, surface treatment and modification and their influence on biomedical and
agriculture objects, should also be considered, and this makes the subject of the application
of plasma in these areas highly interdisciplinary.

The high efficiency of plasma in decontamination, sterilisation and healing is due to,
among others, the large selection of different types of plasma reactors that can be used in
plasma medicine, the possibility of controlling their parameters to ensure the antimicrobial
ability of plasma particles and easy access to narrow and closed spaces [34,64,77,78].

Figure 1 presents how many parameters should be taken into consideration when
optimising plasma processes for application in agriculture and biomedicine. We mention
only the most important of them, such as technological gases, types of electric discharges
and active particles, molecules, atoms, and free radicals produced in the plasma, both in the
neutral and excited states, and ions. Other important issues are plasma treatment methods
for agricultural and biomedical media; used solutions of plasma installations and their
power supply systems, their costs efficiency, and, above all, safety for living organisms.

Research works on the use of non-thermal plasma in technologies related to agricul-
ture [14,17,19,23,28,77] and biomedicine [72,75,76,78,79] are aimed at, inter alia:

• Assessing the suitability and effectiveness of various types of electrical discharges for
plasma generation, especially at atmospheric pressure.

• Improving the process of generating electrons initiating the production of ions, oxygen
and nitrogen radicals and other compounds useful in the processes of water, and soil
treatment and in biomedicine.

• Achieving the desired composition of the final gas mixture and a high degree of con-
version of harmful compounds by adding admixtures and catalysts (steam, ammonia).

• Minimising energy consumption.
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• Matching the electric power source to the plasma reactor, including solar
energy [21,67,80–82].
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Table 1 presents a comparison of thermal and non-thermal plasma in terms of their
properties, while Table 2 presents the most commonly tested and practically used types of
plasma reactors with electrical discharges for the production of thermal and non-thermal
plasma, their applications, and power supply systems, which determine their application
on an industrial scale.

Table 1. Comparison of thermal and non-thermal plasma properties *.

Plasma Properties Thermal Plasma Non-Thermal Plasma

State Thermodynamic equilibrium Kinetic equilibrium

Electron density, 1/m3 1021 < ne < 1023 1020 < ne < 1021

Pressure, Pa 105 < p < 107 10−1 < p < 105

Electron temperature, eV 1 < Te < 10 0.2 < Te < 2

Gas temperature, eV Tg = Te 0.025 < Tg < 0.5

Current, A 50 < I < 104 0.01 < I < 50

Ionisation Saha uncertain
* Elaborated on the basis of [9].

2.1. Agricultural and Soil Protection Problems

It is obvious that soil quality is a crucial factor for the prosperity and future of a
region. Agriculture and soil protection include problems related to the overuse of chem-
icals to fertilise soil, which causes soil degradation; increases pesticide residues in soil,
groundwater and food; and affects plant cultivation, seed quality and their germination
capacity. An equally important problem is preventing the microbial contamination of soil
and agricultural products, the latter during the processes of their processing, transport,
and storage.
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Table 2. Plasma reactors, their applications, and their power supply **.

Kind of Discharge Main Applications Power Supply

Dielectric barrier
discharges DBDs

Ozone synthesis, methane conversion,
sterilisation, biomedicine and agriculture

AC voltage of mains and
increased frequency

DBDs with
dielectric/ferroelectric packing

Decomposition of SOx and NOx,
VOCs conversion DC, pulse power (PP) and AC

Corona discharges (CDs)
Barrier corona discharge (BCD)

Sterilisation, disinfection,
medical applications PP and DC

Atmospheric pressure plasma jet APPJ,
Plasma needles (PNs) Medical applications, tissue engineering High-frequency AC and PP

Surface discharges (SDs) Neutralisation of nitrogen oxides and
volatile organic substances Increased and high-frequency AC

Thermal arc discharges (ADs)
Microwave discharges (MWDs)

Plasmatrons
Plasma torches (PTs)

Chemical syntheses,
melting, welding,

surface treatment, waste incineration
and vitrification

DC and AC voltage
radio and microwave frequency

Gliding arc discharges GADs
Toxic gas neutralisation, SOx and NOx

treatment, and biomedical and
agricultural applications

DC, PP and AC PS

** Based on [5,9] and the authors’ own study.

Recently, due to the growing emission of greenhouse gases into the atmosphere,
and the related global warming of our planet, a significant increase in various ecological
phenomena have been observed: droughts, floods, storms, and other disasters in areas
where they have not previously been observed, leading to environment pollution. Apart
from the direct destruction of crops, housing, and public facilities they inflict, floods are the
cause of the massive contamination of soil and, thus, deterioration in soil quality. When a
flood occurs, persistent odour and the contamination of buildings, such as farms, housing,
and public institutions, are unavoidable. During restoration after a flood event, the most
difficult challenges are related to:

• Epidemiological risk and lack of drinking water due to polluted wells and destruction
of water treatment plants.

• Lack of simple, sufficient, and cheap drying and decontamination techniques
for indoors.

• Severe deterioration of indoor air quality due to the pollution of housing by flood
water. Because of inadequate drying and disinfection techniques, infestation by very
persistent mould often takes place. A secondary consequence is the rotting odour.

• The presence of difficult-to-decompose sediments transported by flood waters, and
chemical and biological pollution (bactericidal risk, secondary infestation by pests).

• Surface water contamination. Furthermore, sapropelic sediments may contribute to
secondary oxygen deficiency.

• Risk of bactericidal and chemical soil and crop contamination. Some crops (depending
on the flood season and growth phase) could possibly survive, but the dilemma
remains whether they can be collected without risk.

All these make it necessary to search for new techniques to solve problems related
to the pollution of the agricultural environment, in particular soils and surface water.
Application of ozone produced by electrical discharges in agriculture has, therefore, become
one of the most important techniques to ensure the safety of plant growing, and soil and
food treatment. The objective of agricultural soil sterilisation is to destroy or eliminate
microbial cells and insects in the soil, but only those that cause decreasing soil fertility
and destroy the seeds, roots and leaves of the plants. Conventional agricultural soil
treatment methods based on chemical compounds, especially methyl bromide (CH3Br),



Appl. Sci. 2022, 12, 4405 6 of 30

have contributed to ozone layer depletion, degradation of soil and chemical residues
in food. Other methods, including autoclaving (moist heat), dry heat, and microwaves
have been tried as alternatives to chemical fumigation. Soil treatment using pesticides
is an effective method for resisting the spread of disease in soil. However, pesticide
residues in groundwater, caused by the overuse of chemicals, have become a serious
issue in agriculture. From the environmental point of view, alternative methods of soil
treatment are being sought. Ozone is a powerful oxidising agent and a much more effective
disinfectant than chlorine compounds. A mixture of water–mist with ozone produces very
reactive intermediate hydroxyl free radicals, which are much stronger oxidising agents than
ozone itself, and have exciting potential in soil and plant treatment, such as pest removal
from agricultural soil [12,13,18–20,80–84].

2.2. Biomedical and Health Protection Problems

Over the last two decades of this century, plasma technologies have been used to
detect, prevent, and solve many problems related to health protection. These include
hygiene problems, especially hospital hygiene and related viral and bacterial diseases,
mycoses and skin diseases, chronic and senile diseases, dental care, cosmetology, tissue
engineering, and medical diagnostics [22,30,37,62,65,68–71,75,76,85–87].

The effects of plasma on biological material (tissues, skin, viruses, bacteria, and fungi)
result from three basic techniques: direct plasma, indirect interaction, and a hybrid tech-
nique [88]. The direct interaction of plasma is based on the fact that a living organ/tissue
plays the role of one of the plasma rector electrodes. Most often, the voltage is not directly
connected to the living tissue, but some current may flow through it in the form of a small
forward current, a displacement current, or both, because tissues have conductive and
dielectric properties. The conduction current is usually limited to avoid thermal effects or
electrical stimulation of the muscles. Such treatment makes it possible to use the influence
of active and uncharged atoms and molecules, as well as ultraviolet (UV) radiation, on
the surface of living tissue. The most important feature that distinguishes direct plasma
treatment is that a significant stream of charges reaches the surface of the living tissue. The
indirect (“current free”) plasma interaction mainly uses the uncharged atoms and molecules
that are produced in the plasma and involves little, if any, flux of charges to the surface. The
plasma generated between the two electrodes is transported to the application area by a gas
stream (argon, helium, and oxygen). Various devices are used here, including very narrow
devices, such as so-called plasma needles for larger plasma torches. An advantage of
indirect treatment may be that the plasma device is always at a distance from the surface to
be treated, so that there is no current flowing through the tissue. Hybrid plasma treatment
combines both direct and indirect plasma generation techniques. The discharges used in
the hybrid method are called barrier corona discharge (BCD) [60,88]. This is achieved by
introducing a grounded mesh electrode on one of the electrodes, which has much lower
electrical resistance than the skin. As a result, virtually all the electric discharge current
flows through the mesh electrode. The listed techniques of non-thermal plasma treatment
allow for a certain degree of fine-tuning of its properties to a given medical process. Thus,
the amount of nitric oxide (NO) can be fine-tuned compared with the ozone (O3) produced
in the plasma. It is also possible to influence the microstructure of the plasma discharge,
which may be of particular importance in direct treatment [89]. The direct plasma treatment
technique involves a significant charge flux, which provides greater flexibility in fine-tuning
the non-thermal effects of the generated plasma for medical applications.

3. Review of Plasma Applications in Agriculture and Medicine

Since the beginning of 21st century, many reviews, articles, and conference papers were
published on the biomedical and agricultural applications of plasma generated by reactors
with electrical discharges in the air, in noble gases and their mixtures. Different designs of such
plasma reactors are presented in Table 2 [5,6,22,23,26,28,30–33,36,59,66,72,75,77,79,83,85,88–91].
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These studies show that viricidal, fungicidal, and bactericidal properties of non-
thermal plasma make it effective in processes of sterilisation and disinfection, as well as in
the treatment of many diseases, including:

• Sterilisation of human and animal tissues, blood, and surface wounds [33–37].
• Assisting skin cancer therapy [92–95].
• Treatment of viral, bacterial, and fungal infections due to antimicrobial plasma activ-

ity [31,88,96].
• Odontology—caries therapy [97,98].
• Coating of implants, contact optical lens, and dentures with biocompatible films [99–101].
• Live tissue engineering—fabrication of bioactive agents and medicines [29,30,35,90].
• Immobilisation of biological molecules, cell surface modification to control their be-

haviour, and improvement of blood adhesion.
• Sterilisation of medical and surgical instruments, especially those made of materials

and fabrics not resistant to high temperature.
• Medical diagnostics—fabrication of biosensors based on polymers, and thin amor-

phous films for medical and biochemical analysis.

In the agricultural and food industry, both thermal and non-thermal plasma are
used for:

• Water and wastewater purification [16,21,38,67,82].
• Utilisation and management of industrial waste [73,74,102–106].
• Soil treatment and pest control [12–21,63,80–83].
• Odour removal from air in agricultural production processes and waste utilisation [107].
• Food pasteurisation, disinfection, and preservation—O3 is used in common refrigera-

tors as a deodorising and antimicrobial agent [25,26,108].
• Food storage and package sterilisation [22–25,109].
• Conditioning and microbiological decontamination of biomaterials, including food [24].
• Enhancement of seed germination, plant growth, and fruit formation processes [110–120].
• Ozone-aided corn-steeping processes to replace current SO2 application [121].

There are no general requirements for all possible plasma components and their safe
use in agricultural and biomedical processes, especially in therapy. The current safety
restrictions for all non-thermal plasma sources refer to general regulations for the operation
of electrical devices, those generating ultraviolet (UV) radiation, and active compounds,
and the limits of electric currents safe for humans. Research is still being carried out on
the design of non-thermal plasma sources with good bactericidal and fungicidal properties
that would not be harmful to humans and animals, both farmed and wild, which may live
in the vicinity of the plasma-treated crops.

Over the last three years, with the worldwide SARS-CoV-2 pandemic, which started in
2019, and with which we are still struggling today, research has intensified on the influence
of plasma and highly ozonated water on various types of viruses, including SARS-CoV-2
and their mutations [122,123].

3.1. Plasma Applications in Agriculture

Industrial and municipal waste, including toxic and post-hospital waste, resulting
from the progressive development of civilisation throughout the world in recent centuries,
is a serious problem for the natural environment and its main components: air, water, and
soil. To counteract this, effective methods for their disposal and management are sought.
Despite significant progress in this area, there are still technological difficulties that limit
the achievement of the expected environmental and economic benefits. A review of plasma
technologies in the management of solid and liquid industrial and municipal wastes was
performed in [47]. Given are examples of the thermal technology of plasma generated in
arc furnaces, used on an industrial scale in the metallurgical processing of materials. Arc
furnaces, as sources of thermal plasma [106], are also used in the recovery of materials
from the metallurgical industry and steel processing and of noble metals from the platinum
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group from used catalysts; waste disposal containing asbestos, radioactive, electronic, oil,
petrochemical and mining pollutants. This waste contains both hazardous materials that
can have a very detrimental effect on local ecosystems and also on valuable elements,
usually precious metals.

The plasma process based on thermal arc discharge was designed in such a way as to
separate metals and minerals from the waste material while destroying elements hazardous
to the environment. The same thermal arc technology can also neutralise gaseous pollutants
generated in the combustion of liquid and solid wastes. Despite the significant advancement
of the arc plasma thermal technology in environmental protection, research is still being
conducted around the world on processes to convert industrial and municipal waste into
energy [106]; liquid and gaseous fuels [73,124]; the treatment of medical waste [103,125];
sewage sludge [126]; tanning sludge [127]; organochlorine waste [128]; and contaminated
soil [15,19,80,83].

In Poland, research on thermal arc plasma technology is conducted on a large scale,
e.g., at the Technical University of Łódź [15,105,123,126], Silesian Technical University [105],
and Częstochowa Technical University [127]. This research concerns the disposal of solid
waste by means of arc discharges, which leads to the thermal decomposition of the organic
fraction and the melting of the inorganic fraction which, as a result of the cooling process,
cause vitrification of the waste material. An example of such a process is the utilisation
of ash and sedimentation wastes. At a temperature for the arc plasma at approximately
2300 K [15,105], the ash melts, and after cooling obtains the structure of glass. Many waste
materials can be plasma vitrified. These include residues of combustion processes (ash,
slag, and sedimentation deposits), inorganic hazardous waste (asbestos), and industrial
sewage waste (galvanic residues). The most important advantages of the vitrification
process include [10,105,123]:

• Release of the product from organic compounds and their destruction.
• Dissolving or freezing elements and toxic compounds (heavy metals) in the vitri-

fied product.
• Mass and volume reduction in the process of degassing and decomposition of oxides.
• Resistance of the obtained product to the action of organic compounds, and its good

physical properties (hardness, resistance to abrasion, and high temperatures).

Thermal plasma offers some unique advantages in destroying hazardous waste com-
pared with classical incineration. The high energy density and temperature associated with
thermal plasma and the high rates of plasma–chemical reactions make it possible to treat
large amounts of waste in relatively small reactors. In addition, thermal plasma reactors
(arc furnaces) can be easily integrated into a production process that generates hazardous
waste, allowing for its disposal at the point of origin.

3.1.1. Water and Sewage Purification with Ozone and AOPs

In the processes of water and wastewater treatment, it uses non-thermal plasma
technologies, mainly ozone generated during electrical discharges in air or oxygen or
directly in water [16,21,38,67,81,82,123,128,129]. The treatment of drinking water and
wastewater requires the production of large amounts of ozone; its advantage of which
over commonly used chemical oxidants (chlorine and fluorine) is due to the fact of its high
efficiency in removing a wide range of organic water impurities; improving its taste and
colour; and the lack of by-products from the ozonation process.

Water treatment with ozone and AOTs is the most technologically advanced and
used in practice. From the beginning of the 20th century, water treatment stations were
established in Europe (e.g., Nice in 1907) and around the world (e.g., Los Angeles in 1987)
in which chlorine, which is harmful to the environment, was replaced with ozone produced
in barrier discharges.

As an example of a water treatment installation, a mobile ozone rinse and disinfection
system is presented; this was constructed by the Polish company WOFIL Ozone Technology,
and it was designed to reduce the chlorine used in pools and the processes of water
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infrastructure facility disinfection such as fittings, pumps, technological installations, tanks,
walls, and floors [16,67,123]. This autonomous device can prepare a disinfectant solution
based on ozonated water, which will require only water and electricity supplied directly
from the mains or from a power generator. A three-phase power supply of 400 V and 7 kW
is required. The nominal capacity of the system was 4 m3/h of highly ozonated water, at a
pressure of 12 bars. The SPID system received the Grand Prix main award at the 2017 fair
in Bydgoszcz, Poland, for the most innovative solution. Figure 2 depicts the SPID system.
This mobile device producing highly ozonated water was tested on various pollutants
and under varying atmospheric conditions [16,123]. Applications of the SPID system also
include sterilisation of agriculture product packaging, food product storage preservation,
and fruit and vegetable disinfection. Its technological effectiveness in the removal of
selected pharmaceuticals (i.e., diclofenac, carbamazepine, and sulfamethoxazole) from
sewage was also analysed [11].

Appl. Sci. 2022, 11, x FOR PEER REVIEW 9 of 32 
 

in water [16,21,38,67,81,82,123,128,129]. The treatment of drinking water and wastewater 

requires the production of large amounts of ozone; its advantage of which over commonly 

used chemical oxidants (chlorine and fluorine) is due to the fact of its high efficiency in 

removing a wide range of organic water impurities; improving its taste and colour; and 

the lack of by-products from the ozonation process. 

Water treatment with ozone and AOTs is the most technologically advanced and 

used in practice. From the beginning of the 20th century, water treatment stations were 

established in Europe (e.g., Nice in 1907) and around the world (e.g., Los Angeles in 1987) 

in which chlorine, which is harmful to the environment, was replaced with ozone pro-

duced in barrier discharges. 

As an example of a water treatment installation, a mobile ozone rinse and disinfection 

system is presented; this was constructed by the Polish company WOFIL Ozone Technol-

ogy, and it was designed to reduce the chlorine used in pools and the processes of water 

infrastructure facility disinfection such as fittings, pumps, technological installations, 

tanks, walls, and floors [16,67,123]. This autonomous device can prepare a disinfectant 

solution based on ozonated water, which will require only water and electricity supplied 

directly from the mains or from a power generator. A three-phase power supply of 400 V 

and 7 kW is required. The nominal capacity of the system was 4 m3/h of highly ozonated 

water, at a pressure of 12 bars. The SPID system received the Grand Prix main award at 

the 2017 fair in Bydgoszcz, Poland, for the most innovative solution. Figure 2 depicts the 

SPID system. This mobile device producing highly ozonated water was tested on various 

pollutants and under varying atmospheric conditions [16,123]. Applications of the SPID 

system also include sterilisation of agriculture product packaging, food product storage 

preservation, and fruit and vegetable disinfection. Its technological effectiveness in the 

removal of selected pharmaceuticals (i.e., diclofenac, carbamazepine, and sulfamethoxa-

zole) from sewage was also analysed [11]. 

 

Figure 2. Mobile ozone rinse and disinfection system, where H = 1.7 m, L = 2 m, W = 0.6 m and 

maximal ozone production = 80 g/h: (1) pulse power supply; (2) oxygen and ozone generator; (3) 

contact columns for the production of highly ozonated water; (4) vent system with residual ozone 

destructor [16]. 

The task of the research installation was to reduce the concentration of pharmaceuti-

cals in wastewater in such a way as to reduce the formation of ozone by-products (e.g., 

bromates) and the toxicity of wastewater after the process, and to optimise the process in 

terms of economy and energy. The system consisted of three stages for the removal of 

Figure 2. Mobile ozone rinse and disinfection system, where H = 1.7 m, L = 2 m, W = 0.6 m and
maximal ozone production = 80 g/h: (1) pulse power supply; (2) oxygen and ozone generator; (3)
contact columns for the production of highly ozonated water; (4) vent system with residual ozone
destructor [16].

The task of the research installation was to reduce the concentration of pharmaceu-
ticals in wastewater in such a way as to reduce the formation of ozone by-products (e.g.,
bromates) and the toxicity of wastewater after the process, and to optimise the process
in terms of economy and energy. The system consisted of three stages for the removal of
pharmaceuticals: (1) with ionised air and prefiltration; (2) with highly ozonated water in
multi-stage contact columns, and (3) removing residual contaminants on gravel–sand and
coal filters. The technological efficiency of the removal of selected pharmaceuticals from
wastewater allows for the recommendation for practical use of this innovative technology
for the removal of pharmaceuticals from wastewater: the obtained effects were at the
level of 80% to over 90%; the reduction in the BOD5 and COD ratios by 42% and 20%,
respectively; and the determined electricity consumption at the level of 0.96 kWh/m3 in a
pilot-scale facility [11]. The authors emphasised that the benefits of improving the quality
of treated wastewater discharged into the environment without the need to dose chemicals
into them should be considered in the aspect of improving the technological efficiency of
the treatment plant. It is a waste-free technology which, compared with other methods of
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disposal of pharmaceuticals with similar energy consumption (e.g., membrane techniques
0.5–1.0 kWh/m3), makes it much more advantageous.

Recently, with the aid of using the SPID RS2 system [123], which is a variant of the
mobile SPID device, producing degassed high-ozone water (OWWO) in the amount of
4 tons per hour and 96 tons per day; the possibilities and effectiveness of OWWO for
virus inactivation were investigated including, in particular, for SARS-CoV-2. As shown
by previous studies, viruses are resistant to disinfectants, and the effectiveness of their
inactivation depends on the type, structure, and physical form in which they occur, e.g., on
the surface of solid particles or surrounded by impurities in the form of street dust and soot,
as well as on various surfaces, such as plastics, metals, cardboard, and leather [123,130].

The OWWO technology was developed in Poland 10 years ago. SPID devices have
been produced since 2016. The results of research on this technology in the inactivation
of viruses in urban infrastructure (bus shelters and street routes), based on the example
of Warsaw, show that it is a promising technology, allowing for the disinfection of places
frequented by thousands of people. It is also safe for the environment, because OWWO
technology does not use any chemicals, only water, air, and electricity. For the above
reasons, it is a technology supported by the Polish Ministry of Climate to be used to counter
the pandemic caused by the coronavirus [123].

In [122], it was shown that in a plasma reactor of the APPJ type (plasma nozzle),
SARS-CoV-2 is inactivated quickly and efficiently on various surfaces by means of electric
discharges in argon. The effectiveness of inactivation depends on the absorbency and
roughness of the surface, and argon plasma has much more reactive oxygen and nitrogen
molecules than helium plasma. The results showed that treatment of the tested surfaces
with plasma generated by the APPJ reactor, powered by a sinusoidal voltage with an
input power of 12 W, argon flow rate of 6.4 L/min, voltage of U = 6.8 kV, frequency
f = 12.9 kHz, and at a distance of the reactor from the surface of ∼15 mm, led to an almost
100% inactivation of the SARS-CoV-2 virus [122].

3.1.2. Agricultural Soil Treatment and Pest Control

Application of non-thermal plasma in agriculture has recently become an important
technique to ensure the safety of plant growth, soil treatment, and food processing. The
objective of agricultural soil sterilisation is to destroy or eliminate microbial cells in the soil.

A mixture of water–mist with ozone produces very reactive intermediate, hydroxyl
free radicals, and reactive oxygen and nitrogen species (RONS), including atomic nitrogen,
nitric oxide, peroxynitrite (ONOO-), atomic oxygen, hydroxyl radical, superoxide (O2−)
and hydrogen peroxide, which are much stronger oxidising agents than ozone itself, and
they have great potential in soil and plants treatment and pest removal in agricultural
soil [14,17,19,28,63,83,84,131,132]. The use of atmospheric plasma as a treatment technique
in agriculture has many advantages, including low cost and avoiding chemicals and
undesirable changes to agricultural produce related to heat treatment.

Soil remediation is a difficult procedure because it must be performed on site and
should cover a relatively large surface area with various geological settings, while also
maintaining penetration depth. Organic matter has the greatest influence on the sorptive
capacity of soils. Apart from organic matter, grain-size distribution is an important factor
influencing the sorptive capacity of soils, especially the content of very fine and colloidal
particles. The distribution of cations in the sorptive complex depends on pedogenesis
(soil forming process), which is only their typology. The total exchange of cations in the
sorptive complex and the base saturation depend on the type of the parent rock, including
the presence of carbonates [133].

The processing of soil depends on several factors including:

• Type of soil (content of water, organic compounds, consistence, and structure).
• Type of pollutant.
• Treatment technique.
• Geological and atmospheric circumstances [134].
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Pollutants might be distributed in soil in several ways, namely [135]:
• In soil matrix.
• In vapour phase.
• In non-aqueous phase.
• In groundwater.

Conventional agricultural methods of soil decontamination are based on chemical com-
pounds, such as chlorine, and methyl and ethyl derivatives—trichloromethane, ethylene
oxide, or methyl bromide. The latter, quite commonly applied to fungal and bactericidal
decontamination, was banned from practical use (in developed countries since 2005, and in
other countries, including Poland, since 2015).

Many techniques of soil remediation, such as heating, flushing with chemical additives
(surfactants), irradiation, irradiation with catalyst, soil vapour extraction, land filling,
incineration [15,105], aeration, oxidation, and bioremediation have been tested alone or in
combination. Other methods, including autoclaving (moist heat), dry heat and microwave,
have been attempted as alternatives to chemical fumigation [83]. Soil treatment using
pesticides is one of the effective ways to resist the spread of diseases in the soil. However,
pesticide residues in the groundwater, caused by the overuse of chemicals, has become a
serious issue in agriculture. From the environmental point of view, alternative methods of
soil treatment are being sought.

Oxidation techniques involve ozone, hydrogen peroxide, chlorine dioxide, and potas-
sium permanganate. Trials employing the usage of ozone, alone or combined with AOPs,
have been performed in the treatment of soil by international research groups [18]. Ozone
generated during electrical discharges, because of its relatively good solubility in the aque-
ous phase, seems to especially have potential for soil treatment, as it can be applied in both
the gaseous and aqueous phases.

Eco-oxidative techniques can improve soil aeration, thus inhibiting denitrification
processes. Application of AOPs helps to preserve the natural structure of soil, preventing
its acidification, leaching and the release of metallic compounds.

The ozone remediation process can be divided into two phases [136]:

• Instantaneous ozone demand phase, when rapid interactions with soil organic matter
and metal oxides occur and most of the pollutant-removing processes take place.

• Relatively slow decay stage.

AOTs result in ring cleavage of poorly soluble aromatic compounds and insertion
of oxygen, which increases their water solubility, thereby facilitating their degradation
in the natural environment (www.H2O2.com accessed on 23 April 2022). Remediation
was positively tested for such pollutants as diesel range organics, trichloroethylene, and
PAHs (polycyclic aromatic hydrocarbons) [137,138]. In highly cultivated areas, soil and
groundwater contamination with herbicides and pesticides causes severe health problems
(bioaccumulation) and significantly reduces the amount of crop yield.

Non-thermal plasma with ozone and oxidative species can inactivate pathogens via:

• Direct destruction, volatisation, and etching of cells.
• Decreasing of biofilm adhesivity by decomposition of the polymer matrix.
• Oxidative stress due to the formation of radicals of various active agents (O3, OH,

and O) and the influence of hydrogen peroxide, H2O2, or UV radiation during the
electrical discharges.

• Nitrogen stress (research results suggest cell damage from reactive nitrogen intermedi-
ates, such as nitric oxide, peroxynitrite, nitrous acid, and nitrogen trioxide) [139].

Japanese researchers [13,14,16–21,28,63,80,83,84,132,134] developed a portable back-
pack ozone–mist spray system that is environmentally friendly and intended for use in
non-chemical agricultural management. The system, depicted in Figure 3, consists of an
ozone generator, a water–mist spray, and a specific nozzle, which is used to kill harmful
insects, bacteria and viruses on the surface of plants and in agricultural soil. The results
of insect inactivation with the ozone–mist spray are presented in Table 3. Sterilisation
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efficiency is expressed as a percentage of the inactivation of all tested insects in a given
sample.
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Figure 3. Prototype of the mobile ozone–mist spray system (MOMSS): (a) sketch of MOMSS; (b) photo
of the prototype, where (1) DBD ozone generator, (2) HF inverter, (3) Li-ion battery, (4) O2 vessel, (5)
water pump, (6) water tank and (7) ozone–mist spray.

Table 3. Results of the inactivation of plant insects ***.

No. Plant Insect Percentage Sterilisation Rate/Treatment Parameters

1 Tobacco Green-peach aphid 80–90%—O3 concentration: 86 g/m3; flow rate: 1 litre of O2
per minute; O3 solubility: 5 ppm; spraying time: 10 s

2 Tobacco Green caterpillar 50%—treatment parameters like in No. 1; spraying time: 20 s
3 Canadagoldenrod Red goldenrod aphid 95–100%—treatment parameters same as in No. 1
4 Orange Black citrus aphid 100%—treatment parameters same as in No. 1

5 Green tea Plant lice 100%—ozone gas; 90%—ozone–mist spray: treatment
parameters same as in No. 2

*** Own study results based on [84,134].

The plasma inactivation conditions are expressed by the following parameters: mist–
spray ozone concentration in g/m3; oxygen flow rate in litres per minute; spray time in
seconds and ozone solubility in ppm. Inactivation studies were carried out on leaves
of four different plants (i.e., tobacco, Canada goldenrod, orange, and green tea) and on
five insects feeding on these plant’s leaves: green-peach aphid and green caterpillar—on
tobacco; goldenrod aphid—on Canada goldenrod; black citrus aphid—on orange; plant
lice—on green tea. Treatment parameters for the ozone–mist spray system were the same
for all cases, with the exception of green caterpillar and plant lice (No. 2 and No. 5 in
Table 3, respectively), for which the spraying time was not 10, but 20 s. As can be seen
from Table 3, the sterilisation rate was relatively high in all cases of insect treatment by
ozone–mist spray; the lowest for the green caterpillar insect on tobacco was equal to 50% at
20 s of treatment time; the biggest one was equal to 100% for black citrus aphid at 10 s of
spraying time, while it was 90% for plant lice over a treatment time equal to 20 s. Using the
ozone gas instead of the ozone-mist spray for 20 s allows for 100% inactivation of green tea
plant lice insects [84,134].

The same authors [140] proposed and conducted preliminary studies of a mobile soil
purification system, which was a project for the practical use of surface barrier discharge
and ozone diffusion into the soil, and which was used to treat the soil in a greenhouse. Soil
treatment with ozone increased soil acidity, which improved sprouting for some plants
(radish) and worsened it for others (spinach). The acidity of the soil returned to the values
from before the plasma treatment, which in actual cultivation requires optimisation of the
sowing time of the grain, depending on the type of plants.



Appl. Sci. 2022, 12, 4405 13 of 30

The presented experiment on a real agricultural field proved the possibility of practical
use of soil treatment with ozone, both as a pesticide protecting crops against fungi, insects,
weeds, and as a fertiliser [134].

3.1.3. Cold Plasma Applications in Pre-Sowing Seed Treatment

Cold atmospheric plasma (CAP) exposure in combination with electromagnetic field
(EMF) treatment was found to be an innovative technique for the enhancement of seed
germination (even up to 20%), removal of surface contamination, and early seedling
growth [141–143]. This approach results in long-term changes in plant metabolism, increas-
ing of biomass production; it also increases plant disease resistance [144–147]. Moreover,
CAP application improves agricultural performance of crops as reported in [109,142].

Cold plasma is quite an effective tool for pre-sowing seed treatment [141,146,148,149].
Lithuanian and Belarusian scientists reported Norway spruce germination and growth
after CAP seed treatment [141]. A DBD planar geometry plasma reactor with an RF
power supply system was used in the experiment [148]. The researchers found that most
treatments accelerated the germination rate of spruce seeds in cassettes, whereas in vitro
germination decreased. The seeds were processed for 2, 5, and 7 min. Such treatment
in combination with the application of EMF induces changes in H2O2 concentration in
germinating seeds. Ivankov et al. used the same approach to study changes in the growth
and production of non-psychotropic cannabinoids induced by pre-sowing treatment of
hemp seeds [149]. In this case, plasma stimulated the in vitro germination rate under
laboratory conditions even up to 25%. The authors noticed that the treatment accelerated
growth in male plants and inhibited growth in female plants.

The Belarusian group investigated the effect of pre-sowing plasma treatment of maize,
narrow-leaved lupine, and winter wheat seeds on germination, disease resistance during
vegetation, and crop yield in laboratory conditions [146]. Filatova et al. employed the
DBD technique using a capacitively coupled 5.28 MHz plasma reactor. The seeds were
treated in an air atmosphere with an ambient pressure of 200 Pa, and a temperature of
37 ◦C. Treatment duration varied from 2 to 7 min. The researchers reported the decrease in
contamination of maize seeds with Penicillium spp. by approx. 21% after plasma treatment.
In addition, positive changes in germination and maize sprout length were observed. In
the case of lupine seeds, the plasma treatment caused the death of all C. gloeosporioides and
K. caulivora, and significantly reduced the amount of Cladosporium and Alternaria fungi.
After plasma treatment, winter wheat seeds demonstrated a reduction in contamination
with Alternaria and Fusarium fungi. Filatova et al. summarised the plasma treatment
effects as stimulation in germination and growth of seeds, fungal contamination reduction,
improvement in the yield of plants, and crop plant resistance enhancement.

3.2. Plasma Application in Biomedicine

Starting from the 1990s, the development of medical plasma has demonstrated re-
markable progress due to the increasing involvement of representatives of various scientific
fields, such as microbiology, bioengineering, biochemistry, bioelectronics, and theoretical
and applied electrical engineering [150–153]. The first principal plasma-in-medicine ex-
periments (late 1990s) were related to the examining of bactericidal properties of plasma.
The experiments were based on the DBD approach to inactivating bacteria on different
surfaces and liquids [154,155]. After the experiments, it was found that low-temperature
plasma (LTP) can be used not only for inactivating pathogens, but also for disinfecting
biological tissues and, in the long term, for wound healing. Due to the great interest in the
new interdisciplinary field, around 2005, the establishment of a plasma community was
noted [156].

The first successful clinical trials relating to chronic sores were observed in 2010 [157–159].
These promising results began the new era of plasma oncology experiments and included
in vitro and in vivo approaches for the assistance in killing cancer lines [160], therapy in
oral biofilm-related diseases [161,162], wound and tumour treatment [163,164], virus and
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infection treatment [165,166]. Figure 4 presents the most important LTP applications in
biomedicine and its expected effects.
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Figure 4. Schematic diagram of the LTP application spectrum and observed effects in biofilms,
wound, skin, cancer, and viruses, as well as implant surface treatment [166].

This section contains a brief review and exemplary experimental results from using
both approaches—direct and indirect plasma exposures—for the antimicrobial, wound
healing, tumour treatment, cell incubation and proliferation, dentistry, and veterinary
medicine plasma applications.

3.2.1. Antimicrobial Applications

Cold atmospheric plasma (CAP) has been considered quite an effective technique for
inactivation of pathogenic infections in humans and animals [166,167]. Numerous scientific
attempts demonstrated that LTP treatment can lead to the structure modification of proteins,
lipids of viral envelopes, and nucleic acids [168]. In 2010, Yasuda et al. investigated the
general mechanism of plasma inactivating microorganisms with the use of DBD devices
for CAP generation (described in detail in [169]). In this research, the tested samples
included poly(ethylene terephthalate) (PET) films soaked in gelatin and air-dried under UV
light. The discharge treatment of the sample caused a rapid decrease in the bacteriophages
(λ phages), while total inactivation was observed after 20 s exposure. It was also found that
protein DNA damage, gradually accumulating with an increase in the dose of plasma, is
responsible for phage inactivation.

In 2009, Terrier et al. published a paper that described the inactivation of human
and animal airborne respiratory viruses, such as respiratory syncytial virus (RSV), human
parainfluenza virus (HPIV-3), and influenza A virus subtype H5N2 [170]. Their experiment
was performed within the biozone technology, with the use of a cold-oxygen plasma-jet
device. Plasma-generated ozone was recognised as the main factor in the viral titre decrease
in all three studied viruses. The scientists suggested that ozone inactivation of viruses
occurs primarily as a result of the peroxidation of both lipids and proteins. Moreover, the
viruses demonstrated extreme sensitivity to ozone radicals.
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Zimmermann et al. reported that plasma-generated ROS/RNS species have an effect
on the DNA of adenoviruses and their immunogenicity [171]. In the study, a FlatPlaSter
CAP device, based on surface micro-discharge plasma electrode allowing plasma generation
under ambient conditions, was used. The researchers assumed that the ROS/RNS may
dissolve in the virus embedding fluid and inactivate the adenoviruses afterwards. The tests
also showed that 240 s plasma exposure was sufficient to significantly inhibit replication
and caused a drastic reduction in adenovirus concentration.

Niedźwiedź et al. suggested that plasma-treated solutions, such as H2O, NaCl
(0.9%), and H2O2 (0.3%), can assist in effective virus decontamination [168]. Together
with Liao et al. [172] and Klämpfl T.G. et al. [173], they describe the sensitivity of microor-
ganisms to plasma in the form of a pyramid, in which gram-negative bacteria show the
lowest resistance to plasma, and bacterial spores the highest (see [168]). The researchers
found that the sensitivity of certain groups of micro bio-objects highly depends on the
conditions of the treatment.

Figure 5 shows that the application of LTP on bacterial cells results in protein modifi-
cation, lipid peroxidation, DNA damage and cell leakage, and changes in cell morphology.
The reason w these changes take place is that plasma agents cause oxidative damage to
intracellular proteins, potassium, and nucleic acids. According to [99,153,168,174], LTP
may also cause the degradation and destruction of large protein and the peptide bonds of
the cell, leading to a decrease in their enzymatic activity.
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The applications of LTP on bacterial biofilms are studied in [175–177]. It was assumed
that the cell wall thicknesses may be correlated with the time duration of LTP treatment.
Moreover, the plasma sterilants inactivate biofilms by destruction of the extracellular matrix
and internal cell structure. However, ROS and RNS species could also cause undesirable
effects, such as cellular component destruction and bacterial death [178].

The impact of LTP on yeast species were studied in [179–183]. In [179], the results of the
inactivating effect of the DBD plasma of Enterococcus faecalis (Gram-positive), P. aeruginosa
(Gram-negative) bacteria, and Candida albicans yeasts was described. The researchers
reported that due to the differences in cell structure, C. albicans demonstrate higher plasma
agent resistance than the Gram-positive bacteria. Research [180] conducted on S. cerevisiae
cells with the use of dry air plasma generation exhibited a dependence between sterilisation
effectiveness and the plasma synthesis parameters (applied voltage, gas composition,
exposure time). References [181–183] inform that LTP can be efficient in inactivation of
enzymes associated with plasma-reactive species interaction with the secondary structure
of protein.
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3.2.2. Wound Healing

The main aspects of LTP plasma wound treatment rely on two types of mechanism:
physical, due to the effects of plasma-generated species, and biological, due to the processes
of cell-membrane degradation and modification of its DNA. Plasma efficiency in this area
is highly dependent on the possibility of inducing tissue regeneration and inactivating
microbial cells.

Dubey et al. [184] distinguished the following effects of plasma on wound heal-
ing: antimicrobial, self-healing, tissue remodelling, angiogenesis, anti-inflammatory, and
growing factors (Figure 6). The scientists also suggested that the main advantages of
nitride oxides generated from plasma are the prevention of tissue infection and promot-
ing its healing [185,186], anti-inflammatory properties, and remodelling and angiogen-
esis [187]. According to [188,189], NO, ROS, and H2O2 species contribute to regulating
re-epithelialisation and wound contraction. Plasma also causes the reduction in pH at the
infected zone [190]. One of the key factors of understanding effective plasma treatment in
wound healing is RONS interaction with cell membrane [189,191]. Plasma medicine in vitro
and in vivo applications on the diabetic wound also demonstrates healing stimulation after
helium gas plasma treatment [166].
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Bekeschus et al. in [62] developed the interdependency of wound characteristics, and
unknown or non-standardised gas plasma therapeutic schemes, which can lead to the
optimisation of wound therapy, but absolutely need clinical trials (Figure 7). The authors
found that the issue of LTP application on wounds is complex and depends on a large
number of factors such as: wound type, physical dimensions or volume, location, and
possibility of proper plasma delivery.

The important factors playing a decisive role in wound treatment are also wound
age and chronification, previous history of wound care [192,193], co-morbidities, immune
status [194], wound colonisation profiles, and antimicrobial resistance against drugs [195].
Based on this information, a similar variety of gas plasma therapy parameters (duration,
frequency, device type, gas mixture, etc.) must be taken into account to conduct safe and
effective wound therapy.
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3.2.3. Tumour Treatment

The most recent studies in the plasma oncology area are related to the direct application
of different cold plasma techniques to tumour cells [196]. The most important task in
tumour treatment lies in plasma-reactive species which are expected to penetrate several
layers of cell membrane [197–199]. Privat-Maldonado et al. [200] proposed a set of possible
events underlying the apoptosis mechanism (cell self-destruction when stimulated by the
appropriate trigger) in cancer treatment after cold plasma applications (Figure 8). Before the
treatment (Figure 8a), the catalyse (commonly widespread enzyme) protects the tumour cell
from the damage of oxidative ROS species. LTP plasma application activates the catalyse
by the singlet molecular oxygen 1O2 (Figure 8b). When plasma treatment is finished, the
cytotoxic effect, formation of apoptosis bodies, and apoptosis induction can, afterwards, be
observed (Figure 8c).
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Figure 8. Proposed set of events forming the basis of the mechanism of apoptosis induction in
selective LTP cancer treatment [200]: (a) before plasma treatment, (b) plasma treatment, (c) after
plasma treatment.

Figure 9 presents one the most successful approaches for plasma penetration into the
tumour core. It allows the execution of an effective plasma application, focal with limited
surgical invasion, and destroys the tumour radially from the inside. This concept was
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proposed in Hirst et al. [196,201]. The investigators suggested that this technique ensures
enhanced targeted treatment of a tumour and controls tumour volume destruction. The
efficiency of the concept depends on the plasma source and its synthesis parameters, such
as voltage waveform, gas composition, and treatment duration.
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A group of Korean scientists conducted research on T98G brain cancer cells [202–204].
They observed the cytogenetic damage in T98G brain cancer cells upon exposure of DBD
plasma discharge. They also reported the influence of exposure and incubation times on
the studied cells [202]. The experiments show that the micronucleus formation rate is
highly dependent on the plasma exposure time. During the experiment, the cells were
exposed to 30, 60, 120 and 240 s plasma treatment. The first two exposure times show less
effectiveness than the longer times of 120 and 240 s. The maximal effect was observed with
240 s exposure, which inhibited the growth of cells even up to 80% at 48 and 72 h incubation
after treatment [203]. Plasma-treated cell viability was found to be significantly dependent
on incubation time. The authors also compared the impact of DBD plasma exposure on
cancer cells and normal human embryonic kidney cells (HEK). They concluded that the
treatment is much more toxic on T98G cells than on HEK cells. The best results were
obtained in the case of exposure times less than 120 s, which demonstrated viability above
75%. Plasma treatment of normal cells for a longer time duration reduces their viability
to approximately 45%. Moreover, the researchers found that plasma exposure can lead to
irreversible changes in DNA, mitochondrial impairment, and caspase activation resulting
in cancer cell death [204].

3.2.4. Dentistry Applications

Cold plasma exhibits a great potential for use in dental science. The first LTP ap-
plication in dentistry was likely associated with sanitisation and disinfection of dental
instruments [101,205]. Clinical equipment containing cold plasma devices or modules does
not cause the vibrations, which leads to reduced pain perception by the patient [206]. In
addition, the advantages of LTP use in dentistry are pathogenic bacteria degradation and
non-inflammatory tissue alteration for dental cavities and composite restorations [207].
Furthermore, in comparison with conventional techniques, such as laser or drills, plasma
strengthens the chemical bonding between teeth and fillings.



Appl. Sci. 2022, 12, 4405 19 of 30

In addition, LTP is used for root canal disinfection and tooth bleaching [208]. Table 4
contains the different types of LTP plasma sources and their applications in dental science.
Generally, cold plasma treatment processes in dentistry can be divided by their applications:

• Sterilisation: relies on killing viruses, bacteria, fungus, and bacterial endospores.
Its effectiveness depends on plasma gas composition, microbial stain, or driving
frequency. It is a well-established technique for the treatment of a wide range of
instruments [209,210].

• Dental caries: using plasma in dental cavities without generation of heat, vibration,
or noise. Plasma therapy is considered to be a popular tissue-saving approach for
cleaning root canals within the damaged tooth; it generates bactericidal agents lo-
cally [211,212].

• Root canal disinfection: easy-to-use plasma jet devices generate plasma radiation
inside the root canal without any pain. Such plasma treatment can effectively kill the
bacteria responsible for failures of canal cleaning [213,214].

• Tooth bleaching: atmospheric pressure plasma used with OH radicals can erase coffee
and alcohol staining from extracted teeth [100,215]. Low-frequency plasma sources in
combination with OH can eliminate intrinsic stains [216]. They can also be used for
preliminary treatment of deionised water for the target tooth [217].

• Clinical removal of biofilms: LTP makes possible the breaking down of biofilm matrices
without harming the tissues [208], removing biofilms from dental implants [212]. It is
also useful in decontamination of root canal biofilms and dental slices [213].

• Polymerisation: curing composite resin by using plasma. The LTP brush has already
been tested for polymerised self-etch adhesives [214].

• Implant modification: LTP enhances surface roughness and wettability, leading to
cell adhesion [218]. Plasma also helps in reducing the angle of implant contact and
supports the spread of osteoblastic cells [219].

• Other processes: periodontal disease assistance [220,221], enhancing of bond strength
between fibre-reinforced posts and resin composites for core building [222], mouth
wound healing [223], intraoral disease curing, etc. [224].

Table 4. Plasma applications in dentistry [205].

Dental Science Applications Source of Plasma/Plasma Devices Biological Models References

Dental canal disinfection Plasma jet device/He; He/O2 Human extracted tooth [225]
Dental canal disinfection Plasma jet device/Ar/O2 Human extracted tooth [226]

Improvement of dental structures
Plasma brush/Ar; low pressure plasma

device/O2, Ar, N2, and He + N2;
HDBD device/Ar; plasma jet device

Human extracted tooth [227–229]

Biofilm reduction Kinpen MED® plasma jet/Ar
In vitro (bacteria,

lab condition) [161]

Biofilm reduction on titanium discs
Three different types of CAP devices:
(a) kINPen plasma jet/Ar; (b) HDBD

device/Ar; (c) VDBD device/Ar

In vitro (bacteria, lab
condition), extracted tooth [230]

3.2.5. Veterinary Medicine

The vast majority of medical research, whether laboratory or clinical using non-thermal
plasma, concerns research involving humans. A comparatively small number of articles
report experiments already carried out on animals to improve their health problems related
to pathogens, bacteria, wound healing, and other ailments for which human-aimed plasma-
treatment methods have already been found. Nevertheless, dermatologists from Cummings
School of Veterinary Medicine at Tufts University (Grafton, MA, USA) reported that the
CAP can be used to treat skin wounds on all types of animals, from cats and dogs to horses,
birds, farm animals, and even exotic animal species [231]. The scientists use the kINPen
plasma jet for painless treatment of cat and dog superficial skin infections, benign skin
growths, chronic wounds, etc.
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Nonthermal atmospheric plasma can also be useful in canine osteosarcoma treatment,
especially in large breeds [232]. This is a primary bone tumour which usually arises in the
bones of the limbs, skull, spine, or ribcage, and in rare cases arising in non-boney tissues.
Lee et al. presented research where D-17 and DSN canine osteosarcoma cell lines subdued
to DBD CAP treatment were studied. The authors suggested both lines of DNA damage
were caused by ROS plasma agents in a time-dependent manner. Moreover, further CAP
treatment resulted in induction of cells apoptosis, inhibition of the invasion, and migration
activity of cells.

The most widespread pathogens that cause bacterial skin and ear infections, such as
canine pyoderma and otitis in dogs are Staphylococcus spp. (Gram-positive bacteria), and
Pseudomonas aeruginosa, Proteus spp., and Escherichia coli (Gram-negative bacteria) [233,234].
Jin et al. [235] presented the application of cold atmospheric microwave plasma (CAMP)
on Staphylococcus pseudintermedius field strains, obtained from dog skin with pyoderma and
ears with otitis externa. Plasma-generation parameters included argon gas, a microwave
energy range of 30–50 W, power supply frequency of 2450 Mhz, and gas flow rate af-
ter ionisation of 10–20 L/min. The experiments showed that 30 W CAMP-treatment of
P. aeruginosa, E. coli, and S. aureus at 10, 30 and 60 s exposures caused a very significant
survival rate reduction, even up to 0.7–0.8% (60 s of treatment). All studied organisms,
except S. aureus, were completely killed after 60 s of plasma exposure in 50 W mode. To kill
S. aureus cells, an additional 120 s of treatment was given.

A novel therapy method using non-invasive physical plasma (NIPP) treatment was
developed by a German scientific group. Nitsch et al. presented research on NIPP exposure
applied to a hedgehog with a head injury [236]. The experiment was carried out with
a male European hedgehog with a head wound of unknown aetiology. NIPP treatment
was performed in combination with conventional pharmacological wound therapy that
relied on primary wound cleansing with octenidine, and antibiotic therapy with amoxicillin
after the first plasma treatment. The Plasma Care NIPP device from Terraplasma Medical
(Garchingen, Germany) was used for NIPP generation. The therapy lasted 12 days until
complete wound closure. The plasma treatment was carried out every for 3–4 days with
durations of 1 to 3 min. The authors concluded that the combination of common wound
care and NIPP showed much better results than each of these approaches separately. This
combined technique can also be applied for wound and tissue healing in dogs [237].

The optimisation of wound healing in sheep with the use of low-temperature atmo-
spheric plasma was recognised as an innovative therapeutic method for extensive and
chronic wound treatment [238]. Martines et al. studied square wounds (4 × 4 cm) on sheep
backs under 2 min of daily indirect plasma treatment, using the radiofrequency plasma
source described in [239]. They reported an increase in cell proliferation, a reduction in in-
flammation, a drastic reduction in bacterial load, and stimulation of blood vessel formation,
after the completed plasma therapy.

4. Summary and Prospects

The antimicrobial properties of plasmas in the case of decontamination of water,
ambient air and surfaces, as well as in biomedical treatment, is widely proven, as evidenced
by numerous scientific publications, but also by the many examples of practical and, in the
case of biomedicine, clinical applications.

AOTS using ozone in combination with other strong active species, such as hydrogen
peroxide, hydroxyl radicals, and UV radiation, can be successfully applied to combat
bactericidal pollution of soils and allow for a synergetic effect. The contamination of soils
in public grounds and in agriculture with various microorganisms, including parasite eggs
from pets and wild animals, in both developing and developed countries, raises public
concern. The influence of ozone in the air and soil on seed and plant development has
been broadly investigated. Ozone injected into previously oversaturated soil was reported
to be beneficial for the growth of tomatoes and certain fungi, as well as for the treatment
of seeds and bulbs, causing 15–20% disease immunity enhancement of cotton plants and
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an improvement in the morpho-biological and technological parameters of cotton fibre,
12–15% higher grain yield with better quality of corn grain, and over 60% improvement
in bean seed germination. After-flood agricultural soil should not be cultivated for three
or more years to prevent crop contamination. However, the application of AOT-based
treatment techniques significantly shortened this period.

The use of non-thermal plasma in biomedical applications is very promising and
has aroused great interest in recent years. Non-thermal plasma has been explored for
its potential use in wound healing, skin cancer treatment and viral, bacterial, and fungal
sterilisation. The advantage of plasma technology is its high degree of versatility and
adaptability. Non-thermal plasma can be generated in a wide range of energies, in a variety
of gases, and using an increasing variety of generators. This multitude of parameters
related to plasma production allows for fine-tuning of the nature, quality, and intensity of
the produced plasma to specific biomedical needs. Plasma reactors generating plasma at
atmospheric pressure can be built in various shapes and sizes, with the use of various types
of electrical discharges (i.e., DBD, APPJ, CD, PN, ARC and GAD, PT, and MWD).

Plasma biomedicine and agriculture are newly discovered, promising, and rapidly
developing areas of science and engineering. Plasma in biomedicine focuses on the mech-
anisms of plasma agent interaction with cells and cellular structures. A deeper under-
standing of this topic should bring new results in tumour and skin disease, dental sciences,
wound healing, antimicrobial treatments, dermatology, and oncology.

Cold atmospheric plasma demonstrates great potential for applications in seed germi-
nation, seed decontamination, plant disease control, water cleaning, water activation with
minerals, and soil purification. In the food industry, plasma can contribute to inactivating
different pathogens in food products, increasing lipid oxidation and acidity of products,
reducing colour intensity, and increasing fruit firmness.

For the last 20 years, interdisciplinary teams have been working on plasma and its
potential to solve agricultural and biomedical problems. They include scientists in the field
of chemistry and physics, chemical technology, environmental engineering, agricultural
engineering, biochemistry, microbiology, medicine, bioengineering, metrology, materials,
and electrical engineering.
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