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Abstract: Identifying built environment barriers to walkability is the first step toward monitoring and
improving our walking environment. Although conventional approaches (i.e., surveys by experts
or pedestrians, walking interviews, etc.) to identify built environment barriers have contributed to
improving the walking environment, these approaches may require time and effort. To address the
limitations of conventional approaches, wearable sensing technologies and data analysis techniques
have recently been adopted in the investigation of the built environment. Among various wearable
sensors, an inertial measurement unit (IMU) can continuously capture gait-related data, which can
be used to identify built environment barriers to walkability. To propose a more efficient method,
the author adopts a cascaded bidirectional and unidirectional long short-term memory (LSTM)-
based deep recurrent neural network (DRNN) model for classifying human gait activities (normal
and abnormal walking) according to walking environmental conditions (i.e., normal and abnormal
conditions). This study uses 101,607 gait data collected from the author’s previous study for training
and testing a DRNN model. In addition, 31,142 gait data (20 participants) have been newly collected
to validate whether the DRNN model is feasible for newly added gait data. The gait activity
classification results show that the proposed method can classify normal gaits and abnormal gaits
with an accuracy of about 95%. The results also indicate that the proposed method can be used to
monitor environmental barriers and improve the walking environment.

Keywords: deep recurrent neural network (DRNN); long short-term memory (LSTM); walkability;
wearable sensing; inertial measurement unit (IMU)

1. Introduction

Promoting physical activity is crucial for citizens’ physical and mental well-being [1].
Considering citizens’ daily physical activities, walking is the most common activity [2,3].
Thus, it can be regarded that walking more is linked to a healthier life. Various studies have
indicated that walking has also been related to health benefits such as reducing obesity [4–6],
managing diabetes [7,8], improving cardiovascular health [9,10], and improving people’s
quality of life [11,12].

Considering that citizens’ daily physical activities generally occur in the built en-
vironment, it is essential to provide a proper built environment for physical activities
and walking. To provide a proper built environment for improving walkability, there are
two approaches: promoting facilitators and eliminating environment barriers [13]. Even if
a walking environment can include sufficient facilitators, people may be hesitant to walk in
a walking environment with barriers. Although walkability is a highly complex concept
because the overall walkability of a specific environment (e.g., sidewalk or street) is the
combination of multi-dimensional features, it is clear that environment barriers should be
identified and eliminated to improve walkability [14,15].

To identify environmental barriers, government agencies have tried to apply various
approaches such as inspection by experts, survey by pedestrians, walking audits, and
self-reporting by pedestrians [15,16]. Although these approaches have contributed to
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identifying numerous types of environment barriers, there may be several problems. First,
these conventional approaches require time and a budget [14,15]. Especially, inspection
by experts requires excessive financial expenditure when a governmental agency needs
to monitor a walking environment in a continuous manner [15]. Second, in the case of
self-reporting or interviews with pedestrians, there may be a subjective bias depending on
the sampling of pedestrians participating in the survey [17]. Finally, these methods may
omit specific environmental barriers since the conventional approaches are performed in
an interval manner. For example, some barriers are constant objects (e.g., broken sidewalk)
and others are spatial-temporal objects (e.g., a moving bike on a sidewalk).

To date, the advancements in sensing technologies can offer an opportunity for
overcoming the limitations of the conventional approaches mentioned above. There
are two main streams to identifying environment barriers. The first is a vision-based
approach. Various methods have been developed to detect potential environment barri-
ers. Generally, vision-based approaches have analyzed images of various environmental
conditions [18–20]. In the analysis process, the approaches have been driven by rule-based
criteria such as defective sidewalk regulations [15]. However, the environmental barrier is
a relative concept, since each individual has their own characteristics, and there may be
various situational contexts in the built environment [21,22]. Therefore, it is challenging to
detect environmental barriers to walkability using one objective criterion [14]. In addition
to analyzing images of the walking environment, vision-based approaches can automatedly
collect human behaviors that interact with external environmental conditions. Although
these approaches have the potential to solve the problems of the conventional methods,
the vision-based approaches may go through struggles from the process of collecting
scenes that represent interactions between a pedestrian and a walking condition. There
are two ways to collect pedestrians’ gait images: shooting a walk scene (i.e., closed-circuit
television (CCTV) or an experimenter takes photos) and mounting a camera on a pedes-
trian. The first method can require lots of CCTV or experimenters that may be costly and
labor-intensive. In addition, the first method cannot capture an exact gait scene when an
interaction between a pedestrian and a walking condition occurs.

The second approach is to utilize wearable sensors. Considering human behaviors dur-
ing walking are affected by external conditions, abnormal external conditions that can be
understood as an environmental barrier may cause abnormal behaviors in pedestrians [23].
The previous studies have already proven that there is a change in human behavior or
response in the presence of external stimuli. For example, Kim et al. [15] investigated
the relationship between abnormal behaviors and defective sidewalks by using pedes-
trians’ walking data collected from an inertial measurement unit (IMU). Bisadi et al. [24]
investigated the relationship between environmental barriers and physiological data such
as the average of the Maximum Lyapunov Exponential (MaxLE) and heart rate values.
Kim et al. [25] used various wearable sensors (i.e., EDA, gait patterns calculated as MaxLE,
and blood volume pulse) to evaluate the neighborhood built environment. Zeile [26]
measured walkability by combining biosensors and geospatial analysis.

Although the above-mentioned studies presented the potential uses of wearable
sensors for detecting environment barriers by using physiological data, they mainly focused
on the magnitude of signals. Human gaits are very diverse under the conditions of
the walking environment. Human gait patterns are usually constant when there is no
environment barrier. On the other side, the gait patterns on environment barriers may
become abnormal [14–16].

Therefore, if we can differentiate between abnormal gaits and normal gaits, we can find
the environmental barriers that cause abnormal gaits. Existing wearable-based methods
mainly used the intensity of the response to differentiate between abnormal gaits and
normal gaits [27]. Although the existing method has shown sufficient potential to detect
the hazard, the intensity-based approach to the reaction does not sufficiently consider the
various types of human gait. For example, some people may be very wary of environmental
barriers (weakening the intensity of their responses), while others may be more sensitive to
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environmental barriers [28]. A method that can distinguish abnormal gaits from normal
gaits, including these personal characteristics, is needed.

The recent development of wearable sensor-based human activity recognition (HAR)
can provide an opportunity to address the current limitations of environmental barrier
identification. The HAR technology has generally been formulated [29]. As shown in
Figure 1, the general data-processing flow for HAR consists of (1) collecting the activity-
related data from wearable sensors during performing activities, (2) extracting relevant
features that can describe the sensed information, (3) using a learning method using labeled
data, and (4) applying the learning method to new unknown data for HAR [29,30].
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In the early stages of HAR research, previous studies mainly used two approaches
to extract features from time-series data: statistical and structural [31]. These approaches
are hand-crafted methods that transform the raw data into particular pre-defined descrip-
tors [32]. Hand-made features and shallow learning algorithms have been used to classify
activities [33]. A shallow learning algorithm can be defined by the low depth of the paths
of trainable units between the input and output layers [34]. When the low depth of a
shallow learning algorithm becomes deeper, the algorithm turns to deep learning architec-
ture. Recently, there have been lots of deep learning approaches for wearable sensor-based
HAR [35–39].

In the early stages of applying deep learning methods, deep belief networks (DBNs)
were used [40]. DBNs were built by staking multiple layers of a restricted Boltzmann
machine (RBM). Afterwards, DBN-based models implemented a hidden Markov model
(HMM) on top of the RBM layer to exploit the unique temporal sequences of human
activity [41]. However, HMMs are limited by the number of possible hidden states
and are impractical when modeling long-range dependencies in large context windows.
Zeng et al. [42] proposed convolutional neural networks (CNNs) for HAR. Although the
suggested model presented the possibility of the CNN model for HAR [42], they used a
shallow model, not a deep learning model. CNN models using a deep learning model can
classify various human activities because CNN models can learn robust and identifiable
features and capture local dependencies between nearby input samples by utilizing convo-
lution over one-dimensional time sequences [29,43]. CNNs use time-dependent parameter
sharing and local connections between adjacent layers to capture local dependencies [44].
However, sharing parameters over time is insufficient to capture all correlations between
input samples. Local connectivity limits the output in a function of a small number of
neighboring input samples [45–47].

A DRNN model was proposed to utilize the internal memory to capture the temporal
dynamics of the activity sequence. Inoue et al. [48] optimized DRNN to achieve high
throughput and short recognition time. In particular, the authors proved that the DRNN
model is a suitable method for HAR by comparing the time taken by the existing shallow
learning models such as support vector machine (SVM) and decision tree with the time
taken by the optimized DRNN model. In addition, when using only DRNN without using
CNN in HAR, DRNN has the advantage of responding to window sizes of various lengths
instead of the fixed-length window size required by CNN. Considering that the length of
the gait pattern (i.e., stride length) varies from individual to individual, it is judged that the
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DRNN model can distinguish between normal gaits and abnormal gaits. A representative
study that showed this possibility is the study of Murad and Pyun [45]. This study proposed
a unidirectional, bidirectional, and cascaded long short-term memory (LSTM) architecture
based on data collected from wearable sensors. All three methods showed excellent HAR
performance, but the author decided to apply the cascaded LSTM-DRNN model in this
study. The reason for using this model is that Murad and Pyun [45] showed a higher F1
score compared to KNN or CNN in the Daphent Freezing of Gait Data Set (Daphnet Fog),
which is data for classifying gait patterns in people with Parkinson’s disease.

This study aims to identify the environmental barrier through the classification of
normal gaits and abnormal gaits caused by the environmental barrier using wearable sensor
data. To this end, the author labels and applies the experimental data performed in the
author’s previous study [27] to the cascaded LSTM-based DRNN model [45,49] for training
and testing the model. Afterward, the feasibility of the model for new data is checked by
applying the data of the experiments conducted at the same site to the built model.

The remaining parts of this paper are organized as follows: Section 2 introduces the
methodology, including how the wearable sensor-based gait data collects, how the cascaded
LSTM-based DRNN model is composed, and how the model is trained and tested. Section 3
illustrates the results of (1) testing and training the model and (2) investigating the relation-
ship between the presence of an environmental barrier and HAR results (normal/abnormal
gaits). Several discussion points are presented in Section 4. Section 5 wraps up this study
and suggests future research.

2. Methodology
2.1. Research Framework

Figure 2 illustrates the research framework. The framework proposed in this study is
mainly composed of four parts. The first part is data collection using a wearable device
from participants (i.e., a chest-mounted camcorder for collecting ground truth, a pocket
held smartphone for tracking the participant’s location using a global positioning system
(GPS), and an ankle attached IMU sensor for securing 3-degree of acceleration and angular
velocity respectively). Second, the experimenter attaches the equipment and walks along
the set path at the test site, and the attached equipment collects data in this process. The
data collection process in this study can be divided into two main categories. In the author’s
previous study, 101,607 gaits were collected from 64 participants on the same site. The
previously collected data is used to train and test the cascaded LSTM-based DRNN model.
In addition, to check whether the cascaded LSTM-based DRNN model constructed in this
study is feasible even for new data, 31,142 gaits collected through other subjects in the same
experiment were collected. All data collected were obtained from O’Connor et al. After
classifying them into individual gaits through the gait detection algorithm proposed by
O’Connor et al. [50], they were labeled as normal gaits and abnormal gaits according to
the ground truth and gait pattern. The third part determines the number of hidden layers
by inputting the gait data collected in the previous study into the cascaded LSTM-based
DRNN model. The data collected in the previous study are processed by dividing it into
training data (80%) and test data (20%) through random sampling. The last part performs
activity classification on the proposed model by using the newly collected data in this
study as test data and finally confirms the relationship between the classification results
and the environmental barrier. In the following sections, the details of each part will be
elaborated on.
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2.2. Experiment Design and Data Collection

To achieve the purpose of this study, participants were recruited twice, and they were
asked to walk a distance of 1.80 km while wearing the three types of equipment presented
above. All the subjects participated in this study after giving informed consent approved
by the Dankook University Institutional Review Board. In the informed consent, there
were detailed explanations including the objectives of the experiment, the experimental
procedure, and the right to stop the experiment whenever a subject wants to. The experi-
mental site was the same as the site of the author’s previous study, and Figure 3 presents a
graphical summary of the previous study. The experimental site’s data collection process
and environmental features are presented in detail in previous studies [27]. In this study,
the gait data were collected by a commercial wearable sensor (Opal sensor with 1.15 degree
of roll/pitch static accuracy, 1.50 degree of heading static accuracy, 2.80 degree of dynamic
accuracy) produced by APDM Inc. In addition, the gait data collected by using this sensor
were highly correlated with a motion-tracking system [51].

The first experiment consisted of 64 participants, and the second experiment consisted
of a total of 20 participants. Participants in both experiments were different people; those
who participated in the first experiment did not participate in the second experiment.
To recruit participants from their 20s to 50s, people who were engaged in running club
activities were recruited. Members of the senior gateball club were recruited to secure
participants aged over 60. A total of 84 people applied, and all volunteers were healthy
enough to walk 1.8 km without difficulty.

The participants’ ages and genders in the first and second experiments are presented
respectively in Table 1.

Table 1. Age and Gender of Participants.

Participants of 1st Experiment Participants of 2nd Experiment

Age Male Female Total Male Female Total

20s–30s 16 13 29 4 2 6
40s–50s 8 8 16 5 4 9

Over 60s 10 7 17 2 3 5
Total 34 28 64 11 9 20
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2.3. Cascaded Unidirectional and Bidirectional LSTM-Based DRNN Model for HAR

A recurrent neural network (RNN) is composed of cyclic connections that can learn
the temporal dynamics of sequential data. As the data collected from gaits using an IMU
sensor are sequential, RNN may be suitable for classifying normal and abnormal gaits.
However, training regular RNNs can be challenging due to vanishing or exploding gradient
problems which interfere with the network’s ability to backpropagate gradients over long
time intervals [52,53]. To solve this problem, LSTM-based RNNs were suggested [54–56].
However, LSTM-based RNNs can replace traditional nodes with memory cells with internal
and outer recurrence to the model temporal sequence and a wide range of dependencies.
The architecture of an LSTM cell is presented in Figure 4.
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The architecture in Figure 4 is defined as the following Equations (1)–(6). The training
process of an LSTM-based DRNN is focused on the parameters b, U, and W of the cell gates.

ft = σ
(

W f xt + U f ht−1 + b f

)
(1)

it = σ (Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

gt = σ
(
Wgxt + Ught−1 + bg

)
(4)

ct = gt � it + ft � ct−1 (5)

ht = tanh(ct)� ot (6)

The � symbol represents the Handarmard product (element-wise multiplication of
vectors), and the σ symbol represents the sigmoid function. All the LSTM cells in each layer
share the same weights (Wf, Uf, Wi, Ui, Wo, Uo, Wg, and Ug and biases bf, bi, bo, and bg). The
output of each LSTM cell is used as the input for the next cell. Moreover, the outputs of
each LSTM cell in the first layer in the DRNN are fed as inputs to the second layer.

The suggested LSTM-based DRNN model consists of two types of LSTM networks,
unidirectional and bidirectional, as shown in Figure 5. The model includes four types of
layers in which the first layer is bidirectional and the upper layers (second, hidden, and
output layers) are unidirectional RNNs.
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The first layer includes two parallel LSTM tracks. In the first layer, there are forward
LSTMs (sky-blue boxes) and backward LSTMs (green boxes). The sequences such as x1,
x2, . . . , xt are inputted in the first layer; the sequences are inputted to forward LSTMs and
backward LSTMs, respectively. After inputting sequences, the LSTMf1 (forward LSTM)
generates an output (y f 1

1 , y f 1
2 , · · · , y f 1

T ) and the LSTMb1 (backward LSTM) generates an
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output (yb1
1 , yb1

2 , · · · , yb1
T ). The two types of outputs from forward and backward LSTM

are concatenated to generate a new output (y1
1, y1

2, · · · , y1
T) that is inputted into the second

layer. This process of bidirectional LSTM follows Equations (7)–(9).

y f 1
t , h f 1

t , c f 1
t = LSTM f 1

(
c f 1

t−1, h f 1
t−1, xt ; W f 1

)
(7)

yb1
t , hb1

t , cb1
t = LSTMb1

(
cb1

t−1, hb1
t−1, xt ; Wb1

)
(8)

y1
t = y f 1

t + yb1
T−t+1 (9)

The second layer is a unidirectional LSTM structure. The concatenated output
(y1

1, y1
2, · · · , y1

T) are inputted to the second layer. After inputting the concatenated output,
the second, the hidden, and output layers are operated as following a general process of a
unidirectional LSTM-based DRNN.

3. Results
3.1. Data Labelling and Model Training/Test using First Dataset

The HAR method for walkability measurement suggested in this study has been
validated using the two types of data sets described in the previous section. The suggested
LSTM-based DRNN model was trained using 80% of the first data set (64 participants).
Then, the rest of the first data set (20% of data) was used to test the training model.
While training the model, the binary cross-entropy error between ground truth labels and
predicted output labels was used as a cost function because binary cross-entropy error is
generally adequate to the backward LSTMs, and the number of label types is two (normal
and abnormal gait). The ground truth labels were analyzed by (1) six experts (who were
orthopedic surgeons with a specialty in gait analysis) for determining normal and abnormal
gaits and (2) the gait detection algorithm [50] for the segmented windows that are fed to
the first layer. The labeled data are provided as a one-hot vector.

There are several popular optimization algorithms, such as SGD, RMSProp, AdaGrad,
AdaDelta, Adam, Adamax, and Nadam. Nadam was selected to minimize the cost func-
tion among these optimization algorithms by backpropagating its gradient and updating
model parameters since Nadam outperformed other optimization algorithms in binary
classification [57]. To avoid an overfitting problem, both the dropout technique and the
batch normalization technique were used [58,59].

Figure 6 presents the accuracy and binary cross-entropy cost of training and testing
using the first dataset. As shown in Figure 6a, the gap in accuracy between training and test
y is very small. In addition, the binary cross entropies of training and test are very similar,
as shown in Figure 6b. The results indicate that the Nadam, the dropout technique, and the
batch normalization technique effectively generalize the suggested model and avoid an
overfitting problem.
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3.2. Model Test Using Second Dataset

In the results of training and testing using the first dataset, it may be considered that
both accuracy and binary cross-entropy cost are acceptable. However, it is crucial for the
suggested model to investigate the feasibility of newly added gait data since the method
can be operated for monitoring the conditions of the walking environment where lots of
newly added data are generated. In this consideration, the second dataset is inputted into
the suggested model. The second dataset was collected at the same experimental site as the
first dataset, but not with the same participants. Thus, the second dataset can be used to
check whether the trained model is feasible for newly added data. Figure 7 presents the
test results using the second dataset. In Figure 7, both test results using the first and second
datasets are presented for comparison to each other. The result of the test accuracy of the
second dataset is very similar to that of the first dataset, as shown in Figure 7a. Figure 7b
presents that there is a small gap between the binary cross-entropy cost of the first dataset
(for a test) and that of the second dataset. This comparison between two datasets indicates
that the suggested model can be effectively operated using newly added data.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 15 
 

dataset (for a test) and that of the second dataset. This comparison between two datasets 
indicates that the suggested model can be effectively operated using newly added data. 

 
Figure 7. Accuracy and cost of testing using the first and second dataset: (a) accuracy (red line for 
the first data set and green line for the second dataset); and (b) binary cross-entropy cost between 
ground truth and predicted labels for test (red line for the first data set and green line for the second 
dataset). 

In this study, two gait classes are used: Normal Gait and Abnormal Gait. To analyze the 
performance of the model in more detail, the gait classification results are analyzed. Fig-
ure 6 shows the classified activities and performance metrics of both the first and second 
datasets. The test results of the first dataset as shown in Figure 8a present 96.8% accuracy, 
99.2% precision, 96.4% recall, and 0.978 F1-score. The test results of the second dataset also 
show very similar results to that of the first dataset (see Figure 8b). These two test results 
with high values of performance metrics such as accuracy, precision, recall, and F-1 score 
indicate that the suggested model can distinguish between normal and abnormal gaits. 
This result may lead us to allow the gait classification method to monitor the walking 
environment and identify environment barriers hindering pedestrians’ walkability. 

 
(a) (b) 

Figure 8. The test results and performance metrics: (a) gait classification results and performance 
metrics of the test results of the first dataset; and (b) gait classification results and performance met-
rics of the test results of the second dataset. 

3.3. Investigating of Relationship between Envrionment Barriers and Gait Classification Results 
By analyzing the gait classification results conducted in the previous section, it can 

be considered that the performance of gait classification is confirmed. However, one more 
thing is needed to use the proposed pedestrian environment monitoring and environmen-
tal barrier identification method. This study investigates the relationship between the 
presence of environmental barriers and the ratio of abnormal gaits in a specific location. 

To confirm the feasibility of the suggested method, the three relationships between 
the presence of environment barriers and the ratio of abnormal gaits (ground truth, first 
dataset, and second dataset, respectively) are measured. The ratio of abnormal gaits in a 

Figure 7. Accuracy and cost of testing using the first and second dataset: (a) accuracy (red line for the
first data set and green line for the second dataset); and (b) binary cross-entropy cost between ground
truth and predicted labels for test (red line for the first data set and green line for the second dataset).

In this study, two gait classes are used: Normal Gait and Abnormal Gait. To analyze
the performance of the model in more detail, the gait classification results are analyzed.
Figure 6 shows the classified activities and performance metrics of both the first and second
datasets. The test results of the first dataset as shown in Figure 8a present 96.8% accuracy,
99.2% precision, 96.4% recall, and 0.978 F1-score. The test results of the second dataset
also show very similar results to that of the first dataset (see Figure 8b). These two test
results with high values of performance metrics such as accuracy, precision, recall, and F-1
score indicate that the suggested model can distinguish between normal and abnormal
gaits. This result may lead us to allow the gait classification method to monitor the walking
environment and identify environment barriers hindering pedestrians’ walkability.

3.3. Investigating of Relationship between Envrionment Barriers and Gait Classification Results

By analyzing the gait classification results conducted in the previous section, it can
be considered that the performance of gait classification is confirmed. However, one more
thing is needed to use the proposed pedestrian environment monitoring and environmental
barrier identification method. This study investigates the relationship between the presence
of environmental barriers and the ratio of abnormal gaits in a specific location.
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To confirm the feasibility of the suggested method, the three relationships between the
presence of environment barriers and the ratio of abnormal gaits (ground truth, first dataset,
and second dataset, respectively) are measured. The ratio of abnormal gaits in a specific
location (cell) is a continuous variable, whereas the presence of environment barriers can be
represented as a binary variable (existence as one and absence as zero). To investigate the
relationship between the presence of environmental barriers and the ratio of abnormal gaits
statistically, the point biserial correlation coefficient is used in this study. This coefficient
is usually used when one is dichotomous and the other is continuous [60,61]. The point
biserial coefficient is calculated using Equation (10) as follows:

rpb =
(M1 − M0)

√
(n1n0/n2)√

1
n

n
∑

i=1
(Xi − X)

2
(10)

where rpb is the point biserial correlation coefficient, M1 is the mean value of the continuous
variable X (ratio of abnormal gaits) for all data points in group 1 (existence of environment
barrier), M0 is the mean value of the continuous variable X (ratio of abnormal gaits) for all
data points in group 2 (absence of environment barrier), n1 is the number of data points in
group 1, n0 is the number of data points in group 2, and n is the total sample size.

The point biserial coefficient calculation results are presented in Table 2. The three cor-
relation results present correlation coefficients over 0.7 and statistical significance (α < 0.005,
p = 0.001). A correlation coefficient greater than 0.7 indicates a high degree of correlation.
The results showed that the ratio of abnormal gaits and the existence (presence and absence)
of environmental barriers are highly correlated. These correlation coefficients of the three
types of data sources and the existence of environmental barriers are very similar. This
means that the suggested method can both (1) classify normal and abnormal gaits and (2) be
feasible to newly added data for robust DRNN-based walking environment monitoring.

Table 2. Correlation between environment barriers and three types of ratio of abnormal gaits.

Correlation
Coefficient

Ratio of Abnormal Gaits

Ground Truth First Dataset Second Dataset

Environment Barrier 0.760 0.742 0.735
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4. Discussion
4.1. Contributions and Future Applications of the Suggested Method for Walking Environment

Considering the human gait’s characteristics, the more abnormal gaits in a specific
location may indicate the existence of an environmental barrier to walkability. The sug-
gested method can classify pedestrians’ normal and abnormal gaits. If pedestrians’ gait
data on a daily walking environment are collected, then a certain location with a higher
ratio of abnormal gaits than other locations can be a candidate that needs to be investigated.
This process can help government agencies to determine how an environmental barrier
should be handled. In addition, the suggested method can provide the basis for continuous
monitoring of the built environment. Therefore, the major contributions of this study can
be summarized as follows:

1. The wearable data show that normal gaits and abnormal gaits in a walking environ-
ment can be distinguished through the cascaded LSTM-based DRNN model.

2. In terms of monitoring the walking environment, it is suggested that the built model
can distinguish between normal gaits and abnormal gaits even when new data
is inputted.

3. In a specific location, the high correlation between the distribution of normal gaits
and abnormal gaits and the presence of an environmental barrier is presented.

Various studies have been conducted to measure HAR with the development of
various wearable devices including smartphones and smartwatches. In previous studies,
the accuracy of analyzing behavior using the accelerometer and gyroscope of smartphones
and smart watches is over 90% [62]. This level of accuracy can be applied to walking, and
it can be said that it shows the possibility that the method proposed at the application level
can be applied in the future.

However, the suggested method should handle a problem related to carrying a sensor.
In this study, the data are collected from an IMU sensor attached to a pedestrian’s ankle.
An IMU sensor attached to an ankle should be replaced with a smartphone to convert
the suggested method to a real-world application. In a smartphone, there are various
sensors, including a 9-degree of IMU and a function to transfer collected data to a server. If
pedestrians’ data collection through a smartphone is possible, conditions of the walking
environment can be collected and analyzed in real-time. Although the strengths of using a
smartphone for monitoring the walking environment are evident, privacy issues should be
handled in future studies.

4.2. Effects of the Environment Barriers’ Characteristics

This study proposes a method for classifying pedestrians’ gaits (normal and abnormal)
and identifying environmental barriers based on a cascaded unidirectional and bidirectional
LSTM-based DRNN. For this purpose, data generated from walking was used. In the
analysis, there are normal gaits even on an environmental barrier. Depending on the size
and location of the environmental barrier, it may affect walkability or gait pattern. Figure 7
is an example showing how the response can change depending on the size and location of
the environment barrier. In this study, the authors compare the effects by paying attention
to the characteristics (location, width, and depth) of three types of environmental barriers.

Figure 9a compares environmental barriers with different widths. When the depth of
the two environmental barriers is less than the step length, the representative action that
pedestrians can take is crossing or avoiding the environmental barrier. When crossing the
environmental barrier, it appears similarly regardless of the width in both cases in Figure 9a.
However, when avoiding the environmental barrier, when the environmental barrier is
wide, abnormal gaits may appear higher than when the width of the environment barrier
is good due to insufficient width of the pathway.
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(c) Comparison of Depth of Environmental Barrier.

Figure 9b compares the location of an environmental barrier of the same size. Even
an environmental barrier of the same size can affect the gait depending on the location. A
sufficient walking path can be secured if the environment barrier is located on one side
(Figure 9b left). As a result, the rate of abnormal gait can be measured relatively low. On
the other hand, a relatively high rate of abnormal gaits may appear when the environment
barrier is located in the middle of the pedestrian path and insufficient width of the gait on
both sides is secured (Figure 9b right).

Figure 9c compares environmental barriers with different depths. If the depth of the
environmental barrier is less than the stride length, a pedestrian can easily jump over it, but
otherwise (if the depth exceeds the stride length), you have to jump over it. This difference
in behavior results in the different ratio of abnormal gaits in a specific location.

Even similar environmental barriers can cause different reactions depending on their
size and location. Therefore, there is a need to perform built environment monitoring
based on the reaction between environmental barriers and pedestrians, beyond finding the
presence or absence of environmental barriers.

5. Conclusions

Monitoring the walking environment is essential for pedestrians. Conventional ap-
proaches to identify environment barriers have several limitations: time-consuming, labor-
intensive, and discontinuous inspection. This study suggests a cascaded unidirectional
and bidirectional LSTM-based DRNN model using pedestrians’ gait data collected from
a wearable sensor to overcome these limitations. To determine a model and investigate
the feasibility for a real-world application, this study uses two gait datasets sourced from
two data collections. A total of 132,749 gaits were used in this study. The suggested model
was trained using 81,286 gaits and tested twice using the first dataset (20,321 gaits) and
the second dataset (31,142 gaits). The results of the model tests showed high accuracy,
precision, recall, and F1 score. Even more, abnormal gaits (ground truth labels, the first
dataset, and the second dataset) and the presence of environmental barriers are highly
correlated. The high correlation coefficients indicate the potential of the suggested method
to identify environmental barriers. In summary, the suggested method shows the ability to
classify normal and abnormal gaits of 84 participants and the feasibility to derive reasonable
outputs for newly added data.
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