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Abstract: Speech emotion recognition (SER) is an important component of emotion computation
and signal processing. Recently, many works have applied abundant acoustic features and complex
model architectures to enhance the model’s performance, but these works sacrifice the portability of
the model. To address this problem, we propose a model utilizing only the fundamental frequency
from electroglottograph (EGG) signals. EGG signals are a sort of physiological signal that can directly
reflect the movement of the vocal cord. Under the assumption that different acoustic features share
similar representations in the internal emotional state, we propose cross-modal emotion distillation
(CMED) to train the EGG-based SER model by transferring robust speech emotion representations
from the log-Mel-spectrogram-based model. Utilizing the cross-modal emotion distillation, we
achieve an increase of recognition accuracy from 58.98% to 66.80% on the S70 subset of the Chinese
Dual-mode Emotional Speech Database (CDESD 7-classes) and 32.29% to 42.71% on the EMO-DB
(7-classes) dataset, which shows that our proposed method achieves a comparable result with the
human subjective experiment and realizes a trade-off between model complexity and performance.

Keywords: speech emotion recognition; knowledge distillation; cross-modal transfer; electroglottograph

1. Introduction

Speech is an effective medium to express emotions and attitudes through language.
Applications of emotion recognition in speech can be found in many areas [1,2]. Extracting
and recognizing emotional information from speech signals is an important subject to
realize more natural human-computer interaction.

Speech emotion recognition with deep learning methods aims to extract deep emotion
features through artificial neural networks. The majority of speech emotion recognition ar-
chitectures utilize neural networks such as convolutional neural networks (CNN), recurrent
neural networks (RNN), long-short term memory (LSTM), or their combinations [3–10]. In
recent years, in order to obtain higher recognition accuracy, most research has adopted two
strategies to enrich the emotion information that one model can obtain.

One strategy is to design and apply more complex architectures, such as deep neural
networks (DNN). In 2018, Tzirakis [11] proposed an end-to-end continuous speech emotion
recognition model to extract features from the raw speech signal based on DNN, and stack
a 2-layer long short-term memory (LSTM) to consider the contextual information in the
data. Furthermore, in a model also based on DNN, Sarma [12] investigated the choices of
inputs and two different strategies of giving labels and applied the best combination to the
IEMOCAP database.

Another approach to improve accuracy is to consider abundant speech features to
model the emotion space. In 2020, Yu [13] proposed a speech emotion recognition model
with an “attention long-term short-term memory (LSTM)-attention” structure, which com-
bined IS09 and Mel-scaled spectrograms. Issa et al. [14] took Mel-frequency Cepstral
Coefficients (MFCCs), chromagrams, Mel-scaled spectrograms, Tonnetz representations
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and spectral contrast features extracted from speech as inputs and achieved 86.1% recogni-
tion accuracy on a 7-class EMO-DB dataset using a deep CNN network.

Although the above research obtained good performance in the speech emotion recog-
nition task, it must be pointed out that such performance is acquired at the sacrifice of the
model’s portability. There have been attempts to overcome the problems of huge model
size and feature redundancy. In 2021, Muppidi [15] jumped out of the traditional method
based on machine learning, focusing on high-level features in real value space, and pro-
posed a unique method of feature and network coding using quaternion structure model
(QCNN), which not only ensures good accuracy of speech emotion recognition, but also
greatly reduces the size of the model. In order to overcome the problem of feature redun-
dancy in speech emotion recognition, Bandela [16] applied unsupervised feature selection
to a combination of INTERSPEECH 2010 paralinguistic features, Gammatone Cepstral
Coefficients (GTCC) and Power Normalized Cepstral Coefficients (PNCC). The Feature
Selection with Adaptive Structure Learning (FSASL), Unsupervised Feature Selection with
Ordinal Locality (UFSOL) and the novel Subset Feature Selection (SuFS) algorithms were
used to reduce the feature dimension of input features to obtain better SER performance.
Although these research works have explored methods to simplify the model, they still
depend on acoustic features extracted from speech. In other words, clear speech signals are
still necessary.

However, when it comes to applications in real life, what we need is an efficient model
to deal with much more complex scenes. For example, clear speech may be hard to obtain.
Aiming at facing these problems and improving the practicability of the model, we seek to
design an efficient speech emotion recognition model to realize a comparable performance
with less and steadier input (just one) and simpler model architecture.

Electroglottograph (EGG) is a signal which can reflect vocal cord movement through
recording electrical impedance in the glottis collected by electrodes situated on the throat [17].
The procedure of generating speech can be abstracted as the source-filter model, shown in
Figure 1, set up by Fant [18]. It represents speech signals as the combination of a source
and a linear acoustic filter, corresponding to the vocal cords and the vocal tract (soft palate,
tongue, nasal cavity, oral cavity, etc.), respectively. As an aspect of the source-filter model,
EGG is a credible resource to acquire the periodic source information exactly. Additionally,
considering the special acquisition of the EGG signal, it is not affected by mechanical
vibrations and noise, which makes it suitable for applications in the real life.

Figure 1. The procedure of generating speech based on the source-filter model. The red part indicates
what EGG signals record.

In 2017, Sunil Kumar [19] proved that using the phase of the EGG signal can detect
the glottal closure instant (GCI) and glottal opening instant (GOI) within a glottal cycle
accurately and robustly, which indicated the advanced performance of the EGG signal in
exactly extracting excitation source information of speech signals. In 2016, we realized a
text-independent phoneme segmentation combining EGG and speech data, which reflected
the superiority of EGG signals regarding robustness to noise [20].
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As the EGG signal highly corresponds to speaking, a multitude of research has been
carried out regarding EGG and its application in the task corresponding to speech [21–27].
As for figuring out the relationship between EGG and emotions, there are studies that have
found a strong base to utilizing EGG signals in speech emotion recognition tasks. In 2015,
Lu [28] found that EGG can actually serve to identify emotions between neutral, happy
and sad. Based on traditional methods, Chen extracted two classes of speech emotional
features from EGG and speech, which were the power-law distribution coefficients (PLDC)
and the real discrete cosine transform coefficients of the normalized spectrum of EGG and
speech signals [29].

In particular, EGG signals have been utilized to help extract emotion features from
speech. In 2010, Prasanna et al. [30] analyzed changes in incentive source characteristics
between different emotions and observed that the fundamental frequency and incentive
intensity were related to emotions. Taking the fundamental frequency extracted from
the electroglottograph as the ground truth, the features extracted from EGG and speech
are compared to verify the effectiveness of extracting excitation source features from
speech. Based on this conclusion, Pravena et al. [31] studied and proved the effectiveness
of incentive intensity in identifying emotions in 2017. Incentive intensity explores and
introduces the excitation parameters related to emotion (strength of excitation, SoE, and
instantaneous fundamental frequency, F0). Combined with the MFCC and GMM models,
it realizes an emotion recognition model based on speech and electroglottograph signals.
However, although Prevena proved that EGG signals can help improve performance in the
SER task, it still relies on the information from speech signals and cannot realize recognition
based on only EGG signals.

Cross-modal distillation aims to improve model performance by transferring super-
vision and knowledge from different modalities. It normally adopts a teacher-student
learning mechanism, where the teacher model is usually pre-trained on one modality
and then guides the student model on another modality to obtain a similar distribution.
The distillation methods usually involve the traditional response-level knowledge distilla-
tion [32–34], which uses the logits as the supervision, and feature-level distillation [35,36],
which encourages the student network to learn and imitate the intermediate representations
of the teacher network. For the speech emotion recognition task, in 2018, Albanie et al. [37]
proposed a method of training a speech emotion recognition model with unlabeled speech
data via response-level distillation from a pre-trained facial emotion recognition model
given visual-audio pairs. Li et al. [38] proposed a method of training the speech emotion
recognition model without any labeled speech emotion data with the help of emotion
knowledge from a pre-trained text emotion model. These studies apply cross-modal dis-
tillation to speech emotion recognition, which inspired our study. However, it must be
highlighted that our paper aims to extract emotion information from EGG signals, not
speech itself, which is a fundamental difference compared to the above research.

In the present paper, to face up with the reality of poor anti-noise performance of the
inputs extracted from speech in the speech emotion recognition task, we propose an EGG-
based speech emotion recognition model. Furthermore, to cover the information latent in
the modulation of the sound track, we adopt cross-modal emotion distillation (CMED),
which transfers robust speech emotion representations from the log-Mel-spectrogram-based
model to the EGG-based model.

This paper is organized as follows: Section 2 introduces our materials and methods
and presents our proposed model in detail. In Section 3, we discuss the results of our model
and the comparison experiments we have conducted. In Section 4, we discuss our work.
Finally, Section 5 provides the conclusions of the present work and highlights the expected
future works.
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2. Materials and Methods
2.1. Methods

This paper proposes an efficient framework of relying on only the fundamental fre-
quency extracted from EGG signals to recognize the emotion of speech. We adopted the
strategy of cross-modal emotion distillation (CMED) to transfer the latent representations
of the acoustic features and enhance the performance of the model. The overall architecture
of our framework is shown in Figure 2, which consists of a teacher model and a student
model. Each model is composed of three parts: feature extraction, an emotion encoder and
a classifier. The output vector of the emotion encoder is regarded as the deep emotion fea-
ture, which indicates the distribution of the given utterance’s emotion in the deep emotion
feature space.

Figure 2. Illustration of the proposed framework, which consists of two phases: (a) training a strong
teacher model based on the acoustic features from speech signals and (b) training the student model
via cross-modal emotion distillation (CMED) with the pre-trained teacher model.

Based on the teacher-student learning mechanism, our framework consisted of two
models: a teacher model and a student model. The adoption of cross-modal emotion
distillation was comprised of two stages. Firstly, a strong teacher model based on the acoustic
features of speech signals was pre-trained. Secondly, an efficient student model based on
EGG signals was trained with the aid of knowledge distilled from the teacher model.

2.1.1. Teacher Model

Considering that EGG signals contain only information regarding the movement of
the vocal cord, it is a double-edged sword for the speech emotion recognition task. On the
one hand, we can extract the source feature much more easily and exactly, regardless of
any noise. However, on the other hand, lacking the information of the sound track may
cause a decrease in the recognition accuracy. Thus, we adopted a strong teacher model to
lead the student model and meliorate the representations in the deep emotion feature map.

The teacher model is responsible for providing supervision to the student speech
emotion model at the level of deep emotion features. The structure of the teacher model
consisted of three stages:

1. Selecting and extracting acoustic features from the raw speech signals;
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2. Going through a deep learning network to obtain deep emotion features;
3. Using a simple classifier to convert the deep features to the predicted emotion label.

As the primary task of the teacher model is to provide the student model with emotion
information associated with the sound track, we chose 80-channel log-Mel-spectrograms
as the input of the teacher speech emotion recognition model, which is a typical type of
feature containing the information of the sound track [39].

For better modeling of deep emotional feature spaces, we chose the classic ResNet18
(deep residual network [40]) as our encoder, which has been proven to be efficient in many
classification tasks. The output of ResNet18 (dim = 512), regarded as the deep emotion
feature, was then fed in a fully connected layer to generate the predicted emotion label.
The output of ResNet18 also acted as a supervision to guide the student model to capture
and imitate its embedded emotion representations.

2.1.2. Student Model

The student model was based on only EGG signals and was composed of three
stages as well. The fundamental frequency (F0) is a commonly-used excitation feature
to characterize vocal cord vibration. The fundamental frequency intensity and duration
help in the analysis of prosody factors according to Rao et al. [41]. Thus, we chose the
fundamental frequency (F0) as the input of our student speech emotion recognition model.
The extraction of F0 from EGG signals was based on [42], as shown in Figure 3.

Figure 3. The structure of the EGG feature exaction module.

Firstly, we extracted the voiced segments from the raw EGG signals according to the
short-time logarithmic energy to avoid the effect of unvoiced segments on the estimation
of the F0. Then, the fundamental frequency was estimated by the auto-correlation method,
which is based on the periodical change in the amplitude of EGG signals, formulated as
Equation (1).

F0 =
fs

argmax
fs

fmax
≤k≤ fs

fmin

∑N−1−k
m=0 xEGG(m)xEGG(m + k)

(1)

where xEGG(m) and xEGG(m + k) are two different sample points of the input EGG signal.
fs is the sampling rate. fmax and fmin are the maximum and minimum of the F0, respectively.

As the method of F0 extraction will cause erroneous values [43], we adopted the same
smoothing method as [44] with bidirectional searching as proposed by Jun et al [45] after
the extraction of F0.

When considering the emotion feature encoder, as the fundamental frequency is a 1D
acoustic feature with strong temporal correlation, we selected Bi-LSTM (bidirectionally
long short-term memory) as the feature encoder for its superior performance in sequence
processing and previous speech emotion recognition tasks. After the comparison of differ-
ent depths of the layer, we finally adopted a 4-layer Bi-LSTM with a fully connected layer as
the student speech emotion recognition model, illustrated in Figure 4. Each bidirectionally
LSTM contains 512 bidirectional LSTM cells (256 forward nodes and 256 backward nodes)
and finally generates a deep emotion feature vector with a length of 512. The dimension
of the student feature was restricted the same as the teacher’s feature output to learn the
distribution of the teacher’s features via cross-modal emotion distillation.
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Figure 4. The structure of the student speech emotion recognition model based on 4-layer Bi-LSTM.

2.1.3. Cross-Modal Emotion Distillation

In order to transfer the emotion information contained in the teacher model’s deep
emotion features, especially the information corresponding to the soundtrack, we intro-
duced cross-modal emotion distillation to our framework.

Between the response-level and feature-level, we adopted the latter to directly imitate
the hidden representation of the teacher’s features. Following the protocol of knowledge
distillation [32,46–49], we used Kullback–Leibler divergence [50] to minimize the distance
between the deep emotion features produced by the teacher and the student models. The
procedure of cross-modal emotion distillation is illustrated in Figure 5. The blue parts
indicate the procedure of the calculation of the Kullback–Leibler divergence. The teacher’s
deep emotion features and the student’s firstly go through a softmax (for the student’s is
log softmax) function to normalize their distribution, as defined in Equations (2) and (3),
respectively. Then. the Kullback–Leibler divergence LKLdiv(pS(τ)||pT(τ)) is calculated as
Equation (4), which is regarded as the KL divergence loss in the total loss function.

The calculation of the Kullback–Leibler divergence can be formulated as:

pS
m(τ) = log(

exp(Sm/τ)

∑M
i=1 exp(Si/τ)

) (2)

pT
m(τ) =

exp(Tm/τ)

∑M
i=1 exp(Ti/τ)

(3)

LKLdiv(pS(τ)||pT(τ)) =
M

∑
m=1

pS
m(τ) log(

pS
m(τ)

pT
m(τ)

) (4)

where S is the vector of thhe student’s deep emotion features, and T represents the teacher’s.
τ is a hyper-parameter; in our work, we set τ = 2 according to the results of the comparative
experiment. pS

m(τ) is the vector of the student’s emotion features after log softmax with
the hyper-parameter τ at the point m. Finally, pT

m(τ) is the teacher’s vector after softmax
with the hyper-parameter τ at the point m. Equation (4) gives the formulation of Kullback–
Leibler divergence.
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Figure 5. The procedure of cross-modal emotion distillation.

Thus, as Equation (5) shows, the total loss function of the student model can be
separated in two parts: the KL divergence between two deep emotion features and the
cross entropy between the student-predicted label and the ground truth, respectively.

Loss = ατ2 · LKLdiv(pS(τ)||pT(τ)) + (1− α) · LCrossEntropy(QS, ytrue) (5)

where α is a hyper-parameter which represents the proportion of the KL divergence loss in
the loss function. We set α = 0.6 according to the results of the comparative experiment.
QS is the predicted label of the student model, and ytrue is the ground truth.

2.2. Materials

The dataset for our work was the S70 subset of the Chinese Dual-mode Emotional
Speech Database (CDESD [51]). This dataset was built by the pattern recognition and
human intelligence laboratory affiliated with the Department of Electronics and Information
Engineering at Beihang University and collected from 20 speakers aged 21 to 23 (13 men,
7 women) with 7 classes of emotions: happiness, sadness, neutrality, anger, fear, surprise
and disgust.

Considering the dataset is acted, not all utterances have been performed well and
truly. Thus, we invited 30 volunteers aged 20 to 30 (18 men, 12 women) to evaluate every
utterance and select the S70 subset as our dataset, which contains 1323 utterances. The
S70 subset indicates that at least 70% of the evaluators can recognize the emotion of the
utterance accurately. In the experiment, 80% of the total dataset was chosen as the training
set, and the rest was used as the validation test. Table 1 illustrates the data statistics of the
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S70 subset of the CDESD Dataset, which shows the number of utterances with different
emotions in the training set and the validation set.

Table 1. Data statistics of the S70 subset of the CDESD Dataset.

Emotion Sadness Anger Surprise Fear Happiness Disgust Neutrality Total

Train.
Set 156 84 294 28 152 67 280 1061

Val. Set 38 21 73 7 37 16 70 262

3. Experiments and Results
3.1. Implementation Details

Our proposed SER framework was implemented in PyTorch. For the optimiser, the
Adam [52] optimizer was used; meanwhile, the training accuracy was monitored with
early stopping set as 8 epochs. The system was trained with a batch size of 16. The initial
learning rate was set at 1× 10−3 and decayed to 0.8 every 20 epochs.

3.2. Experiments on the Teacher Model

For the teacher model, we explored our architecture under the following conditions:

1. The choice of acoustic feature input, log-Mel-spectrograms or traditional Mel-spectro-
grams utilized in [39];

2. Comparing the model structure of ResNet18 to CRNN [39]. The results of these
comparative experiments of the teacher model are listed in Table 2.

Table 2. Comparison of the teacher model using different methods.

Model Unweighted Validation Accuracy (%)

CRNN [39] + Mel-spectrograms 69.53
CRNN + log-Mel-spectrograms 71.45
ResNet18 + Mel-spectrograms 80.86

ResNet18 + log-Mel-spectrograms 81.25

Through the results of the comparative experiments, we found that for the selection
of the input acoustic feature, under the condition of the same model structure, log-Mel-
spectrograms outperform Mel-spectrograms by 1.92% and 0.36%, respectively. This indi-
cates that log-Mel-spectrograms can better characterize the information corresponding to
emotion.

As for the architecture of the teacher model, ResNet18 obtained 9.8% (log-Mel-spectro-
grams input) and 11.33% (Mel-spectrograms input) higher validation accuracy than CRNN
while significantly reducing the time it took to converge, which indicates the superiority of
ResNet18.

3.3. Experiments on the Student Model

We also discovered how the number of Bi-LSTM layers influenced the results. We
conducted experiments with the EGG-based speech emotion recognition model under
the conditions of 3, 4 and 5 layers of Bi-LSTM. As shown in Table 3, the 4-layer Bi-LSTM
was the best compared to the others. Thus, we set the layer number to 4 to conduct the
following cross-modal emotion distillation experiments.

Table 3. Comparison of the student model with different layer depths.

Model Unweighted Validation Accuracy (%)

Bi-LSTM (3 layer) 53.52
Bi-LSTM (4 layer) 58.98

Bi-LSTM (>4 layer) Not converged
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3.4. Experiments on Cross-Modal Emotion Distillation

Based on the aforementioned comparative experiments on the teacher model and
the student model, we conducted cross-modal emotion distillation with the following
conditions:

1. A pre-trained techer model based on ResNet18 with log-Mel-spectrograms as input;
2. A 4-layer Bi-LSTM student model with F0 as input;
3. The cross-modal emotion distillation was conducted on the feature level.

To find suitable settings for the hyper-parameters, we conducted a series of comparative
experiments. Setting τ from 1 to 4, we found that the most suitable setting for τ was 2,
according to Figure 6.

Figure 6. Experiments on different settings of the hyper-parameter τ.

To further discover the influence of cross-modal emotion distillation on the results
on the condition of τ = 2, we modified the hyper-parameter of α, which indicates the
proportion of the distillation loss in total loss. Figure 7 indicates that the implementation of
cross-modal emotion distillation obviously improves the performance of the model. From
α = 0.2 to 0.9, the accuracy of the validation dataset increased to varying degrees. The
highest validation accuracy was reached when α = 0.6, then dropped slowly with the
proportion of the categorical cross entropy that was declining. According to the experiment
results, we set α = 0.6.

The results of our framework are listed in Table 4. It can be observed that the training
accuracy is obviously improved by 23.2% and the validation accuracy by 7.82% with the aid
of cross-modal emotion distillation. In other words, under the condition of some utterances
that are not expressive enough, our framework with CMED obtains better performance
and realizes a result comparable to the human subjective evaluation.

Table 4. Results of the experiments with cross-modal emotion distillation.

Model Unweighted Training
Accuracy (%)

Unweighted Validation
Accuracy (%)

Teacher Model 99.22 81.25
Student Model 66.57 58.98

Student Model with CMED 89.77 66.80
Ground Truth 1 70.00 70.00

1 The ground truth is the average accuracy of all the utterances of the S70 subset according to subjective evaluation.
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Figure 7. Experiments on different proportions of cross-modal emotion distillation in the total loss.

3.5. Evaluations and Results

In this section, we will further evaluate and discuss the results of our framework,
especially from the aspect of the different performance between different kinds of emotions.
Figures 8 and 9 show the confusion matrix of our student model and the model with CMED,
respectively. The horizontal axis is our predicted emotion label and the vertical axis is
the true label. Through the contrast of these two confusion matrices, we can find that the
validation accuracy of almost every emotion has been consistently improved with the aid
of cross-modal emotion distillation. To be specific, for anger, happiness, and neutrality, the
validation accuracy has been improved by 15%, 3%, and 17%, respectively, which reflects
the superiority of CMED in improving the performance of SER when enough utterances
can be acquired. For the emotions that lack utterances, such as fear and disgust, the
performance can also be improved by 11% and 7%. Better performance on these types of
emotions indicates that with CMED, the ability to distinguish emotions has been improved
significantly, regardless of the lack of utterances.

From Figure 9, it can be seen that our framework can classify sadness, surprise,
happiness and neutrality better than other emotions. This is because, as can be seen in
Table 1, these emotions occupy a larger set of utterances than the others. For example, as
there are only 28 utterances of fear in the training set and 7 in the validation set, clearly
recognizing fear is a much harder challenge than others, as every mismatch influences the
results greatly.

When considering the relationship between emotions, it can be noted that some
emotions are more similar to each other and more likely to be mismatched, such as sadness
and neutrality, anger, surprise and happiness. This can be explained from the aspect of
the characteristics of different emotions. For example, from the dimensional structure
theories [53], sadness and neutrality both demonstrate low activation, while anger, surprise
and happiness demonstrate high activation. The different levels of activation highly
correspond to the average value of the fundamental frequency, which is our model’s input.

To further discover the distribution of our 512-dimension deep emotion feature in
the emotion feature map, we visualized the feature of the 4-layer Bi-LSTM output us-
ing the t-SNE technique [54], which carries out a feature dimension reduction from the
original dimension to two-dimensional space. To clearly visualize the distribution, we
selected three emotions which are difficult to classify: surprise, happiness and neutrality.
Figures 10 and 11 illustrate the distributions of the deep emotion features of the student
model and the proposed model with CMED, respectively. The horizontal and vertical axes
indicate the x and y axes in two-dimensional space.
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Figure 8. Confusion matrix of our student model.

Figure 9. Confusion matrix of our framework with CMED.

From Figures 10 and 11, we can intuitively observe that with the aid of cross-modal
emotion distillation, the deep emotion features are projected to different clusters clearly
and separated from each other. Visualization experiments proved that the cross-modal
emotion distillation helps to capture more emotion characteristics and results in a better
distribution on the deep emotion feature map.
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Figure 10. Visualization of distributions of deep emotion features of the student model.

Figure 11. Visualization of distributions of deep emotion features of the model with CMED.

3.6. Experiments on EMO-DB

To find out the effect of cross-modal emotion distillation on other languages, we con-
ducted experiments on the Berlin Database of Emotional Speech Berlin EMO-DB [55], which
is a classical German dataset with EGG. There are also 7 emotions in this dataset, which are
anger, boredom, disgust, fear, happiness, sadness and neutrality. Table 5 illustrates the data
Statistics of the EMO-DB, which shows the number of utterances with different emotions
in the training set and in the validation set.

Table 5. Data statistics of the EMO-DB.

Emotion Sadness Anger Boredom Fear Happiness Disgust Neutrality Total

Train Set 96 109 89 97 92 84 83 650
Val Set 24 27 22 24 22 20 20 159

To test the performance of our framework on German, we retained the hyper-parameters
without any adjustment for the new language, i.e., we conducted experiments under the
following conditions:
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1. Choosing log-Mel-spectrograms as the teacher model input and ResNet18 as the
teacher model;

2. Choosing 4-Layer Bi-LSTM as the student model;
3. Setting hyper-parameters τ = 2 and α = 0.6 in the model with CMED.

The results of our models on EMO-DB are given in Table 6.

Table 6. Results of the experiments on EMO-DB.

Model Unweighted Train
Accuracy (%)

Unweighted Validation
Accuracy (%)

Teacher Model 98.12 75.00
Student Model 33.89 32.29

Student Model with CMED 84.13 42.71

Shown in Table 6, with CMED, the validation accuracy increased from 32.29% to
42.71%, which indicates that cross-modal emotion distillation still works on other languages.
However, compared with other research on EMO-DB, the validation accuracy of our
framework is not so comparable, which is mainly because of the poor performance of
the student model independently. We speculate that this is due to the insufficiency of
the training data and the different characteristics of different languages. German may
contain more emotional information in the procedure of the movement of the sound track,
not the vocal cord. Nevertheless, the improvement of our proposed model with CMED
compared to the origin student model still proves the efficiency of CMED on transferring
the emotional information.

Figures 12 and 13 show the confusion matrix of our student model and model with
CMED. It clearly can be seen that depending on only the student model with a lack of
training data and the information of the sound track, we can hardly obtain the emotion
information. The output of the student model tends to focus on just part of labels and
loses the attention of the others. In contrast, adopting CMED greatly ameliorates this
phenomenon. With the aid of CMED, the model can be aware of all the emotions and
classify them. Although the result still has room to be improved, it has achieved a great
improvement compared with the student model.

Figure 12. Confusion matrix of our student model on EMO-DB.
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Figure 13. Confusion matrix of our framework with CMED on EMO-DB.

Selecting 3 emotions which are difficult to classify, we visualized our output of the
student model on EMO-DB by t-SNE. Figures 14 and 15 visualize the distribution of the
deep emotion feature in the emotion map. It can be obviously observed that in the student
model, the deep emotion features can hardly project to different clusters, while with the
aid of CMED, the clusters are much more recognizable.

Through all the experiments above, from the confusion matrix as well as the visualiza-
tion experiment, there is no doubt of the efficiency of the cross-modal emotion distillation
on the EGG-based Chinese speech emotion recognition task. Experiments on EMO-DB illus-
trate that our cross-modal emotion distillation still works on other languages, successfully
transferring information from the teacher model to the student model.

Figure 14. Visualization for distributions of deep emotion features of the student model on EMO-DB.
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Figure 15. Visualization for distributions of deep emotion features of the model with CMED on
EMO-DB.

4. Discussion

In Section 3, we conducted a series of experiments to explore the best framework.
From the aspect of feature selection, we compared two different classic acoustic fea-

tures in the teacher model, log-Mel-spectrograms and Mel-spectrograms, and concluded
that log-Mel-spectrograms perform better than the latter. As for the choice of the archi-
tecture, for the teacher model, by contrasting ResNet18 with CRNN, the result indicated
that ResNet18 achieves better performance on classification as well as faster convergence.
For the student model, different numbers of layers were explored, and it was concluded
that 4 is the best depth for Bi-LSTM. Two experiments regarding the settings of the hyper-
parameters were conducted to verify the best experimental conditions.

As for the evaluation of the results, we adopted unweighted validation accuracy and
the visualization result utilizing t-SNE. Both of the two results on CDESD have proved that
CMED works efficiently and can obtain a comparable result in the Chinese speech emotion
recognition task. We realized an improvement from 58.98% to 66.80% via cross-modal
emotion distillation on the S70 subset of the CDESD, which achieves a comparable accuracy
to human subject evaluation.

To explore the performance of our model on other languages, we conducted exper-
iments on EMO-DB with all the experiment conditions remaining the same. With the
aid of CMED, we obtained a higher validation accuracy, which improved from 32.29% to
42.71%. For the phenomenon in which the final result cannot reach a similar level with
the teacher model, we speculate that it is due to the insufficiency of the training data and
the different characteristics of different languages. Nevertheless, the huge improvement
observed can still prove that cross-modal emotion distillation can still help to improving
the result regardless of the performance of the student model independently.

5. Conclusions

In this paper, we provide a new strategy to design an efficient SER model to realize
a comparable performance with less input (just one) and simpler model architecture and
propose a framework of electroglottograph-based speech emotion recognition via cross-
modal emotion distillation. By utilizing an electroglottograph as the input, we can face
more complex real circumstances with significant noise and extract the acoustic features we
need easily and exactly. To involve the emotion information related to the sound track, we
propose cross-modal emotion distillation to transfer emotion information from the teacher
model to the student model.
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In the future, other teacher and student models will be designed which utilize different
features as input to identify the best performance of the architecture and achieve better
results in other languages.
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