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Abstract: The effects of a landslide can represent a very big problem, including the death of people,
damage to the land, environmental pollution and the loss of natural resources. Landslides are the
most important medium for transferring sediments and polluting waterways by earth and organic
materials. An excess of sediments reduces the quality of fish habitat and the potability of water. In
order to understand landslides in depth, a thorough study was conducted using a scientometric
analysis, as well as a thorough practical examination of landslide analysis and monitoring techniques.
This review focused on methods used for landslide analysis, including physical models requiring
easily prepared event-based landslide inventory, probabilistic methods which are useful for both
shallow and earthquake-based landslides, and landslide monitoring performed by remote sensing
techniques, which provide data helpful for prediction, monitoring and mapping. The fundamental
principles of each method are described in terms of the method used, and its advantages, and
limits. People and infrastructure are at danger from landslides caused by heavy rain, so this report
highlights landslide-prone regions and considers the analysis methods for landslides used in these
countries, with a view to identifying mitigation measures for coping with landslide risks in hilly
areas. Furthermore, future landslide research possibilities, as well as possible modeling methods,
are addressed. The report summarizes some landslide prediction and monitoring techniques used
in landslide-prone countries which can help inform researchers seeking to protect the public from
danger in landslide areas.
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1. Introduction

In hilly areas throughout the globe, landslides inflict massive fatalities and economic
damage. To stabilize or manage slopes, methodical and rigorous procedures are always
used to prevent or reduce mass movements [1]. Because this is seldom recognized, new
and more effective methods are needed to improve awareness of landslide risk and allow
reasonable choices to be made about how to allocate money for landslide risk manage-
ment [2]. Several studies on landslide forecasting and risk mitigation have been conducted.
Landslide risk analysis and hazard assessment have been a significant topic in hydrogeo-
logical research [3,4]. In recent years, the use of information and geospatial technologies,
such as remote sensing and geographic information systems (GISs) has made a significant
contribution to landslide hazard assessment research [5]. Furthermore, the value of quan-
titative landslide risk assessment has been acknowledged, as it serves as the foundation
for maintenance, mitigation measures, and resource allocation [6]. Topography, geology,
hydrogeological conditions, plant cover, and precipitation are all variables that influence
the incidence of landslides in different geographic regions [7]. It becomes more difficult to
evaluate landslide susceptibility in these situations because varied and significant quantities
of spatial data from the regional area must be collected and taken into account throughout
the analysis process [8,9].
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Understanding watershed water quality is critical for the long-term management of
water resources; as water combines with soils and foundation rocks, the chemical properties
of the water in a reservoir alter affecting stream water quality. There have been numerous
cases of a single landslide and a neighboring stream polluting nearby waterways in recent
years. Water pollution caused by landslides occurs when pollutant-laden landslide debris
reaches a river or other body of water [10]. Organic and inorganic elements, such as
sediment, can enter drinking water supplies following landslides. An unprecedented long-
term water boiling advisory instruction was imposed by the Regional District of Greater
Vancouver in 2006. One theory holds that landslides that occur near drinking water storage
areas cause deteriorated water quality [11].

The statistical connections between landslide-inducing variables and sites of previous
landslides are assessed using data-driven techniques and then quantitative forecasts for
landslide-free regions with comparable circumstances are produced [12]. These techniques
are referred to as data-driven approaches since they rely on historical landslide data to
determine the proportional significance of each component. The three predominantly
utilized data-driven approaches are multivariate statistical techniques, bivariate statistical
tools and artificial neural network analysis [13,14]. In bivariate statistical analysis, each
confounding variable, such as land, slope and geology, is coupled with the locations of
landslide occurrences, and the weighting values for each class of parameter are computed.
Multivariate statistical methods are used to evaluate the link between an independent
variable and a collection of dependent variables [14-16]. However, statistical models
often neglect the temporal elements related to landslides and are not able to anticipate
the effect of variation in landslide-controlling circumstances (e.g., alteration in land usage
and water table) on landslides [17,18]. Physically based landslide susceptibility assessment
techniques describe the occurrence process using physical landslide models [19]. The
techniques estimate slope instability using geometric and geotechnical data. Unlike data-
driven techniques, site or laboratory tests and physical slope model findings may be used
to assess slope stability independent of landslide incidence [20]. The consistency of the
slope is determined by analyzing the forces acting on it using a physical slope concept, such
as an infinite slope model [17,21]. Landslides are assumed in this model to be indefinitely
long but to have a short depth relative to their length and breadth, making the model
suitable for shallow landslides with flat failure surfaces [17,22].

Extensive study has been undertaken in recent decades to investigate the landslide
situation and different mitigation methods, with some beneficial findings. Reviews of
studies have also been carried out, although these were mostly manual reviews. This
article presents a scientometric analysis of methods of landslide prediction and monitoring,
mainly in landslide-prone regions [23]. This research is unique in that it uses scientometric
analysis, which differs from conventional traditional reviews and is more authentic since
data is gathered from the database of Scopus. As a consequence of this study, research
studies from all over the world may benefit from the simple visual depiction focused on a
scientometric assessment when establishing research alliances, forming joint projects, or
exchanging innovative techniques and ideas [24]. To develop a uniform landslide severity
map for landslide-prone areas, further study is required. This study will be helpful for
creating landslide severity maps in most landslide effected nations utilizing landslide
prediction and monitoring methods analyzed in this review article to make landslide
preparation and mitigation easier [25]. Furthermore, certain nations provide a wide range
of options for landslide study, along with new methods for landslide modeling [26]. Most
landslide hazard assessments include landslide monitoring as a major component, with the
goal of giving early warning of an imminent collapse that may put communities, lives or
infrastructure at risk. The goal of landslide monitoring and warning is to collect data that
may be used to prevent or mitigate the effects of landslides [27,28]. Landslide monitoring
and early warning, particularly in the light of recent disastrous landslides across the globe,
have attracted public attention [28-30].
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Research Significance

This study focuses on gathering information from the large amount of data produced
in recent years concerning landslides. Scientometric study explores the quantitative aspects
of the scientific process, science policy, and scientific communication. Its primary focus,
involves measuring the influence of researchers, journals, articles and institutions, as well
as comprehending citations associated with them. It also focuses on scientific field mapping
and visualization, as well as assessment of indicators for future policy and corporate
strategy. It is used as a tool for evaluating the outcomes of research and analyzing large
data sets which are often too large to consider storing on a single computer system or
to be managed by conventional database structures, measurement bundles, or normal
visual programming. Scientometric analysis includes the annual production of scientific
publications, the most productive countries, and collaboration between groups; additionally,
there are many distinct keyword occurrences, as well as progression of study from subject
to theme.

The three techniques primarily used in landslide assessment are reviewed in this
study. Probabilistic landslide risk assessment has the virtue of being suitable for all kinds
of landslides, if required, and can provide risk maps and curves. In probabilistic models,
for the results to be significant, the data must cover a long enough time period to cover
both active and tranquil periods. The predictive power and ability to mimic the physical
processes that determine landslide incidence make the physically based model an obvious
choice for rain-induced shallow landslide hazards. To assess the danger of rainfall-induced
landslides, this approach combines distributed hydrological and stability models. The
linked models use a physical slope concept, such as the limitless gradient model, along with
critical geomechanically and hydrological factors, to predict the spatially distributed safety
margin. Landslide susceptibility study approaches have been developed in the scientific
literature as a result of recent improvements in remote sensing and geographic information
systems (GISs). Landslide monitoring has made use of optical remotely sensed imaging.
SAR interferometry takes advantage of the phase differences between multiple SAR photos
of the same scene taken at various times. This study also depicts the intensity and frequency
of landslide prone regions and how these areas cope with these environmental risks. The
major focus is on rainfall-induced landslides which are common in India, Italy, China
and USA. When forming research collaborations, joint ventures, and when sharing new
thoughts and technologies, researchers from various geographical regions may benefit from
the modeling of many parts of the literature developed through scientometric analysis. In
addition, this work also highlights significant research areas and open issues.

2. Methodology

One of the major goals of the study was to illustrate the challenges researchers face
when performing manual evaluations and to demonstrate the connections among authors,
keywords, publications, and countries within certain research areas. Scopus data was
analyzed using a tool, and the findings were stored in CSV format for future use. The
research was constructed using the mapping and visualization tools in combination with a
VOS viewer (Version: 1.6.16). The VOS viewer is a well-known visualization tool with a
solid track record in academic research. The VOS viewer was utilized to accomplish the
present research’s objectives, as shown by the results. Novel research was performed in
VOS viewer, which was configured to generate a map utilizing data from bibliographic
datafiles. The Scopus CSV file was imported into the VOS reader and evaluated in a few
easy steps while managing data and accuracy. The review of scientific mapping included
citation network structure, publications, co-authorship, keyword co-occurrence network
structure bibliometric overlaps, and country contributions. The total number of citations
to the articles was tallied in order to do so; other nations were added to the map to show
the connection between publications and authors. The numerical attributes of a variety of
variables are described using tables, whereas maps are used to show the relationships and
co-occurrence of those factors. To ensure that the study findings are of value, it included
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summaries and keyword reviews of discussion points. The analysis steps are depicted in
Figure 1.

Select dataset from Scopus

CSV file for data retrieval

Use software tool for VOS viewer

Analysis of keywords, countries, documents

Figure 1. Steps of landslide scientometric analysis; CSV: comma separated values.

3. Scientometric Analysis Results and Discussion
3.1. Annual Publications and Subject Area of Articles

To identify the most significant study subjects, the Scopus analyzer was used to
scan the Scopus database. According to the statistics, the top four disciplines, based
on quantity of papers, were geology (19%), engineering (18%), environmental research
ecology (17%), and meteorology (17%). Atmospheric science accounted for 14% of all
documents, followed by physical science (11%) and water resources (9%); geochemistry
and geophysics accounted for up to 12% of all papers, as shown in Figure 2. These areas
accounted for approximately 75% of the estimated number of Scopus articles that have been
reviewed. The frequency with which journal publications and literature reviews are used
in a document was investigated; 73% of articles published in journals were for preliminary
or continuing research, while 27% were for evaluating previous work.

= Geology
= Engineering

= Environmental science
ecology

Meterology Atmospheric
science

= Geochemistry,
Geophysics

Meterology | \

Aﬁ::::;ﬂ‘c * Physical sciences
14%  Environmental
ecology = Water resources
17%

Figure 2. Subject areas which contribute to rainfall-induced landslide analysis.
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The model depicts the trend in research area publication from 2000 to 2020, which is
represented by the graph in Figure 3. From 2000 to 2010, the number of publications on
the topic of rainfall-induced landslides grew, and then a significant increase in the number
of publications occurred in 2014, followed by an increase in the number of publications
from 2015 to 2020. Although a significant increase was seen in recent years, the real amount
may be somewhat less. It is interesting to observe the fresh and innovative approaches to
the issue which have been used, with specialists concentrating their efforts on predicting
rainfall-induced landslides and monitoring methods.

Documents per year

200020012002 2003 2004 2005 2006 2007 2008 200920102011 20122013 2014 201520162017 2018 20192020 2021

Figure 3. Annual number of articles on landslide analysis.

3.2. Mapping of Keywords

Keywords are critical research tools since they assist in identifying and reflecting
the subject of study that is reviewed. In order to perform the study, “type of analysis”
was selected as “co-occurrence” and “unit of analysis” as “all keywords”. The minimum
occurrence of a word was set at five to guarantee that no term was ever used fewer than
five times; because of these restrictions, only 98 of the 9135 words were found to meet the
criteria. Table 1 displays the top 20 search keywords that were used in the research articles
in the study and the greatest use in the present study. The most often occurring keywords,
according to the aims of research, were landslide, precipitation intensity, risk assessment,
slope instability, China, pore water, and slope protection. The top five most regularly
occurring keywords were landslide, rainfall, slope stability, soil and China. This image
illustrates the network of co-occurring terms, their visualization, their links to one another
and the strength of their correlations. The size of the keyword node in Figure 4 correlates
to the term’s density in the articles published, while the position of the keyword node
corresponds to the keyword’s density. Furthermore, the graphic shows that the mentioned
keywords have more nodes than others, indicating that they were the most significant terms
for the landslide modeling study. Numerous keywords have been graphically separated
in the network to indicate their co-occurrence in a variety of publications. There were a
total of five clusters identified, each of which was represented by a different color: green,
red, brown, purple, blue, or yellow. For instance, a green cluster contains the terms
landslide, land use, early warning and precipitation intensity. As shown in Figure 5, the
keyword density concentration is denoted by different colors. The rainbow colors are
yellow, red, green, purple, and blue, in decreasing order of density. Thus, soils, hillside
soils, unsaturated soils, and soil water all exhibit red marks on the density depiction,
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indicating a higher volume. This finding will benefit writers in the future by assisting them
in selecting keywords that aid in the identification of published content in a certain area.

Table 1. The twenty most often used terms for landslides.

Keyword Occurrences Total Link Strength
Landslides 1078 2258
Rainfall 682 1311
Slope stability 344 1264
Soils 320 979
China 211 649
Infiltration 190 630
Slope failure 203 631
Slope protection 176 586
Debris flow 195 496
Precipitation intensity 167 450
Shallow landslide 174 435
Groundwater 154 412
Numerical model 135 403
Debris 145 398
Pore pressure 116 396
Italy 127 380
Hazards 119 369
Hazard assessment 123 363
Rainfall infiltration 110 338
Safety factor 99 330
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Figure 5. Density visualization of co-occurrence.

3.3. Mapping Co-Authorship

The author’s name appears when reference numbers reflect an author’s impact in
a certain area. In the VOS viewer, setting “co-authorship” as the “kind of analysis” and
“authors” as the “unit of analysis” produced an excellent result. Around 188 of 6832 writers
fulfilled the criteria, since the minimum number of publications was five. The findings
of research are summarized in Table 2, based on data retrieved from the Scopus database
search. The expected citation count was calculated by comparing the number of citations
by the number of articles published by each author. Guzzetti F. received the most citations
(1652) and the most papers (36). Measuring a particular researcher’s performance was
challenging. However, the author’s grade was determined by whether or not all the criteria
were evaluated individually or in combination. Sassa K., with 25 publications, Rahardjo H.,
with 9 articles and 1019 citations, and Godt J].W., with 17 articles published, were the most
productive authors. When citations were compared, Sassa K. Rahardjo H. were placed
second and third with 1026 and 1019, Godtj.W. was placed fourth with 961, and Pradhan B.
was placed fifth with (881) citations. Figures 6 and 7 show the writers with five or more
articles as well as a representation of the density.

Table 2. Authors in the top twenty.

Author Documents Citations Total Link Strength
Guzzetti F. 36 1652 231
Sassa K. 25 1026 94
Rahardjo H. 9 1019 23
Godt J.W. 17 961 98
Pradhan B. 18 881 166
Baum R.L 19 852 113
Tien Bui D. 10 845 14
Wang G. 17 821 75
Peruccacci S. 23 821 297
Brunetti M.T. 22 795 294
Lee C.F. 10 781 16
Melillo M. 16 749 86
Rossi M. 17 737 61
Leong E.C. 5 697 15
Cardinali M. 8 670 34
Gariano S.L 17 665 263
XuQ. 24 646 134

Zhang L.M. 14 625 74
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Figure 7. Density representation of co-authorship for rainfall-induced landslide analysis.

3.4. Mapping of Countries

Certain countries have made a greater contribution to research studies than others
and maintain this. The network visualization was created to assist readers in identifying
sites committed to ecologically responsible development. The “kind of analysis” was
“bibliographic coupling,” and the “unit of analysis” was “countries.” A country’s minimum
requirement for papers was set at five, and 68 of the 133 nations fulfilled this criterion.
The top twenty most active nations in terms of publications and citations related to the
current study subject are shown in Table 3 China, Italy, and Japan contributed far more
papers overall, with 471, 320, and 206 submissions, respectively. China, Italy, and Japan
received the most citations, with 4734, 4777, and 4356 citations, respectively. The number of
publications, citations, and the overall link strength indicate how prominent a country is in
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the present study field. The overall link strength shows the extent to which an article from
one country has impacted the articles from the other countries included in this research. As
a result, the preceding countries are considered to have the greatest impact on landslide
monitoring. Figures 8 and 9 illustrate the countries connectedness and the density of
nations linked through citations. The size of the frame represents the country’s role in
the field. Additionally, the density graph indicates that regions with the greatest number
of respondents had a higher density. Due to the graphical depiction of the participating
nations, future academics will be able to form scientific partnerships, produce joint venture
reports, and share new techniques.

Table 3. Most popular countries working on rainfall-induced landslides.

Country Documents Citations Total Link Strength
China 471 7384 750
Italy 320 7777 696
Japan 206 4356 359
Taiwan 184 3325 250
United States 156 3932 330
India 91 1323 238
South Korea 71 1165 183
United Kingdom 69 1971 152
Hong Kong 64 2105 134
Switzerland 48 870 74
Malaysia 46 1301 96
Australia 42 565 194
Netherlands 39 811 98
wgmcre
PR e B r
by & china
o - o
- e et/ o . :’T "
- A\

Figure 8. Representation of countries for rainfall-induced landslides.
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Figure 9. Density representation of countries for rainfall-induced landslide analysis.

Figure 10 demonstrates a comparison based on the ranking of articles published in
terms of international collaboration in scientific journals. The United States is second only
to China in terms of fractional counts; it is noted that the United States is not as involved
in terms of international co-authorship as advanced industrial countries such as Italy and
Japan in studying landslides. China has collaborated in research with Germany, Nigeria,
Hongkong and Canada. This clearly shows that China is collaborating with all types of
nations, whether rich or poor. The results also indicate that, despite the use of English
as the international language, there has been collaboration between the US and Portugal.
Italy has mostly collaborated with neighboring countries, such as Spain and Austria. The
Asian country Taiwan has collaborated with Norway and Turkey, and Australia with Saudi
Arabia. These networks indicate the economic and cultural differentiation in the global
pattern [31].

nigeria
philippines
ausiBtia bangladesh
nepal Aoatts chile
< “iapan &

malaysi“ ) U'nlwates

‘"q 4 g netlﬁands .
. ® Ay colombia
> belgium %

austria
"
slovenia

Figure 10. Co-authorship mapping for international collaboration.
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4. Different Landslide Prediction Methods
4.1. Physically Based Models

Physically based models have been widely used due to their excellent advanced data,
potential and appropriateness for quantifying the impacts of certain factors leading to the
initiation of landslides. Due to their capacity to mimic the physical processes governing
the recurrence of landslides, the physically based approach may be useful for studying
the resilience of shallow landslides [32,33]. Slope resilience is evaluated physically by
evaluating the forces operating on it with the use of a physical slope model, which may
include an infinite slope method [34]. The infinite slope model is a simple but effective
representation of a rainfall-induced landslide on a slip surface parallel to the ground slope.
Due to its premise that landslides are infinitely long but have a minimum depth in relation to
their width and length, this model is well-suited for the study of rainfall-induced landslides
with planar slope failure [29,35]. SINMAP utilizes pore water pressure from a topographic
consistent hydrogeology model based on the infinite slope stability approach. SINMAP
classifies terrain stability based on hydrological, topographic and soil properties [34]. The
SINMAP model, which integrates hydrologic processes, geotechnical data, and terrain, is
ideal for dealing with this issue. Because precipitation and groundwater circulation may
affect soil moisture and produce flow convergence in catchment areas where landslides
occur regularly, hydrological variables play a key role in causing shallow landslides [36].

FS= < (A4+B+0)

X
X = DpsZsin6 cos 6
A - Cr;B - Cs

C = c0s2[psz(D — Dw) + (ps7 — Pwz) D] tan ¢

FS—C— cosf 1 — wr]tan¢

sin 6
D h
(Cr +Gs)
C=-—-"
hpsZ
p=Po
Os

Hydrological models were used in this instance to clarify the idea of slope stability.
The following equation describes the connection between varying soil thickness (m) and
depth D (m):

The factor of safety changes to

h="Dcosb

where C represents combination of cohesion. A dimensionless number is created between
the soil depth line and the water density to soil weight ratios. The cohesion equation
is based on the infinite-slope model and shows a dimensionless variable. According to
research, the equation is acceptable since it incorporates soil and root coherence into the
cohesion factor (c).

In order for physical models to be useful, they must have precise and spatially detailed
description, which is not always attainable. Statistical approaches may include additional
elements, such as the distance from roadways, that affect the stability of the slope, but
they depend on accurate landslide inventories to make this possible. Because missing
data is sometimes imprecise, the maximum entropy (MaxEnt) model has been extensively
and effectively utilized in species distribution mapping. A lack of landslides may also be
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attributed to inadequate mapping scale or technique. MaxEnt and SINMAP have been used
in this study to provide an innovative hybrid method for landslide susceptibility modeling.
Figure 11 shows a hybrid model which combines SINMAP with Entropy (MaxEnt).

Soil Soil ) ]
/ Depth // Transmissivity // Sof cohesion /
l I

|
v

Precipitation Physical Slope Stability Model e Landslide
Intensity ‘ (SINMAP) Inventory

5™

v
Elevation . Stability
Index
OR
Slope 7/ Slope /L
r
/ Vegetation /L
ArcGIS
Geoprocessing MaxEnt
Tools
/ Geology /L )
v
Plan & Profile N
awre [4y e ) ) e
Streams 1 Distance |, Near Stream
<50
. Distance
Trail 1 .
/ ralls ;Z g <50 7/ Near Trail /L

Figure 11. SINMAP combined with Entropy (MaxEnt) [37].

The data collected (slope and catchment area) are obtained through a digital terrain
analysis model (DEMs). These parameters may be changed and calibrated using an inter-
active visual process that modifies them in response to observed landslides. Across the
globe, landslides are a major cause of death and property damage. Landslide hazard maps
have been developed over the last several decades by a variety of academics using both
descriptive and analytical methodologies [38]. DEM, geography, and other factors are used
to investigate the interaction of landslides, as shown in Figure 12. Obtaining reliable find-
ings from landslide research requires sufficient precise data from a broad variety of criteria
SINMAP accounts for unknown parameters by constructing regular random variables with
lower and upper bounds [39].
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Figure 12. DEM is used to observe the landslides [40].

In terms of the probability density function between these boundaries, the parameters
are assumed to vary randomly. By maintaining uniform parameter distributions across
complex ranges, this model produces the stability index (SI), which is defined as the
probability that a location is stable. To predict the possibility of shallow landslides occurring,
dynamic pressure fluctuations due to rainfall and downward incursion are included in
the TRIGRS method. The S software enables the combination of infinite slope stability
calculations with a one-dimensional empirical method for pore-pressure filtration in a
limited depth topsoil in response to time-varying precipitation [41-43]. While transitory
models may improve the quality of susceptibility results by accounting for the transient
impacts of changing rainfall on slope stability conditions, they often need a significant
quantity of data [44]. The TRISHAL landslide-susceptibility algorithm and a real-time
tracking system were integrated in this study to create an alert index for emergency
preparedness and response by showing the consistency of regional slopes in real time
and providing an alert level under rainstorm situations for emergency preparedness and
response, respectively. The TRIGRS (transient rainfall infiltration and grid-based regional
slope-stability) model and an RGA (real-coded genetic algorithm) backward study were
used to evaluate the global hydro—geological variables. Slope stability was studied in
relation to rainfall infiltration by TRIGRS, which used real rainfall data to determine
the durability of regional slopes. Real-time global slope landslide susceptibility study
could not be performed using the TRIGRS tool obtained from the USGS website since
it did not include an automated rainfall setting mechanism, as shown in Figure 13. The
bulk of the spatial-temporal hydrological parameters (e.g., intrusion, evapotranspiration,
subsurface dynamics, and moisture in the soil levels) can be simulated using a triangulated
irregular network (TIN)-based real-time integrated basin model (TRIBS) [42,45]. This
model incorporates regional uncertainty in rainfall fields, soil characteristics, and associated
moisture to account for the environmental impacts of varied and anisotropic soils [46].
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Figure 13. TRIGRS model used for rainfall-induced landslide analysis [43].

4.2. Probabilistic Models for Landslides

It is recommended that parameters are regarded as random variables for the purposes
of probabilistic analysis to account for any uncertainties that may be involved with their
calculation. Additionally, the probability density function (PDF) and the statistical charac-
teristics (such as the standard and mean deviation) of unknown variables are computed
based on the available laboratory or field data. For models for which deterministic analysis
is feasible, Monte Carlo simulations are one of the most frequently utilized techniques
of probabilistic analysis, and they may be used for any model for which deterministic
analysis is conceivable [47]. It is believed that Monte Carlo simulations are a more complete
probabilistic analysis method because they incorporate all random variables, along with
the probability of failure that is determined by reliability analysis [48,49].

The Umyeon area served as a representative case study for urban landslides in South
Korea, and Monte Carlo simulation was used to examine the relationship between landslide
location, altitude, slope aspect, particular catchment area (SCA), soil depth, bulk modulus,
cohesion, angle of friction, hydraulic properties, and rainfall amount. A deterministic
analysis was also carried out to provide a basis of comparison, as shown in Figure 14.
This methodology was used in conjunction with a physically based model approach;
nevertheless, in this case of probabilistic analysis, the parameters were not treated as
random variables [50].
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Figure 14. Monte Carlo simulation used for landslide analysis [51].

Several researchers have used probabilistic analytic techniques to evaluate physically
based models when conducting their investigations. However, since the hydrogeologi-
cal model was not utilized in these studies, it was assumed that the groundwater level
remained constant across the whole study area in these calculations. The probabilistic
approach treats the input data as unknown parameters, with uncertainties in their determi-
nation taken into consideration. The statistical characteristics of the input parameters (e.g.,
probability density function, mean, and standard deviation) are then computed using the
available data, and the likelihood of failure is calculated using these random variables [50].
Because the correctness of the statistical description of input unknown parameters has a
major effect on the results of probabilistic analysis, the validity of the input data should be
mathematically verified by a sufficient number of samples. That is, a significant amount of
reliable data is needed to conduct the probabilistic analysis and calculate the uncertainty
properly [52].

4.3. Landslide Monitoring Methods

Landslide monitoring is necessary for early detection of landslides as well as early
warning. It detects changes in attribute values of landslide triggering variables and records
slope displacements at probable landslide sites to minimize landslide-induced damage.
The development of slope stability models relies heavily on the monitoring of kinematic,
hydrological, and climatic data. Forecasting is impossible without a thorough knowledge
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of movement patterns and reactions to climatic events [53,54]. In the physically based
model technique, the parameters are not treated as categorical variables in the probabilistic
analysis technique. In previous studies, probabilistic analytic techniques were employed to
evaluate physically based models but not the hydrogeological model, implying a consistent
level of water across the study area [55]. A GPS, tiltmeter, and wire extensometer were
installed in the upper part of the landslide to determine the shape and magnitude of the
sliding masses [56]. Using displacement monitoring, the authors tried to estimate the abso-
lute longitudinal and lateral motions, as well as the speed of the various components of the
complicated landslide. Inclinometers have been used in a number of studies to track the
progress of landslides [57]. This restriction is nearly entirely addressed by remote sensing
techniques, which use sensors that can detect the earth’s geological characteristics from a
distance and without direct contact. This, along with recent significant advancements in
space- or airborne-sensing platforms, has resulted in a significant increase in the contribu-
tion of remote sensing to landslide risk analysis, early warning and monitoring [58]. Aerial
photo-interpretation, which was historically carried out by calibrated optical cameras flying
on airplanes, depending on high-resolution images of the ground, was the first RS tool em-
ployed in geomorphological research, with a particular reference to landslide identification
and mapping (both in grayscale and RGB) [59]. Traditional airborne photogrammetry was
the first technique to be surpassed by space-borne optical image analysis, mostly due to cost
considerations [60]. The transition from conventional human interpretation and mapping
to semi-automated or completely automated interpretation and mapping is essential for
the use of optical images in landslide monitoring. In practice, if the revisiting time is short
enough to allow for monitoring, the image elaboration must be as quick [59]. According
to ALS, which investigated the morphology of two huge landslides in Idaho (USA) at
various spatial scales, mass movement geometry and kinematics are minimized by using
geomorphometry with high resolution DEMs, such as laser scanners. A number of factors,
including aircraft altitude, LIDAR quality, topographic surface layout, and vegetation
effects, affect the feasibility of DEMs and 3D models produced by ALS [61]. Because of
the difficult terrain and extensive vegetation in the mountains of western China, inSAR
displacement estimates are inherently more unreliable. The accuracy of landslide detection
may be compromised if there is insufficient validation. Landslides were first detected using
stacking InSAR technology over a vast region in this research. Then, high-resolution DEM
and aerial LiDAR data were used to validate, alter, and precisely delineate the borders of
active landslides in a narrow zone, as shown in Figure 15.
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Figure 15. Mapping and characterization of LiDAR [62].
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5. Case Study of Landslide Prone Regions
5.1. India

Several landslides have struck the Himalayan area, and a sample of the more well-
studied and destructive landslides are highlighted below. The majority of research has
taken place in Uttarakhand [63]. Some large landslides in Uttarakhand happened in the
Okhimath area in Mandakini Valley, which was severely devastated by a landslide caused
by intensive rainfall in August 1998 [64]. A total of 466 landslides were caused in all,
resulting in 103 fatalities and the destruction of 47 communities. Subsequently, a cloudburst
in Mandakini Valley in July 2001 caused more than 200 landslides, killing 27 individuals
and affecting over 4000 people. To detect a landslide immediately after its occurrence, the
OB method has been used for making landslide inventory database from previous pictures.
In Okhimath, Uttarakhand, data from the 1998 landslide inventory were related to field data
collected after the landslide [65], as shown in Figure 6. In the research, 73 landslides were
discovered using Resourcesat-1 LISS-IV multispectral data (5.8 m) and a 10-m Cartosat-1
derived digital elevation model (DEM). In terms of the number of landslides, this semi-
automatic method resulted in an accuracy of 76 percent for recognition and 69 percent for
categorization using a semi-automatic approach. The Darjeeling region of West Bengal and
Sikkim has seen the highest number of recorded landslides in the country’s northeastern
region. Landslides have occurred in the Darjeeling area on many occasions in the past,
with the first significant documented event being in 1899, which resulted in the deaths of
72 people. Subsequently, landslides occurred in 1950 (in which 127 people perished) and
1968 [66] (667 people died). The majority of landslides in the Indian Himalayan area are
shallow in character, with rainfall serving as the main triggering cause in the majority of
cases. Precipitation analysis for the purpose of predicting landslide occurrence may be
accomplished via the estimation of minimum rainfall conditions, subsurface monitoring, or
slope stability analysis. In terms of minimal rainfall conditions, often known as thresholds,
two types of methods may be distinguished: empirical and physical [67]. The majority of
landslides in the Indian Himalayan area are shallow in character, with rainfall serving as
the main triggering cause in the majority of cases. Precipitation analysis for the purpose
of predicting landslide occurrence may be accomplished via the estimation of minimum
rainfall conditions, subsurface monitoring, or slope stability analysis. In the Himalayan
area, it has been proposed that antecedent rainfall, lasting between 15 and 30 days, has
a significant impact on destabilizing slopes, resulting in landslides being triggered by
subsequent rainfall of short duration (24-72 h). There has been little research on rainfall
thresholds in the Indian Himalayas, and more study on calculating and studying local and
regional thresholds is needed [68]. It is self-evident that Kerala’s diverse climatic conditions
enhance slope failures [69]. In Kerala, the greatest mass movements originate on hill slopes
along the Western Ghats scarps [70,71] apart from the coastal cliffs. Shallow landslides and
mudflows are much more frequent than massive landslides and debris flows. Typically,
debris flows lead to the formation of very low streams, the reopening of naturally clogged
drainage routes, and the enlargement of streams. The Wayanad and Kozhikode districts,
situated north of the Palakkad Gap, are more prone to deep-seated landslides, which may be
attributed to the state’s greater rainy season [72]. Historical archives include only indirect
evidence of landslides in the past, which were most likely limited to seasonal rainfall
associated with severe parts of the course [73]. Human impacts, such as reforestation,
conservation tillage and blockage of small streams, and the growth of crops incapable of
adding root cohesiveness on steep slopes, increase the process. Inevitably, spontaneous
drainage was obstructed or changed on the majority of collapsed slopes via retaining
walls without enabling water runoff of surplus rain water during strong storms [74].
The southern Indian state of Kerala has suffered considerable losses due to landslides in
the 2018 and 2019 monsoon seasons, and is in danger of debris flows in the foreseeable
future [75]. Because of its geographic and geographical qualities, the state is particularly
vulnerable to natural disasters. The topography all along the Arabian Sea coast has a severe
elevation due to the hills of the Western Ghats. Darjeeling Himalayan landslides are a
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continual source of concern in Himalayan mountain areas, inflicting catastrophic loss of
property and lives each year [76,77]. Landslides in Darjeeling Himalaya have happened
mostly on cutting slopes, either by the side of roadways, or in places next to developed
settlements [78,79]. The Darjeeling Himalaya is made up of lithology from the tertiary,
proterozoic, and upper palaeozoic-mesozoic eras [80,81]. The delicate condition of the
soil in the Darjeeling Himalaya aids in the inception of slope movement processes. June,
July, and August are the months with the highest average precipitation [82,83]. The latest
monsoon tragedies in the Western Ghats have prompted officials to take notice of recurring
landslides in the area. Landslides have become a serious hazard to people and property in
Wayanad, a district in Kerala, India, as shown in Figure 16.

(c) Earth shide at GMRS Pookode (d) Debris Flow at Kurichermala

Figure 16. Images from the 2018 monsoon landslides in Wayanad district [84].

5.2. Italy

The Liguria region has been one of the most severely impacted mountainous regions
in Italy and the Mediterranean by rainfall-induced shallow landslides, which have occurred
across the region [85]. Specifically, in the Entella River basin, which is located in the
Tyrrhenian sector of the Ligurian Apennine, over the period 2000-2017, a total of 45 rainfall
events occurred, resulting in more than 664 destructive instability processes throughout
the slopes of the basin. An inventory of instability mechanisms and ground impacts
caused by rainfall events in the research region was created and georeferenced using
landslide information gathered mostly from online networks and damage reports [86]. The
frequent occurrence of short-duration, strong rainfall events in the basin, along with harsh
morphological conditions and human activity that has gradually and intensely changed
the landscape in recent decades, has resulted in an increase in the frequency of landslides.
The instability has mostly impacted natural or semi-natural slopes that were vegetated and
seemed to be inhabited at first sight; nevertheless, gravitational processes happened often
when anthropic factors were present. We discovered a statistically significant relationship
between anthropogenic landforms and slope instability. The extensive and widespread
damage framework exhibited a strong correlation with road networks, buildings, terraces,
and other man-made structures, and can be linked to the unplanned urbanization that
has occurred in recent decades on slopes that have a fundamentally high tendency to
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instability as a result of their morphological and geological characteristics. The results
of this study show that human influence has an effect on the occurrence of landslides;
re-profiling the slope and changing the landscape increase the chances that a landslide may
happen [87]. The Basilicata area (southern Italy) has the highest number of landslides, with
almost 27 landslide sites per 100 km?2. Extreme rainfall events, as well as human activities,
such as cave excavation, forest destruction, and heavy urbanization and industrialization,
all contribute to the high landslide density [88]. Landslides are a common occurrence
in this region’s terrain, and they impact about 90 percent of the region’s communities.
Massive and regular landslides have wreaked havoc on Basilicata’s inhabited regions in
recent decades, inflicting significant and severe destruction to houses and infrastructure.
Numerous landslides in the regions south-eastern corner were triggered by severe rainfall
events between October 2013 and March 2014, particularly in the regions south-eastern
corner [89]. The most significant of these occurred on 3 December 2013 in Montescaglioso,
a hilltop town located in the south-eastern part of the Basilicata, near the town of Matera,
and was reported by the media. With strong and dramatic geomorphological impacts and
extensive destruction, including the collapse of residential structures and a store, it was
fortunate that in the landslide no one was killed or seriously injured [90]. It evolved along
a slope, which had been constant over the previous 40 years, according to SINMAP’s study
of susceptibility, but had undergone significant anthropization in the recent past. There was
additional evidence of a link between rainfall and slope displacement. Because of the lack
of natural drainage networks and the inadequacy of artificial ones, climate research shows
that recent severe occurrences have created critical circumstances alongside the weighing
caused by supersaturation [91]. Common causes of failure have included soil disruption,
silt or mud deposition along streams and roadways, slope failure and removal of sections
of roadways or walking routes, collapse of concrete blocks and inorganic scarps. These
have caused disruption of services and/or the dismantlement of engineering structures,
and, in some cases, the destruction of houses and depots, as shown in Figure 17. IRP], or
the Istituto di Ricerca per la Protezione Idrogeologica, is a CNR research institution tasked
with the responsibility of investigating geohydrological risks, such as landslides [92]. The
faculty’s objective is to plan and carry out scientific research and technical development
in the area of natural catastrophes, with a particular focus on geo-hydrological risks,
territory and ecological sustainability, and appropriate georesource use [92]. CNR IRPI's
areas of focus includes landslide risk disaster risk reduction, landslide identification and
mapping, soil investigation analyses, remote sensing data analysis, landslide predicting
systems, landslide vulnerability and threat modeling, socioeconomic impact assessment
of landslides, and propagation of landslide information [93,94]. CNR IRPI is a center of
expertise for geo-hydrological hazard identification and risk management for the Italian
National Department of Civil Protection, a Prime Minister’s Office [95]. The authors
report an investigation of landslide incidence in Porretta-Vergato, Italy, in relation to
protracted seasonal rainfall. Statistical analysis was performed on data sets gathered
over almost a century [96]. At the basin level, the distribution of landslide hazard was
addressed and compared to rainfall in order to improve knowledge of the two variables
and to analyze their temporal variations, as well as their interdependencies [97]. Pomarico
is a tiny village in Basilicata, southern Italy, that has a history of landslides [96,98]. A
networked optical fiber type of sensor was used to determine the stresses caused by
landslides on an optical fiber embedded in a wide scale physical model of a hillside [99].
The fiber sensor wire was installed at the specified failure plane and characterized using
optical spatial frequency reflectometry [100]. The model was divided into two sections:
a steady-state simulation for subsurface drainage as well as an infinite-slope Coulomb
failure analysis that implies the ground is undermined at collapse [101]. Heavy rains
often impact the Eastern Ligurian Riviera, especially the famed Cinque Terre, resulting
in minor landslides, inflicting damage and occasionally fatality [102,103]. In engineering
geology and geomorphology, airborne remote sensing devices are increasingly employed to
analyze and monitor environmental hazardous situations and phenomena. Remote sensing
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monitoring methods, such as LiDAR and unmanned aerial vehicles (UAV), were utilized
in this work to assess the Montescaglioso landslide’s kinematic development (Basilicata,
Southern Italy) as shown in Figure 16. The huge failure continued to move together across
Montescaglioso municipality’s steady-state model slope, causing severe breakdowns along
the road (“Montescaglioso-Piani Bradano”) giving access to the Montescaglioso provincial
road and causing harm to some housing and houses in construction, including a grocery
store and the sandstone sector (see Figure 18).

Bt
PEINAAY

Figure 17. (A) Roto-translational slide; (B) Rotational slide cutting road downbhill; (C) Landslide on
terrace slides; (D) Uphill road cutting; (E) rockfall; (F,H) soil slip; (G) fast flow of earth [104].

Figure 18. Damage caused by landslide [105].
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5.3. China

The findings of this research demonstrate that empirical techniques may be used
to model rainfall-induced landslides that frequently occur in China [106]. This may be
regarded as a meaningful feature used in systematic landslide modeling, and has the
potential to be used in the study of Earth system science for the activation of suitable
landslide susceptibility mitigation strategies [107]. Machine learning is a cutting-edge
analytic method [108-110]. It has been extensively employed in the prevention of landslides.
Combining a modeling approach with a locally-based mathematical model as well as with
other types of remote sensing data is referred to as a combining econometric model [111].
Several similar numerical simulations have been used to study the collapse stages of a
Yindongzigou landslide during rainy circumstances. The collapse of the hills has been
categorized into three forms based on the degree of the failure: (1) delayed retrogressive toe
sliding; (2) numerous retrogressive rolling; and (3) rapid diffusion flow sliding as a whole.
Landslide susceptibility mapping using the data cost method was implemented through
research into historical landslides, slope monitoring, and statistical analysis, to develop an
estimate of the likelihood of landslides occurring for each sensitivity and specificity class,
with precipitation expected in the next 24 h being the most important factor [112]. The
innovative approach for spatiotemporal forecasting on the basis of grading and overlapped
physical parameters, as well as the influence of the rainfall factor, has been used in the
analysis of the formation circumstances of rainfall-induced landslides [113]. China is
divided into seven main regions and twenty-eight warning regions based on geological and
geographical factors. The prediction and alert criteria for each location are created using a
statistical study of the quantity and method of rainfall in the 15 days before the landslide
occurrence [114]. China is one of the nations that has suffered significant casualties as a
consequence of landslides [5]. Annually, landslides claim a large number of lives in China.
Climate change is predicted to boost the incidence and magnitude of intense precipitation,
resulting in a shift in the incidence of landslides [115]. The purpose of this research was
to examine the effects of climate change on the features of the occurrence rainfall that
are typically associated with the landslide hazard in China [116]. However, no cohesive
equation can presently characterize the I-D threshold in China, owing partly to the absence
of ground rainfall gauges in so many places, particularly in the country’s west [117]. Due to
the possibility of inconsistent seasonal rainfall, the spatio-temporal rainfall patterns derived
by interpolation techniques are erroneous [118]. Several studies have demonstrated that
the solutions can accurately reproduce the geographical and temporal pattern of actual
rainfall, as evidenced by their pathways linking with rainfall gauges in various parts
of China [119]. The purpose of this project was to determine if it was feasible to map
landslide susceptibility at the national level for China, using limited landslide data and
mixed effects modeling [120,121]. To accomplish this, three leading landslide susceptibility
models for China were provided. Each model focused on a false strategy for dealing with
the inevitability of regional landslide data insufficiency [120,122]. It was demonstrated
that certain biases may significantly affect the evidential support of future statistical key
metrics, as well as the believability of the generated spatial variation [123]. The modeling
findings demonstrated that a generalized additive mixed model (GAMM) may be used to
mitigate the undesirable impacts of incomplete landslide data [124]. Geographic variety
in socioeconomic levels throughout China’s geological environment areas, has resulted in
considerable spatial variances in disaster prevention and mitigation and landslide study
spending across geologic environmental regions [125,126]. For example, the southern China
geological environment area is more developed financially than Tibet, which is likely to
spend more on landslide studies [120,127]; shallow landslides are shown in Figure 19.
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Figure 19. Shallow landslides in Yan’an China, July 2013 [128].

5.4. United States of America

As a geologic hazard that may occur anywhere in the United States, landslides are a
common occurrence. It has been estimated that they are responsible for 25-50 deaths a year
and billions of dollars” worth of economic damage [129]. In the United States, the number
of people killed by landslides varies dramatically from year to year. According to more
current figures, 93 people died as a result of landslides between 2004 and 2016. Estimates
of landslide-related economic losses, however, are fraught with ambiguity in relation to
fatality counts. Estimates were made using data from individual homes in southern Califor-
nia that had landslide-related damage that were extrapolated to the whole nation [130,131].
Similarly, Kentucky’s estimated yearly direct repair expenditures for landslide-damaged
highways and private homes ranged between $10 million and $20 million US dollars [132].
Indirect losses from decreased economic productivity and other landslide-related expenses,
on the other hand, are very difficult to quantify and have not been documented. For
the typical range and severity of landslide weather conditions across the United States,
upgraded estimates of economic damage are critical, particularly given that the impacts
of landslides are anticipated to grow as a result of ongoing climate change, increased
disturbances, such as wildfire, and population expansion into landslide-prone terrain [133].
Several landslide-related deaths and catastrophes in the United States have recently height-
ened public awareness and directed more resources into landslide research and mapping.
These shifts in objectives, along with recent technological advancements, have resulted in
concentrated attempts to map landslides within specific administrative regions, usually
by state or county. Landslide inventories have long served as the basis for research and
different kinds of hazard evaluations aimed at minimizing losses. Inventorying the time
of slope collapses, for example, is important for improving empirical and deterministic
criteria for landslide early warning systems at different scales. Landslide mapping and
categorization is usually performed at a local level, or during post-event response oper-
ations, with very varied goals and resources provided. Several state geological surveys
or agencies in the United States have developed landslide mapping procedures that are
well-defined [133]. This has opened the path for thorough landslide inventories inside their
different jurisdictional borders. However, because of a lack of guidelines for consistent data
collection and administration, landslide data formats may differ significantly across inven-
tories, making it difficult to create a unified national-scale product. Our first steps toward
compiling a list of known landslide occurrences in the United States compiled existing,
publicly available geodatabases, but reduced them to a uniform subset of attributes that we
deemed necessary for developing a comprehensive understanding of landslides and their
impacts across the country. The USGS maintains an open repository for seismically induced
ground-failure inventory, which includes liquefaction and landslide incidents related to
particular earthquakes. The authors of technical reports and scientific journal publications
contribute inventories, but the USGS maintains access in a centralized place [134]. Aca-
demic researchers in England have created a worldwide database of deadly landslides
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going back to 2004 based on media and other sources. However, state and municipal
government organizations in the United States often keep more accurate and complete
maps of landslide occurrence, which may contain historical landslides that predate 2007, or
may not always include explicit information on the date of occurrence. These surveys are
created by trained geoprofessionals using a variety of rigorous investigative techniques,
including LIDAR-based detection and deep investigations, as well as regional geologic
mapping of major quaternary landslide deposits. NASA extracted a subset of landslides
with specified dates from these state and local records and combined it with the GLC
to generate a dataset of rainfall-triggered landslides with dates [135], e.g., SINMAP in
conjunction with MaxEnt. This technique was put to the test on a seaside basin in Pacifica,
California, with a very well-established landslide history that included three inventories
of 154 scars on 1941 images, 142 scars in 1975, and 253 scars in 1983. Due to a lack of data
on root cohesiveness, the results showed that SINMAP simply overstated vulnerability, as
shown in Figure 20.

Figure 20. Rainfall-induced landslide in San Pedro Creek watershed [37].

6. Discussion

Landslides cause a great deal of human suffering and financial loss. Systematic and
rigorous processes are always implemented to prevent or limit mass movements in order
to stabilize or regulate slopes. In the near term, landslide sediments can harm fish habitat,
despite their importance for stream shape. The recovery rate is highly variable. Wet
hillsides in a mountain watershed are exposed by shallow landslides, and these deposits
bury the downstream channels. Landslide scars have created an oxygen-rich habitat. A
large amount of Ca?* and HCOj is entrapped in the rainfall as it percolates down the slopes
and into the landslide deposit, as shown in Figure 21. It is no secret that the VOS viewer is
a well-respected graphical interface in research. The results of this study reveal that the
VOS viewer is used to meet the data analysis goals. Physical models have been extensively
used because of the abundance of high-quality data innovation; they have potential and
are appropriate for quantifying the impacts of certain factors leading to the initiation
of landslides. Furthermore, because of its ability to replicate the physical phenomena
governing the repetition of landslides, the physically centered method may be suitable
to study the adaptability of shallow landslides. The parametric approach analyzes the
input data as if they were unknown parameters, with the assumptions in their derivation
also being taken into account. Based on the data collected, the statistical properties of the
input variables (e.g., probability density distribution, mean, and variance) are determined,
and the chance of failure is evaluated using the random variables derived as a result. The
observation of kinematics, hydrologic, and climatology is essential to the growth of slope
stability models. Landslides pose a serious hazard to the lives and property of people living
in India. After the latest monsoon catastrophes, officials have taken notice of frequent
landslides in the Western Ghats. For residents and property owners alike, landslides in
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Kerala’s Wayanad district have become a significant source of worry. Because of the wide
range of socioeconomic conditions found throughout China’s geologically diverse regions,
there are wide variations in hazard preparedness and mitigation efforts, as well as in
landslide research expenditure. Liguria has been severely affected by rainfall-induced
landslides, which have happened all over the territory in the past few years. Landslides are
a typical geologic hazard that can occur anywhere in the United States. They are thought
to be responsible for 25-50 deaths per year, as well as billions of dollars in economic harm.
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Figure 21. Impact of rainfall—induced landslide on quality of water [10].

The limitation of this research is that some groundbreaking studies are unjustifiably
omitted by scientometric analysis and secondary sources written by other writers and
released later are preferred. In scientometric analysis, sometimes it is the case that decision-
makers, as well as other users of relevant research results, are guided by the similarity
principle, which states that one indication is usually the best option. Scientometric analysis
pays attention to a response to the range of situations and tasks, which lacks the necessary
variety of viewpoints.

7. Conclusions and Future Recommendations

This study performed a scientometric evaluation of the susceptibility of landslides
in landslide-prone regions. The scientometric analysis method was adopted in order to
find the most related research topics, the trends in papers published by authors, the co-
occurrence of keywords, and the most active nations in the landslide field. Furthermore,
the forecasting and monitoring methods connected with landslides were investigated, as
well as the effect of landslides on nations such as China, Italy, India, and the United States.
The effect of landslides, as well as various forecasting methods, were specifically studied.
The following conclusions are presented:
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A scientometric study of data from the database of Scopus showed that the top three
disciplines in counting documents were geology, engineering and environmental
research ecology, and meteorology and atmospheric science, accounting for 19%, 18%,
and 17% of total papers, respectively. There was a slight increase in the number of
articles regarding landslides between 2000 and 2010. Furthermore, statistics gathered
between 2014 and 2022 indicated a significant increase in publications. The top
four most often appearing words were landslides, rainfall, slope stability, and soils.
Furthermore, China, Italy, and Japan contributed the most articles on the subject of
rainfall-induced landslides. Guzzetti F. was the most cited author, with 1652 citations.
Physical models of landslides are used to simulate the process of landslide occurrence
in physically based landslide susceptibility assessment techniques. A disadvantage of
utilizing a physical model is that good mechanical and hydrological soil characteristic
data from natural areas is not always available. In physical models, grid cells are
used for analysis which have lower resolution. In the probabilistic approach, if
the data covers a long-time span in order to cover a present period, the outcomes
are meaningful. The disadvantage of using probabilistic methods is their inventory
approach, as it is not workable for multi-temporal landslides. Remote sensing is
extremely useful for exploring changes in the surface. If the detection can be repeated
with sufficient frequency, the RS technique may be utilized as a monitoring tool.
Remote rainfall observations can be used to anticipate rainfall-induced landslides.
There is a need for further study in the Jammu and Kashmir Himalayas and the
northeastern zone. The focus has been on states and territories including Uttarakhand,
Darjeeling, and parts of Himachal Pradesh. Computational techniques have been
shown to be superior to conventional methods in modeling. To understand the
region’s heterogeneity and unpredictability, regional- to site-specific analysis using
hybrid models and big data analytics can be conducted. Rainfall-induced shallow
landslides have hit the Italian and Mediterranean hilly regions of Liguria hard; a
semi-quantitative method combining predisposing factors and unstructured data was
used for landslide prediction in this area. In China and the USA, river water quality,
caused by shallow landslides, can be estimated by the portion of the landslide area at
the catchment level, which is more flexible than the local structure of a single landslide
and a located near flow.

Future research directions that need to be explored are as follows:

> More research is required to establish if areas with high relief and steep terrain,
but no recorded landslides, need additional landslide inventory mapping.
> Work should be performed to combine remote sensing data, numerical models,

and other landslide-related variables. More detailed remote sensing images
should be used for landslide monitoring, risk assessment and hazards assess-

ment.

> A publicly available approach will encourage continuing contributions to
enhance landslide characterization and awareness across nations.

> The resultant map of landslide-prone regions has many drawbacks, including

a lower degree of precision when compared to a traditional susceptibility map,
and insufficient information regarding instability mechanisms which can be
improved.

> Natural materials, which make up most slopes, that have inherent variability
that is difficult to forecast can be considered for further study.

> The physical models are usually limited to a certain type of landslide and they
may not be able to accurately describe local geological, soil, and hydrological
characteristics that are difficult to see in the field and parameterize in model
theory; this issue needs to be addressed in the future.

> Landslide danger cannot be fully assessed without more information on slope
mechanisms, so these require to be studied.
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> In order to make landslide inventory layouts for areas where they do not
already exist, we suggest testing ways to use the results of susceptibility models
made in one area to help people in other areas. This will involve uniformity
of the information about landslides and the variables that explain why they
happened.

> It is suggested that more time is devoted to developing new and much more
reliable ways to measure model quality, which should make models more
credible and useful.

> Work is needed to identify test methods and techniques for the best way to
combine zones of land that have the potential for various types of landslides.
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