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Featured Application: To apply the proposed model and its method, the inputs required are vibra-
tion power spectral density (PSD) and material characteristics, thus the bending stress provoked
by vibration can be determined by using response acceleration. The proposed model incorpo-
rates the damage induced by the stress of the random vibration, then, the fatigue life is estimated.
Thus, for further research, the model can be used to formulate fatigue analysis considering a ma-
terial’s strain or crack growth.

Abstract: The paper’s content allowed us to determine the fatigue life of a component that is being
subjected to a random vibration environment. Its estimation is performed in the frequency domain
with loading frequencies being closer to the system’s natural frequency. From loads’ amplitude
and their interaction effect, we derive a nonlinear damage model to cumulate the generated fatigue
damage. The exponent value of 0.4 from the Manson–Halford curve damage model was replaced by
a vibration bending stress relation that considers the effect and interaction of loads. The analysis is
performed from a progressive accelerated vibration spectrum to predict the fatigue life estimation.
From this accelerated scenario, the accelerated coefficients and cumulated damage are both deter-
mined. The proposed nonlinear model is based on the following facts: (1) vibration and bending
stress σvb values are obtained from the response acceleration of power spectral density (PSD) applied
and (2) the model can be applied to any mechanical component analysis where the corresponding
acceleration responses Ares and the dynamic load factor σdynamic values are known. The steps to
determine the expected fatigue damage accumulation D by using the curve damage are given.

Keywords: fatigue damage; random vibration; resonant frequency; acceleration response; non-linear
accumulative model

1. Introduction

Several systems and components may be subjected to vibrations during their op-
erational life. Random vibration induces fatigue damage by dynamic loads and their
amplitudes [1], which causes deflection in the component. The maximum experienced
stresses are generated as a response of the natural frequencies of the component [2], mainly
when products are operating close to those natural frequencies (resonance frequency).
Thus, components must be designed to withstand the induced fatigue damage. There-
fore, during product development, it is necessary to validate the component functionality
through durability/validation tests. Furthermore, since predicting the fatigue damage is
a complex process [3], nowadays, its accurate prediction is a fundamental engineering
problem. For that purpose, some cumulative damage models have been proposed; some of
these include the modified Steinberg vibration lifetime model [4] that considers that the
effects of the vibration are accurate predictions. The synthesis of sine on random vibration
based on fatigue damage spectrum [5] preserves not only the induced fatigue damage but
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also the deterministic conditions of the environmental vibration. Additionally, there is the
Dirlik’s method [6], which is based on empirical closed form expression of the probabil-
ity density function (PDF) of the rainflow amplitude, that, in the analysis, employs the
stress amplitudes and coefficients functions of the power spectral density PSD of the stress.
Various other frequency fatigue damage models have been developed and reviewed [7],
however, at the phase of determining the damage accumulation, most of them use the
linear damage rule.

The linear damage accumulation rule, also known as Miner’s rule, is widely used in
fatigue life prediction analysis [8]. It is given by

D = ∑
ni
N1

= 1 (1)

where D is the fatigue damage, ni represents the number of the cycles of applied load at a
given stress level σi and Ni are the number of cycles to failure at σi. However, this model
does not consider changes in the effect of stress and does not consider the load sequence of
application of stress in the component [9].

In practice, the fatigue damage induced in the mechanical components can be analyzed
based on stress, strain and crack growth rate [10]. Moreover, according to [11,12], the effect
of the stress is an important parameter that address the fatigue lifetime of the component.
In this research, the analysis is performed based on the stress approach by using the random
vibration PSD function of the stress response. Because the vibration stress is generated
by the variable amplitudes of the cyclical loads, then it is not recommended to estimate
the vibration fatigue lifespan by a linear analysis that is independent on the generated
response stress level and without considering their interactions [13]. Consequently, since
fatigue damage is a complex process that involves many factors [14], then a nonlinear
damage analysis is recommendable [15,16]. For these reasons, in this paper, we present a
modification of the damage curve model [17] that includes in its assessment of the damage
accumulation the interaction effect load and the sequence load of the random vibration
applied. Since the inputs for this nonlinear proposed model are the response acceleration
values that provide the bending stresses by using a dynamic factor and by replacing the
constant exponent value of 0.4 on the damage curve with a response stress relation, the
model’s efficiency is that it can be applied to any mechanical element to estimate and
perform an analysis of the fatigue damage accumulation induced by a PSD of random
vibration.

To show numerically how the proposed model works, in a practice analysis, the
response stress generated from the loading random vibration is obtained by determining a
dynamic load factor (σdynamic) and the corresponding response acceleration (Ares) factor.
Then, based on the generated vibration bending stress (σvb), the total life cycle (Ni) is
determined by using the Basquin’s equation. The cycles of random vibration applied (ni)
are determined by using the rainflow method. Thus, with these three factors, vibration
bending stress (σvib/bend), the total cycle (Ni) and the cycles of random vibration, applied
(ni), the modified model is performed. Since the proposed model depends only on the
vibration bending stresses and its analysis to determine them, then, in the application,
a single mechanical component (support) made of steel AISI 1025 subjected to random
vibration (bending cycling) stress was used. The addressed vibration bending stresses were
determined once the component was submitted to the random vibration profile per GR-326,
then, by applying the proposed model, the fatigue damage until failure (D = 1.00) was
determined after 28 loads of the GR-326 vibration profile.

The structure of the paper is as follows. Section 2 presents the theorical background
of the random vibration and nonlinear damage accumulation. In Section 3, the proposed
nonlinear model is formulated. Section 4 contains the experimental application (validation’s
procedure) and its result. Finally, the conclusions are provided in Section 5.
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2. Theorical Background

One of the most common analyses to represent a dynamic response of the random
vibration load input is by using the frequency domain, which implies the use of the PSD [7].

2.1. Random Vibration

In the frequency domain, the random vibration behavior can be well represented with
a PSD function. Random vibration allows products to resonate all of the time [18], and by
its cyclic movement, it causes cumulative fatigue damage, which results in vibration stress
that reduces the strength of the material to support it. Thus, due to the generated strain, the
repetitive vibration stress produces the failure of the component [19]. In the analysis, we
must consider that the product being vibrated responds to the input vibration as a function
of the product’s resonant frequency [18], where the amplification factor of the response Q
is expressed as the transmissibility of the vibration amplitude at the resonance frequency,
and it is given by,

Q =
fn

∆ f
(2)

where fn is the natural frequency in Hz, and it is determined either by Equation (3) or
Equation (4),

fn =
1

2π

√
k

m
(3)

fn =
Wn

2π
(4)

m is the mass. k is the material’s stiffness and Wn is the natural frequency in Rad/s. Here,
we highlight that the Wn value included in Equation (4) is determined according to the
geometry, support and loads of the component under analysis. Once the component is
submitted to the stress of random vibration PSD load, the generated fatigue damage is
accumulated in a nonlinear way, as follows.

2.2. Nonlinear Fatigue Damage Accumulation

Regarding the nonlinear fatigue damage accumulation, Richart and Newmark [20]
presented a damage curve model. Then, based on it, Marco and Starkey [21] developed the
first nonlinear load dependent damage accumulation model as,

D = ∑
(

ni
Ni

)Ci

(5)

where ni represents the number of the cycles of applied load at a given stress level σi, Ni are
the number of cycles to failure at σi, Ci is the effect of the load sequence and D s the total
damage; after that, much research work has been performed [22–25] where the damage
curve approach proposed by Manson and Halford [17,26] explains very well the effects of
load sequences under two-level loading conditions, and their theory proceeds on the basis
that the crack growth is the major evidence of damage [27]. The crack length growth is
expressed by

a = a0 + (0.18 − a0)

(
na

N f

)( 2
3 )N0.4

f

(6)

where na represents the applied cycles to reach a crack length of a, N f represents the
number of cycles required to reach the fracture and a0 is the characteristic defect length of
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the material when Na/N f = 0. Thus, the cumulative damage D is given by the cycle radio
and the crack length.

D =
1

0.18

a0 + (0.18 − a0)

(
na

N f

)( 2
3 )N0.4

f
 (7)

By applying Equation (7) in a connection of two levels sequence loading A and B, it is
obtained,

DA =
1

0.18

a0 + (0.18 − a0)

(
n1

N f 1

)( 2
3 )N0.4

f 1
 (8)

DB =
1

0.18

a0 + (0.18 − a0)

(
n2

N f 2

)( 2
3 )N0.4

f 2
 (9)

Now, considering equal damage for the two load levels based on the theory of elasticity
and the properties of the material [28], the equivalent damage cycle radio is,

(
n1

N f 1

)
=

(
n2

N f 2

)(
Nf 2
Nf 1

)
0.4

(10)

Consequently, the damage curve is given by the power law equation,

Di =

(
ni

Ni f

)(
Ni f

Ni f−1
)

0.4

(11)

where the exponent 0.4 represents a material constant characteristic cause–effect of defor-
mation with cycles applied, and it determines the crack length growth from a microscopic
perspective [23]. Now that the sequence is considered, let us present the proposed method
where the random vibration PSD load effect is included in the nonlinear cumulative dam-
age analysis.

Now, the random vibration PSD load effect is included in the nonlinear cumulative
damage analysis.

3. Modified Nonlinear Fatigue Damage Accumulation Model Considering the
Vibration Load Effect

As is described in [23], the damage curve model proposed by Manson and Halford
presented prediction results close to experimental data. However, in particular for this
paper, the load sequences and load interactions are induced by the effect of the random vi-
bration. Then, to determine the fatigue damage accumulation, the damage curve approach
model [17], as described by Equation (11), is modified to consider the random vibration
PSD load effect, also.

Since in the damage curve model, the exponent value of 0.4 is based on the crack
growth and it is constant, it does not consider the intensity effect of the loading change
induced by a random vibration (PSD). Thus, to consider it, the exponent value 0.4 is replaced
by (σi − 1vb/σivb). This relation represents a nonlinear continuum damage function of the
vibration bending stress induced.

That vibration bending stress is obtained from the PSD response acceleration function,
as shown in Figure 1, where A is the speed for a given time t and B is the displacement for
a given time t. Wn is the natural frequency and Φ is the phase angle. Thus, the vector C
represents the maximum amplitude (acceleration) of the movement, which, by its cyclical
movement, induces fatigue damage.
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The vector C and the phase angle Φ are obtained as

C =
√

A2 + B2 (12)

Φ = tan−1 B
A

(13)

Now, regarding the damage curve model, and considering the vibration bending
stress, the proposed damage accumulation model under two level loading conditions is
represented by,

D =
2

∑
i=1

D2 =

[
n2

N2, f

]( N2, f
N1, f

)
[

σ1vb
σ2vb

]

(14)

This model presents the proposed nonlinear damage accumulation model that consid-
ers the effect of the sequence and interaction effect induced by a random vibration PSD.
Here, it is highlighted that the total cycles to failure Ni value is determined by using the
Basquin’s equation defined in Equation (25), and that it is determined by placing into
Equation (25) the corresponding vibration bending stress σivb. It is used instead of the
constant tensile stress σi value that is obtained from the material’s S-N diagram.

Thus, the proposed model for damage accumulation is applied, starting from calculat-
ing the bending stress caused by the effect of random vibration, as follows.

3.1. Calculating the Bending Stress

When a PSD vibration loading is applied to a component or product to cause the
same damage as its dynamic environment will cause, a base input acceleration is applied.
Consequently, a different response acceleration occurs, as represented in Figure 2 [29,30].

The reason for the difference between the input and response acceleration is due to
the material’s natural frequency and the effect of its own mass when it is exposed to the
stress of vibration (PSD). Based on the generated displacement, it is measured as

Q =
D1

D2
(15)
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where Q is an amplification factor, D1 is the base (input) displacement and D2 is the
response displacement. Thus, the acceleration response is determined as

Ares =
2π2F2D2

G
(16)

where F is the frequency applied by the PSD and G is the gravity constant (9.81 m
s2 ). Now,

based on the generated moment (M), we determine the dynamic factor that includes the
effect stress caused by the vibration PSD [29]. The reaction moment for bending stress, is
given by,

M = F L (17)

where F corresponds to the effect of the mass of the component multiplied by the acceleration,

F = m A (18)

Therefore, by considering the concept of effective mass (me), which represents the
mass of an object that accelerates (vibrates) when an external force is exerted on it [29], its
equation for the analysis is given by,

me ≈ 0.225ρL + m (19)

where ρ is the density of the component’s material, L is the length and m is the mass applied
to the component. Thus, the bending moment M f is given by,

M f = me A L (20)

Consequently, the generated bending stress σf is determined as

σf =
K M f C

I
(21)

Therefore, because Equation (21) includes Equation (20), then the scale factor of the
stress induced by the stress generated by the vibration movement, here called dynamic
load factor [2], is given as

σdynamic =

(
Kme L̂C

I

)
A (22)

where K is the stress concentration factor in the component, C is the distance to the neutral
axis, L̂ is the distance from the fixed point of the component to the point of application of
the mass, A is the constant of gravity and I is the moment of inertia given by,

I =
1

12
wt3 (23)

where w is the width of the component and t is the thickness of the material.
Once, from Equation (22), the dynamic factor σdynamic is determined, and the response

acceleration Ares is determined from Equation (16), the vibration bending stress σvb response
to the vibration profile (base input acceleration) is determined as

σvb = σdynamic ∗ Ares (24)

Thus, finally, Equation (24) represents the bending stress that must be used in the
vibration analysis to determine the expected useful life of the analyzed product that is
being exposed to the environmental vibration.

Now, it is necessary to determine the cycles of vibration load applied ni at the given
bending stress level σivb.
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3.2. Vibration Cycle Counting

To effectively determine the cycles ni of bending stress vibration, the Rainflow tool
is used. This tool is validated by [31] Section 5.4.4. According to [10], this cycle counting
method is as well represented as a variable amplitude cyclic loading as it is for random
vibration. In Figure 3, it is shown how the rainflow cycle counting is performed. Doing this,
(1) the sample time history of stress vs. time is obtained and (2) the time history diagram is
rotated 90◦ clockwise and the counting of cycles at specific stress range is completed. The
cycles’ counting results are shown in Table 1.
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Table 1. Rainflow cycling counting.

Rainflow Cycles

Path Cycles Stress Span
A–B 0.5 2
B–C 0.5 3
C–D 0.5 5
E–F 1 2

Once the applied cycles ni are known by using the Rainflow method, they will be used
to determine the fatigue damage caused by the random vibration’s effect.
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Now, it is required to estimate the total cycles Ni at the given bending stress level σivb
that the material’s component can withstand.

3.3. Total Cycle Determination

Assuming that the S-N curve of the materials is stated by the Basquin’s equation [5,32]
as is in Equation (25),

Ni ∗ σb
i = ab (25)

where Ni is the total number of cycles that the element can sustain at a given stress level σi
and the constant material parameters a and b represent the intercept and the slope of the
S-N curve, respectively. They are determined as

a =
( f Sut)

2

Se
(26)

b = −1
3

log
[

f Sut

Se

]
(27)

where f is the fatigue resistance fraction, Sut is the ultimate resistance stress and Se is the
endurance limit. Then, from Equation (25), the total cycles Ni are determined as

Ni =
(σi

a

) 1
b (28)

In mechanical design, the stress σi given in Equation (28) is the equivalent stress
or static stress. However, because here we are focused on the field of dynamic random
vibration, then, in vibration analysis, the σi is replaced by the vibration bending stress
σivb determined in Section 3.1. Therefore, for vibration analysis, the total cycles are deter-
mined as

Ni =

(
σivb

a

) 1
b

(29)

Now that the cycles of vibration applied ni at the stress σivb and the total cycles Ni
that withstand at that stress σivb are known, we proceed to determine the accumulated
fatigue damage that is caused by the random vibration loading, as follows.

4. Fatigue Damage Accumulation Procedure

The steps that illustrate how a PSD is used to calculate the fatigue damage of a
mechanical component are presented in Figure 4.
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The effectiveness of the above steps is illustrated in the experimental study case,
as follows.

4.1. Study Case

We have a support that is subjected to a bending load (see Figure 5), and the support
has the following features. It is cold drawn steel AISI 1025, with a modulus of elasticity
E = 200 GPa, Poison’s ratio γ = 0.29, yield strength Sy = 430 MPa, ultimate tensile strength
Sut = 510 MPa, endurance limit Se = 255 MPa, density ρ = 7.9 g/cm3, length L = 51 mm,
Width W = 200 mm and a wall thickness of 3 mm. During its function, the component
supports a load of 80 N, and its movement is free only in the vertical direction. Zone A
(purple color) indicates that it is fixed, and zone B (red color) is the applied load. It is
considered as a cantilevered beam and is submitted to an operating random vibration with
an input PSD with the frequencies ranging from 10 to 55 Hz at an amplitude of 1.5 mm for
a period of 2 h. The testing is carried out physically by using a vibration system.
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Thus, once the component has been submitted to the vibration fatigue by using
the vibration system shaker with a vibration controller, it is required to calculate the
bending stress.

4.2. Bending Stress

We proceed to determine the dynamic bending stress generated by the base input
PSD. The base input PSD is presented in Table 2 and Figure 6a. In Figure 6b we show the
corresponding time history synthesis of the PSD.

Table 2. Base input PSD.

Frequency (Hz) Accel. (G) Accel. (G2/Hz)

10 0.210 0.004
20 0.666 0.022
30 1.383 0.063
40 2.359 0.139
50 3.900 0.300
55 4.664 0.400
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In this case, the base input PSD is applied by a vibration shaker, and the acceleration
response obtained is given in Table 3.

Table 3. Acceleration base input and acceleration response.

Frequency (Hz) Accel. Base Input (G) Accel. Response (G)

10 0.21 0.69
20 0.67 3.06
30 1.38 5.58
40 2.36 9.09
50 3.90 13.68
55 4.66 12.31

By comparing, in Figure 7, the input and response acceleration, we observed that
the difference is due to the product’s resonant frequency. From the analysis, we have the
frequency of 50 Hz with an acceleration of 13.68 g, which is the one that more greatly affects
the component.
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Now, we determine the dynamic factor that allows us to obtain the vibration stress
that corresponds to the acceleration response obtained.
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Since, from Equation (19) with ρ = 0.285 lb
in3 , L = 2 in and m = 0.05 lb−s2

in , the effective

mass is me = 0.11 lb−s2

in , then, from Equation (22) with K = 2.5, L̂= 0.575 in, C = 0.06 in,
I = 0.00114 in4 and A = 9.81 m/s2, me = 0.11 lb−s2

in and the dynamic factor σdynamic. =
3219 Psi = 3.22 Ksi = 22.22 MPa.

Consequently, by using the acceleration response and the dynamic factor in Equation
(24), the vibration bending stress value for each row of the PSD is obtained, as shown in
Table 4.

Table 4. Bending stress results.

Frequency (Hz) Accel. Response (G)
Dynamic Factor

(σdynamic)
Equation (22)

Bending Stress
(σvb)

Equation (24)

10 0.69

22.22

15.33
20 3.06 67.97
30 5.58 123.95
40 9.09 201.91
50 13.68 303.87
55 12.31 273.44

Now, the cycles of vibration load applied ni at the given bending stress level σivb
are determined.

4.3. Vibration Cycles Counting

In this case, we proceed to determine the stress Rainflow cycle count by using the
software MATLAB with (ASTM E 1049-85), where the input data used are the frequency
and acceleration response shown in Table 4. The results are shown in Table 5.

Table 5. Vibration cycling count.

Frequency (Hz) Vibration Cycling (ni)

10 70,292
20 140,210
30 92,650
40 10,869
50 3010
55 816

Next, the total cycles Ni at the given bending stress level σivb are determined.

4.4. Total Cycles Determination

To determine the total cycles Ni by using Equation (29), it is required to calculate the
constants a and b by using the material’s properties in Equations (26) and (27), as follows,

a =
(0.9x510 MPa)2

255 MPa
= 826.2

b = −1
3

log
[

0.9x380 MPa
255 MPa

]
= −0.085

Therefore, the results of total cycles for the vibration PSD applied are shown in Table 6.
In the next section, the fatigue damage accumulation caused by the random vibration

is determined by using the proposed nonlinear model.
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Table 6. Total cycles.

Frequency (Hz)
Bending Stress

(σvb)
Equation (24)

Total Cycle
(Ni)

Equation (29)

10 15.33 2.24 × 1020

20 67.97 5.60 × 1012

30 123.95 4.81 × 109

40 201.91 1.55 × 107

50 303.87 1.27 × 105

55 273.44 4.40 × 105

4.5. Fatigue Damage Accumulation

Here, to determine the vibration fatigue damage caused by the PSD loading applied to
the mechanical component, Equation (14) is applied. That equation determines the fatigue
damage accumulation as a nonlinear cumulative process by using the bending vibration
stress (σivb), the vibration cycles (ni), and the vibration total cycles (Ni). The results are
shown in Table 7.

Table 7. Cumulative damage calculation using proposed nonlinear model.

10 Hz 20 Hz 30 Hz 40 Hz 50 Hz 55 Hz

Block No. D1 D1+2 D1+2+3 D1+2+3+4 D1+2+3+4+5 D1+2+3+4+5+6

1 (2 h) 3.14 × 10−16 3.14 × 10−16 3.16 × 10−16 3.44 × 10−16 2.36 × 10−2 2.41 × 10−2

2 (2 h) 2.41 × 10−2 2.41 × 10−2 2.42 × 10−2 2.46 × 10−2 4.83 × 10−2 4.90 × 10−2

3 (2 h) 4.90 × 10−2 4.90 × 10−2 4.93 × 10−2 5.01 × 10−2 7.37 × 10−2 7.48 × 10−2

4 (2 h) 7.48 × 10−2 7.48 × 10−2 7.53 × 10−2 7.64 × 10−2 1.00 × 10−1 1.01 × 10−1

5 (2 h) 1.01 × 10−1 1.01 × 10−1 1.02 × 10−1 1.04 × 10−1 1.27 × 10−1 1.29 × 10−1

6 (2 h) 1.29 × 10−1 1.29 × 10−1 1.30 × 10−1 1.32 × 10−1 1.55 × 10−1 1.57 × 10−1

7 (2 h) 1.57 × 10−1 1.57 × 10−1 1.58 × 10−1 1.60 × 10−1 1.84 × 10−1 1.86 × 10−1

8 (2 h) 1.86 × 10−1 1.86 × 10−1 1.87 × 10−1 1.90 × 10−1 2.14 × 10−1 2.16 × 10−1

9 (2 h) 2.16 × 10−1 2.16 × 10−1 2.17 × 10−1 2.20 × 10−1 2.44 × 10−1 2.47 × 10−1

10 (2 h) 2.47 × 10−1 2.47 × 10−1 2.48 × 10−1 2.52 × 10−1 2.75 × 10−1 2.78 × 10−1

11 (2 h) 2.78 × 10−1 2.78 × 10−1 2.80 × 10−1 2.84 × 10−1 3.08 × 10−1 3.11 × 10−1

12 (2 h) 3.11 × 10−1 3.11 × 10−1 3.13 × 10−1 3.17 × 10−1 3.41 × 10−1 3.44 × 10−1

13 (2 h) 3.44 × 10−1 3.44 × 10−1 3.46 × 10−1 3.51 × 10−1 3.75 × 10−1 3.78 × 10−1

14 (2 h) 3.78 × 10−1 3.78 × 10−1 3.81 × 10−1 3.86 × 10−1 4.10 × 10−1 4.13 × 10−1

15 (2 h) 4.13 × 10−1 4.13 × 10−1 4.16 × 10−1 4.22 × 10−1 4.45 × 10−1 4.49 × 10−1

16 (2 h) 4.49 × 10−1 4.49 × 10−1 4.52 × 10−1 4.59 × 10−1 4.82 × 10−1 4.87 × 10−1

17 (2 h) 4.87 × 10−1 4.87 × 10−1 4.90 × 10−1 4.96 × 10−1 5.20 × 10−1 5.25 × 10−1

18 (2 h) 5.25 × 10−1 5.25 × 10−1 5.28 × 10−1 5.35 × 10−1 5.59 × 10−1 5.25 × 10−1

19 (2 h) 5.25 × 10−1 5.25 × 10−1 5.67 × 10−1 5.75 × 10−1 5.99 × 10−1 6.04 × 10−1

20 (2 h) 6.04 × 10−1 6.04 × 10−1 6.07 × 10−1 6.16 × 10−1 6.39 × 10−1 6.45 × 10−1

21 (2 h) 6.45 × 10−1 6.45 × 10−1 6.49 × 10−1 6.58 × 10−1 6.81 × 10−1 6.87 × 10−1

22 (2 h) 6.87 × 10−1 6.87 × 10−1 6.91 × 10−1 7.01 × 10−1 7.24 × 10−1 7.30 × 10−1

23 (2 h) 7.30 × 10−1 7.30 × 10−1 7.35 × 10−1 7.45 × 10−1 7.68 × 10−1 7.74 × 10−1

24 (2 h) 7.74 × 10−1 7.74 × 10−1 7.79 × 10−1 7.90 × 10−1 8.13 × 10−1 8.20 × 10−1

25 (2 h) 8.20 × 10−1 8.20 × 10−1 8.25 × 10−1 8.36 × 10−1 8.60 × 10−1 8.66 × 10−1

26 (2 h) 8.66 × 10−1 8.66 × 10−1 8.72 × 10−1 8.83 × 10−1 9.07 × 10−1 9.14 × 10−1

27 (2 h) 9.14 × 10−1 9.14 × 10−1 9.20 × 10−1 9.32 × 10−1 9.56 × 10−1 9.63 × 10−1

28 (2 h) 9.63 × 10−1 9.63 × 10−1 9.69 × 10−1 9.82 × 10−1 1.01 × 100 1.01 × 100

From the results given in Table 7, we noticed that the damage D = 0.70 is reached at
block 22. Some industries act when their products reach this quantity of damage, and the
damage D = 1.0 (fatigue failure) is reached at block 28 see Figure 8.
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The curve in Figure 8 represents the damage line relationship of the support submitted
to random vibration loading.

From Table 7, it is seen that the frequency that most affects the mechanical component
and induces more damage is the frequency of 50 Hz. The reason is explained as follows:

The natural frequency Wn of the component is determined by

Wn =

√
3EI
ml3 (30)

where E is the modules of elasticity in lb
in2 , I is the moment of inertia in in4 given by

Equation (23), m is the load mass in lb−s2

in determined by Equation (19) and l is the compo-
nent’s length in inches. With these data, Wn is

Wn =

√√√√√3
(

29007548 lb
in2

)(
0.00114 in4

)
(

0.11 lb−s2

in

)
(2 in)3

= 311.87
rad

s

Consequently, from Equation (4), the natural frequency fn is

fn =
311.87

2π
≈ 50 Hz

Thus, since the material’s natural frequency is fn = 50 Hz, then, because the frequen-
cies of the applied PSD range from 10 to 55 Hz, at the moment, they coincide with the
resonant frequency presented. This can be seen in Figure 8 where, due to the resonant
frequency, the maximum acceleration that induces damage is reached at 50 Hz.

As a general conclusion, in the proposed nonlinear random vibration method, the
damage accumulation model can be applied by using the vibration response acceleration
PSD to obtain the bending stress induced and, therefore, determine the fatigue damage
accumulation. However, it is highlighted that the efficiency of the proposed method
depends on the accuracy at which the response acceleration PSD is obtained. In this case,
we used vibration shaker equipment and its accelerometer, but for the design and prototype
phase, it can be performed by using a software simulation. In general, the proposed method
can be applied to any mechanical component analysis where the response acceleration Ares
is known.

5. Conclusions

(1) Since the inputs for the nonlinear model are the response acceleration’s Ares values,
and because, by using the dynamic factor σdynamic , the vibration bending stresses’
σvb values can be determined, then the proposed model can be applied in any me-
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chanical component analysis submitted to random vibration forces where Ares values
are known.

(2) Since the dynamic factor σdynamic allows us to obtain stress units from acceleration
units, then the vibration bending stress σvb values can be used in the proposed
model Equation (14) to calculate the fatigue damage accumulation induced by the
random vibration.

(3) The constant exponent parameter value of 0.4 in the Manson–Halford model has been
replaced by a vibration bending stress relation that considers the effect sequence and
interaction loads induced by the applied PSD.

(4) As a result of the mechanical component case study, the model proposed to predict the
fatigue damage accumulation shows good agreement with the reported experimental
data. The model predicts 28 cycles of load to reach the failure (D = 1), and the
experiment data collected from the vibration shaker showing, after 28 cycles of load,
the deformation on the component’s material can be considered as a failure.

(5) The efficiency of the model proposed offers the advantage that even though random
vibration (PSD) provides a complex loading history, based on the corresponding PSD,
it is possible to obtain the fatigue damage accumulation through general analysis.

(6) Since the proposed method is based on the bending stress induced by random vi-
bration PSD function and its response acceleration, then, knowing that the fatigue
damage accumulation can also be analyzed from a strain and crack growth propaga-
tion point of view, it seems that the proposed model could also be used in those cases,
but more research must be undertaken.
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