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Abstract: Acoustic source localization in the spherical harmonic domain with reverberation has
hitherto not been extensively investigated. Moreover, deep learning frameworks have been utilized to
estimate the direction-of-arrival (DOA) with spherical microphone arrays under environments with
reverberation and noise for low computational complexity and high accuracy. This paper proposes
three different covariance matrices as the input features and two different learning strategies for the
DOA task. There is a progressive relationship among the three covariance matrices. The second
matrix can be obtained by processing the first matrix and it effectively filters out the effects of the
microphone array and mode strength to some extent. The third matrix can be obtained by processing
the second matrix and it further efficiently removes information irrelevant to location information.
In terms of the strategies, the first strategy is a regular learning strategy, while the second strategy
is to split the task into three parts to be performed in parallel. Experiments were conducted both
on the simulated and real datasets to show that the proposed method has higher accuracy than
the conventional methods and lower computational complexity. Thus, the proposed method can
effectively resist reverberation and noise.

Keywords: direction-of-arrival; spherical microphone array; covariance matrix; convolutional
neural network

1. Introduction

Direction-of-arrival (DOA) estimation has received more attention in the field of
signal processing because it has a wide range of application. It can be applied to wireless
communication, speech source separation, video conferencing and so on [1–6]. Over the
years, many conventional methods have been successfully developed for the estimation
task. The subspace-based methods are more popular among traditional methods for
the outstanding performances. The multiple signal classification (MUSIC) [7] and the
estimation of signal parameter via rotational invariance (ESPRIT) [8] are relatively eminent
representative methods in subspace-based algorithms. The noise subspace is used to
generate a spectrum in the MUSIC algorithm. The position where the spectral peak
appears is the corresponding estimated DOA. Although it can guarantee relatively higher
accuracy, the peak search is very time-consuming. Conversely, the ESPRIT method utilizes
the signal sub-space for DOA estimation. The ESPRIT is time-saving at the expense of
accuracy. I the beamforming-based approach, such as the minimum variance distortionless
response (MVDR) [9], is another traditional method. However, the Rayleigh limit and
low resolution are the shortcomings of this method. Generalized cross-correlation phase
transform (GCC-PHAT) is also a commonly used traditional method, which requires
the time difference of arrival (TDOA) between microphone pairs [10,11]. There is also
a conventional called Maximum likelihood method [12]. It needs a multi-dimensional
search, even though they can provide high estimation accuracy. Even worse, the global
convergence can not be guaranteed. All these methods mentioned above can be used
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in an anechoic condition. However, they generally suffer from problems such as high
computational cost or performance degradation in noisy and reverberant environments.

In recent years, the development of deep learning has brought new inspiration to the
DOA estimation. In order to resist reverberation and noise effectively, many deep neural
networks (DNNs) have been proposed to estimate DOA. The most regular way to deal
with the DOA task is to treat it as a regression task or a classification task. In terms of the
regression, features extracted from the observation signals, which is related to location
information, are directly mapped to the source position by deep learning [13–17]. For
the classification, the position space will be divided into different regions. Each region
corresponds to a class. Neural networks learn the relationship between input features
and classes and then identify the class that a signal belongs to. In many studies and
simulations, it is shown that when DOA is acted as a classification task, it can be estimated
more accurately [18–21].

In the classification task, a vital step is to find proper input features for neural networks
to learn the relationship between the features and labeled regions. Many different features
have been proposed for DOA estimation, such as phases of signals [22], both phases
and magnitudes of signals [23], real part and imaginary part of the signal [24], intensity
vectors [25] and so on. Soumitro used signal phases as the inputs for a uniform linear array
(ULA) [22]. However, elevations cannot be estimated simultaneously. It is not enough to
locate the signal exactly with the ULA. Adavanne combined phase and amplitude spectra
as inputs [23] and mapped them to the outputs. The input features are first mapped into
space pseudo-spectra (SPS) and the DOAs in the two-dimensional polarized coordinates
are estimated. Perotin utilized the intensity vectors of first-order ambisonic (FOA) signals
as the inputs [25] to jointly estimate DOAs. However, the accuracy is relatively lower. As
shown before, the spherical microphone array has not received much attention. However,
it has many advantages for array signal processing. In particular, this array does not cause
angular blurring due to the perfect symmetry of the sphere. Thus, this paper focused on the
spherical microphone array, and three different input features and two different strategies
are proposed for improving the accuracy of the localization task. The remainder of this
paper is organized as follows. In Section 2, a data model of DOA estimation with spherical
arrays is given. Our proposed method is described in Section 3. The architecture of the
network is indicated in Section 4. Simulations and performance evaluation are shown in
Section 5. Section 6 shows the computational complexity. Finally, conclusions are drawn in
Section 7.

2. Data Model

A spherical microphone array with a radius r and L mutually independent and
isotropic sensors in standard spherical coordinate [26] is considered. The center of the array
coincides with the origin of the coordinate system and the microphones are located at the
position rl = r[cos ϕl sin ϑl , sin ϕl cos ϑl , cos ϑl ]

T , where ϑl and ϕl represent the elevation
and azimuth of the l-th sensor, respectively, l = 1, · · · , L. Figure 1 indicates the spherical
coordinate system used for localization.
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An acoustic far-field signal sd(t) emitted from the location rd = (rd, θd, φd) is supposed.
The distance between the source and the center of the spherical microphone array is rd, and
θd and φd mean the elevation and azimuth of the d-th source, respectively. Thus, the output
vector x(t) of the spherical microphone array can be obtained as

x(t) = As(t) + v(t), (1)

where x(t) = [x1(t), · · · , xL(t)]
T , A is the steering matrix that represents the transfer

functions from the source signals s(t) = [s1(t), · · · , sD(t)]
T to the array microphones and

holds the DOA information, v(t) = [v1(t), · · · , vL(t)]
T is the noise vector, t is the time

index, D represents the number of sources. When source signals are wideband ones, short-
time Fourier transform (STFT) [27] must be considered to construct a signal model in the
time–frequency domain from the spatial domain as follows

x(τ, kh) = A(kh)s(τ, kh) + v(τ, kh), (2)

where τ indicates the index of time frame, kh = 2π fh/c is the wavenumber corresponding
to the frequency bin fh, h represents the frequency bin index, c is the speed of the sound,
x(τ, kh) = [x1(τ, kh), · · · , xL(τ, kh)]

T , v(τ, kh) = [v1(τ, kh), · · · , vL(τ, kh)]
T , and A(kh), the

corresponding steering matrix [28], can be decomposed as

A(kh) = Y(Ω)B(khr)YH(Φ), (3)

where Y(Ω) = [y(ϑ1, ϕ1), · · · , y(ϑL, ϕL)]
T is the spherical harmonic matrix containing the

information of the locations of all the microphones and Y(Φ) = [y(θ1, φ1), · · · , y(θD, φD)]
T

is the spherical harmonic matrix only dependent on DOAs of D sources, [·]T indicates trans-
pose, [·]H is the conjugate transpose, the spherical harmonics vector y(θ, φ) is expressed as

y(θ, φ) = [Y0
0 (θ, φ), Y−1

1 (θ, φ), Y0
1 (θ, φ), Y1

1 (θ, φ), · · · , YN
N (θ, φ)]

T
, (4)

where Ym
n (θ, φ) is the spherical harmonic function with order n and degree m described as

Ym
n (θ, φ) =

√
(2n + 1)(n−m)!

4π(n + m)!
Pm

n (cos θ)eimφ, (5)

where i2 = −1, Pm
n (x) is the associated Legendre function of order n and degree m. When

m is positive, Pm
n (x) is defined as

Pm
n (x) = (−1)m(1− x2)

m
2 dm

dxm Pn(x), (6)

for the negative parts, it can be obtained from the positive parts as

P−m
n (x) = (−1)m (n−m)!

(n + m)!
Pm

n (x), (7)

where Pn(x) is the associated Legendre polynomial given by

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)
n
. (8)

N is the highest order of the spherical harmonic function, n = 0, · · · , N and
m = −n, · · · , 0, · · · , n. B(khr) = diag{b0(khr), b1(khr), b1(khr), b1(khr), · · · , bN(khr)},
where bn(khr) is the mode strength [29] defined as



Appl. Sci. 2022, 12, 4278 4 of 17

bn(khr) =

 4πin jn(khr) open sphere

4πin jn(khr)− j′n(khr)
o′n(khr) on(khr) rigid sphere

, (9)

where jn(x) is spherical Bessel function of the first kind and on(x) is spherical Hankel
function of the second kind. j′n(x) and o′n(x) are their derivatives, respectively

The model in (2) can be rewritten as

x(τ, kh) = Y(Ω)B(khr)YH(Φ)s(τ, kh) + v(τ, kh). (10)

The model can be transformed into the spherical harmonic domain by left-multiplying
YH(Ω). Due to the orthogonality principle of spherical harmonics for uniform or nearly
uniform sampling, it can be known that YH(Ω)Y(Ω) = I

(N+1)2 [30], where I
(N+1)2 is an

(N + 1)2 × (N + 1)2 identity matrix. The new model in the spherical harmonic domain is

xnm(τ, kh) = B(khr)YH(Φ)s(τ, kh) + vnm(τ, kh), (11)

where xnm(τ, kh) = YH(Ω)x(τ, kh) and vnm(τ, kh) = YH(Ω)v(τ, kh). Further, (11) can be
left multiplied with B−1(khr).

^
xnm(τ, kh) = YH(Φ)s(τ, kh) +

^
vnm(τ, kh), (12)

where
^
xnm(τ, kh) = B−1(khr)xnm(τ, kh),

^
vnm(τ, kh) = B−1(khr)vnm(τ, kh). In this model,

the steering matrix YH(Φ) is irrelevant to the information of the microphones and
mode strength.

3. The Proposed Method

This section introduces the input features of the proposed method for the DOA task.
As shown before, three different covariance matrices are considered as the input features
for the neural network. The first covariance matrix is the covariance matrix of the received
signal of the microphone array in the time–frequency domain (TFD). The second one is
the covariance matrix of the signal in the spherical harmonic domain (SHD). The third
one is the covariance matrix of the signal in the azimuth–elevation domain (AED). All the
covariance matrices are to be introduced in detail.

3.1. TFD Matrix

The received signal of the microphone array in the time–frequency domain is the
output vector x(τ, kh) of the microphone array. The covariance matrix of the x(τ, kh) can be
obtained as

M1 =
1

NF

1
NT

NF

∑
h=1

NT

∑
τ=1

x(τ, kh)x
H(τ, kh), (13)

where NF is the number of the frequency bins, and NT time frames are considered. In
practical applications, the covariance matrix can also be calculated in this way. Under each
frequency bin, the covariance matrix of the x(τ, kh) can be obtained along the time index.
The final step is to average all the matrices with the total frequency bins.

3.2. SHD Matrix

It can be known that the data model in (12) has filtered out the effects of the microphone
array and mode strength to some extent. Thus, this model can contain the angle information
more efficiently. Thus, the covariance matrix of the model in the spherical harmonic domain
can be got by the same way as the TFD matrix
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M2 =
1

NF

1
NT

NF

∑
h=1

NT

∑
τ=1

^
xnm(τ, kh)

^
xnm

H(τ, kh). (14)

3.3. AED Matrix

A mapping matrix between the spherical harmonic function and Fourier series was
found in our previous work [31]. Its dimension is (2N + 1)2 × (2N + 1)2. The mapping
matrix has the function to transform the steering vector in (12) into the Kronecker product
of two Fourier series vectors. Each vector has a Vandermonde structure only dependent on
azimuths or elevations, respectively,

y(θ, φ) = E[f(φ)⊗ f(θ)], (15)

where operator ⊗ represents the Kronecker product. The f(φ) and f(θ) can be expressed as

f(φ) = [eiNφ, · · · , 1, · · · , e−iNφ]
T

, (16)

f(θ) = [e−iNθ , · · · , 1, · · · , eiNθ ]
T

. (17)

Moreover, the values in matrix E do not change with the positions of sound sources.
Thus, (15) can be left multiplied with the generalized inversion of matrix E, and it can obtain

g(θ, φ) = E†y(θ, φ) = f(φ)⊗ f(θ). (18)

According to (12) and (18), the novel model can be obtained from (12) by left multiply-
ing (E)†

xθφ(τ, kh) = G(Φ)s(τ, kh) + vθφ(τ, kh), (19)

where xθφ(τ, kh) = (E)†^
xnm(τ, kh) and vθφ(τ, kh) = (E)† ^

vnm(τ, kh). [.] is the operation that
conjugates all the elements in the matrix. G(Φ) = [g(θ1, φ1), · · · , g(θD, φD)]. Compared

with
^
xnm(τ, kh), xθφ(τ, kh), which is determined by the azimuth and elevation to the greatest

extent, further efficiently removes information irrelevant to location information; therefore,
it can be seen that the signal is transformed from the time–frequency domain to the azimuth–
elevation domain. Thus, one can obtain the covariance matrix of the xθφ(τ, kh) with the
same method

M3 =
1

NF

1
NT

NF

∑
h=1

NT

∑
τ=1

xθφ(τ, kh)xθφ
H(τ, kh), (20)

The last step is to assemble the real parts and the imaginary parts to obtain the final
input features. Table 1 indicates the dimension of the three different covariance matrices.

Table 1. The dimensions of the three different covariance matrices.

TFD SHD AED

Dimension 2L× L 2(N + 1)2 × (N + 1)2 2(2N + 1)2 × (2N + 1)2

Figure 2 is the flowing chart of acquiring the input features. From the figure and
theoretical analysis, it can be found that the AED best carries the information of the
location, which will be the most efficient input features at a theoretical level. Algorithm 1
shows the steps of the algorithm for palpability.
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Algorithm 1 The algorithm of proposed input features

Input: received signal x(t)
Output: TFD, SHD, AED

1. Get x(τ, kh) by using the STFT of the received signal x(t).
2. xnm(τ, kh) = YH(Ω)x(τ, kh).

3.
^
xnm(τ, kh) = B−1(khr)xnm(τ, kh).

4. xθφ(τ, kh) = (E)†^
xnm(τ, kh)

5. M1 = zeros(L, L), M2 = zeros((N + 1)2, (N + 1)2), M3 = zeros((2N + 1)2, (2N + 1)2).
6. for kh = 1 : NF
7. for τ = 1 : NT
8. M1 = M1 + cov(x(τ, kh))

9. M2 = M2 + cov(
^
xnm(τ, kh))

10. M3 = M3 + cov(xθφ(τ, kh))

11. end for
12. end for
13. M1 = 1

NF NT
M1

14. M2 = 1
NF NT

M2

15. M3 = 1
NF NT

M3

16. TFD← [real(M1); image(M1)].
17. SHD← [real(M2); image(M2)].
18. AED← [real(M3); image(M3)].

4. Learning Strategies and Network Architectures

Two different learning strategies and their corresponding network structures are intro-
duced in this section. As shown before, the DOA estimation is regarded as a classification
task. The task can be finished with two strategies.

4.1. Regular Strategy

The estimation is treated as a classification task. The whole space is divided into
different classes and the emitted signal detects which class the signal belongs to. The
elevation space, ranging from 30

◦
to 150

◦
, is divided into 13 different classes with the

interval of 10
◦
. Similarly, the azimuth space, ranging from 0

◦
to 360

◦
, is divided into

36 classes with the interval of 10
◦
. In total, 468 different classes can be obtained. Moreover,

each class is granted a label to distinguish it. For each class, a large number of samples are
generated for the network to learn and give the network the ability to localize the sound
source. For the classification, a convolutional neural network is utilized for the task. The
network is composed of three convolutional layers and two fully connected layers. For the
convolutional layers, the size of the convolution cores in these three convolutional layers
is 2 × 2. Moreover, the number of filters in all layers is fixed at 8. All the convolutional
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layers are activated by the rectified liner unit (ReLU) activation [32]. A flattened layer
follows the last convolutional layer to reshape the output of the convolutional layers. The
following components are two fully connected (FC) layers. The first layer with NH nodes is
activated by the ReLU activation. The second layer with NC nodes uses softmax for the
activation. NC is the number of classes for the task. The softmax function [33] helps to
obtain the posterior probabilities of all the candidates. Finally, according to the principle of
maximum posterior probability, the position where the maximum probability occurs is the
estimated DOA. Figure 3 demonstrates the details of the network for the estimation task.
During learning, the cross-entropy [34] is chosen as the loss function because its derivation
is simpler and it is only related to the probability of the correct class. Furthermore, the
loss is able to conveniently derive the input of the softmax activation layer. Adam [35] is
adopted for the stochastic optimization. The details of the CNN are shown in Figure 3.
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Figure 3. The process for DOAs estimation and architecture in detail. Conv (x, y, z) indicates that the
size of the convolution core is y× z, and the number of the filters is x. NH is the number of the nodes
in the first FC layers. NC is the number of the nodes in the second FC layer, which represents the
number of classes.

4.2. Segmentation Strategy

As shown in Section 4.1, there are 468 different classes in the regular strategy. Too
many classes can bring interference to learning and testing. Thus, this part proposes the
segmentation strategy for predigestion. For the azimuth, the entire space is considered,
which is a major contributor to too many classes. The azimuth space can be processed with
the segmentation strategy. The entire space is equally divided into Q sub-spaces. Thus, the
task is finished in parallel with Q independent networks. This strategy can decompose the
excessive number of classes in the task into Q parts so that the number of the total classes
in each part is reduced, thereby reducing the interference induced by classes. Figure 4
shows the example of the space division when Q = 3, and the experiments in this paper
are conducted in the case of Q = 3. The color-rendered part is the corresponding sub-space,
and the white area is the irrelevant space compared to the coloring space.
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◦

to 120
◦
.

(b) is the second sub-space, which ranges from 120
◦

to 240
◦
. (c) is a perspective view of (b). (d) is the

third sub-space, which ranges from 240
◦

to 360
◦
.

Take Figure 4a as an example. The pink part is the first sub-space used for the first
CNN. The space range for the pink part is from 0

◦
to 120

◦
, thus, 169 classes can be obtained

for the first CNN. As the other blank parts are irrelevant spaces, a new class is needed in
this subtask. This class represents irrelevant sound, which means that the signal comes
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from irrelevant areas. This feature should be used as the input of the other two networks
to determine the location, the signal does not appear in this sub-space. Thus, 170 classes
are considered for the first sub-CNN. Similarly, the second sub-space, ranging from 120

◦

to 240
◦
, also has 170 classes. The third sub-space also has this, whose range is from 240

◦

to 360
◦
.

Figure 5 shows the architecture of the network in the segmentation strategy with
Q = 3. The specific structure of the sub-CNN is the same as the network structure of the
CNN in the regular strategy to better compare the effectiveness of strategies.
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For testing, the input feature of one signal is sent to three sub-networks for detection
at the same time, and the three networks output all the posterior probabilities of the whole
space and judge the position of the signal through the principal of the maximum posterior
probability. In particular, when the maximum probability appears in the irrelevant class,
the entire corresponding sub-space will no longer be considered.

5. Simulations and Evaluation

This section introduces the setups for the simulations and the evaluation for the
performance. The audio settings followed are similar to those in [28]. A Hanning window
is used with the length 256 and an overlap of 75% between adjacent frames. The sample
frequency is 16 kHz. Moreover, 256-point FFT is considered. The frequency bins ranging
from 500 to 3875 Hz are taken into consideration to have sufficient mode strengths and
avoid aliasing, which results in the number of the frequency bins NF being 55. All these
parameters concern the audio settings. The signal can be processed more effectively with the
help of these parameters. Furthermore, the appropriate frequency range can be selected in
order to have sufficient mode strengths and avoid aliasing with these parameters. Moreover,
the highest order of spherical harmonics is 4. A rigid spherical microphone array with
L = 32 and r = 4.2 cm is considered. The highest order of spherical harmonics and the
number of the sensors directly influence the dimension of the input features. Thus, the
dimension of the TFD matrix is 64× 32. The dimension of the SHD matrix is 50× 25. The
dimension of the AED matrix is 162× 81.

5.1. Dataset

In this section, the simulated and real datasets for the algorithm are introduced. For
training, a large number of data are needed; however, in practice, it is time-consuming and
less cost-effective to sample the data. Thus, simulating data can be taken into consideration
for comprehensive training. A variety of simulated environments can be obtained by using
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SMA response (SMIR) [36]. The SMIR is decided by the size of the room, the locations of
array microphones and sound sources and the reverberation time (RT60). Figure 6 shows
the flow chart of the process of the simulated dataset generation.
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In terms of the room size, six rooms are considered. The six rooms have different sizes
except for a fixed height of 3 m. Four rooms are used for training, and all the rooms are
utilized for testing. RT60 can be chosen between 0.2 and 1 s. Eigenmike [37], a rigid SMA
of radius of 4.2 cm with L = 32, N = 4, is used as the array for generating the signals.
The distance between each source and the center of the SMA is at least 1 m. Moreover, the
source and SMA positions are at a minimum distance of 50 cm away from all the walls in
the room. Clean speeches are chosen for generating the dataset. Then, all the SMIRs and
the source signals are convolved to obtain new signals. In terms of noises, white Gaussian
noise is considered. Moreover, voice activity detection (VAD) [38] is performed on the clean
speeches to filter out the silent frames and only maintain the speech frames. The method
utilized for generating class labels is the same as that in [39] to treat DOA estimation as a
classification task.

5.1.1. Training Dataset

In terms of the room size, four rooms are considered. The size of the room is measured
in meters. The four rooms have different sizes except for a fixed height of 3 m. The
room sizes are: Room 1 (3 m × 5 m × 3 m); Room 2 (6 m × 8 m × 3 m); Room 3
(7 m × 10 m × 3 m); Room 4 (8 m × 9 m × 3 m). As shown before, the elevation space
and azimuth space are both divided with the interval of 10

◦
. Each class is granted a

label. For each DOA class, 125 SMIRs can be obtained by combining different parameters.
Eight different speech signals are randomly selected from the Librispeech dev corpus [40]
to convolve all the SMIRs. Thus, from the four rooms with different sizes, a total of
4000 samples for each DOA class can be acquired. The signal to noise ratio (SNR) is
randomly chosen between 0 and 30 dB. A validation dataset is also needed, whose size is
10% of that of the training dataset.

5.1.2. Testing Dataset

The test dataset is divided into two different parts. The first part is the simulated test
dataset, which is similar to the training dataset but differs in terms of SNR, RT60 and the
source localizations. In total, 265 different DOA positions are selected randomly. In addition
to the four rooms already mentioned in the training set, there are two additional rooms:
Room 5 (4 m× 6 m× 3 m) and Room 6 (9 m× 7 m× 3 m). The rule of selecting the position
of the SMA is the same as that for the training dataset. For better analysis of the relationship
between the results and the parameters, RT60 and SNR are no longer selected randomly.
RT60 varies from 0.2 s to 1 s in a step size of 0.2 s. The SNR changes from 0 dB to 30 dB with
a step of 5 dB.. Similarly, two speech recordings are selected for the convolution with SMIR.
However, this time, the recordings are selected from the Librispeech test corpus [40], not
the Librispeech dev corpus. The second is the real test dataset. The LOCATA dataset [41] is
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used as a real dataset. This is the IEEE-AASP challenge on sound source localization and
tracking. From this, task 1 is chosen to localize the direction of the single static loudspeaker.
The recordings are conducted in a room of (7.1 m × 9.8 m × 3 m) with RT60 = 0.55 s.
Table 2 indicates the parameters for the simulated datasets.

Table 2. Parameters for the simulated datasets.

Parameter Training Stage Testing Stage

DOA θ: step-10
◦
; φ: step-10

◦
Randomly

SNR Randomly step-5dB
RT60 Randomly step-0.2s

Speech Librispeech Dev Librispeech Test
Noise White Gaussian Noise White Gaussian Noise
Room Room 1–4 Room 1–6

The parameters mentioned above are very important for generating the dataset. Dif-
ferent room sizes are used to enrich the information on scene and are beneficial for the
algorithm to apply to more rooms. The white Gaussian noise is used as the interference
to verify the robustness of the algorithm to interference. SNR and RT60 are utilized to
enrich the complexity of the environments. Moreover, during the testing stage, these two
parameters can help to show the relationship between the results and the conditions, which
is effective for verifying the feasibility of the algorithm.

5.2. Methods for Comparison

Spherical harmonic MUSIC (SH-MUSIC) method [42], direct-path domain test method
for MUSIC algorithm (DPD-MUSIC) [28,43] and FOA [44] method are used for the perfor-
mance comparison.

5.2.1. SH-MUSIC

The SH-MUSIC algorithm is the MUSIC method conducted in the spherical harmonic
domain. A spectrum is computed for all the possible candidates of DOAs, and the peak is
found to give the corresponding DOA of the source

(θ̂d, φ̂d) = arg max
(θ,φ)∈L

1
yH(θ, φ)UnUH

n y(θ, φ)
, (21)

where L is the DOA search grid set containing all the possible DOA candidates, Un is
the noise sub-space decomposed from the covariance matrix of the array signals using
eigenvalue decomposition [45]. The covariance matrix can be computed from (14).

5.2.2. DPD-MUSIC

In order to effectively resist reverberation, a direct-path dominance (DPD) test is often
applied to select those time–frequency (TF) bins that contain more direct components. The
test can be expressed as

TDPD = {(τ, kh) :
σ1(τ, kh)

σ2(τ, kh)
> λDPD}, (22)

where λDPD is the threshold for the DPD test to choose the TF-bins, σ1(τ, kh) and σ2(τ, kh)

are the largest and second-largest singular values of the covariance matrix
~
Rnm(τ, kh)

obtained using a rectangular window over the time and frequency indices.

~
Rnm(τ, kh) =

1
Jτ Jυ

Jτ−1

∑
ιτ=0

Jυ−1

∑
ιυ=0

^
xnm(τ + ιτ , kh + ιυ)

^
x

H

nm(τ + ιτ , kh + ιυ) (23)
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The window contains Jτ time frames and Jυ frequency bins. Based on the selected TF
bins, SH-MUSIC method is still used for the sound localization task [28,43].

5.2.3. FOA

Ref. [44] shows that the first four channels of the FOA are considered. This step
involves convolving the signals of the last three channels with the one in the first channel,
assembling the convolved result, and then taking the real and imaginary parts of the new
result as input. In order to better compare the effectiveness of different inputs, all methods
are performed by using the same network structure.

5.3. Measure

In order to evaluate the performance, the gross error (GE) is used for the measure
stage. The GE is the percentage of estimation that does not fall into an allowed threshold
from the original value. Thus, for the simulated dataset, the GE is used to evaluate the
performance. As for the LOCATA dataset, mean deviation and standard deviation [41] are
utilized for the evaluation. The GE is defined as

GEθ =
1

NK

NK

∑
κ=1

[Ie(|θκ − θ̂κ | − λ)], (24)

GEφ =
1

NK

Nκ

∑
κ=1

[Ie(|φκ − φ̂κ | − λ)], (25)

GE =
1

NK

NK

∑
κ=1

[Ie(∆((θκ , φκ), (θ̂κ , φ̂κ))− λ)], (26)

where NK is the number of DOAs estimated, (θκ , φκ) and (θ̂κ , φ̂κ) are the actual and the
estimated DOA of the κth source, λ is the threshold that represents the maximum acceptable
error, ∆ is the angular distance and it is defined as

∆[(θ, φ), (θ̂, φ̂)] = arccos[sin θ̂ sin θ + cos θ̂ cos θ cos(φ̂− φ)], (27)

Ie(x) is

Ie(x) =
{

1 for x > 0
0 for x < 0

. (28)

As introduced before, for the simulated dataset, the GE is used for the evaluation.
λ = 10, 15, 20 is considered. Table 3 demonstrates the GE for the azimuth estimation
with different thresholds. Table 4 illustrates the GE for the elevation estimation with
different thresholds. The symbol ‘-S’ in the tables means that this task is finished with the
segmentation strategy. The GE value shown in the two tables is an average over all the
combinations of SNR and RT60.

Table 3. GE for the azimuth estimation.

Method λ = 20 λ = 15 λ = 10

MUSIC 52.68% 65.02% 74.56%
DPD-MUSIC 38.77% 41.77% 44.34%

FOA 16.77% 23.96% 28.01%

TFD 21.56% 26.67% 30.45%
TFD-S 18.23% 24.63% 27.89%

SHD 16.98% 23.63% 28.77%
SHD-S 14.84% 19.62% 25.33%

AED 13.05% 18.08% 25.08%
AED-S 9.96% 14.77% 21.86%
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Table 4. GE for the elevation estimation.

Method λ = 20 λ = 15 λ = 10

MUSIC 51.56% 63.46% 72.41%
DPD-MUSIC 36.41% 38.55% 45.06%

FOA 18.24% 24.01% 28.96%

TFD 22.01% 27.78% 31.30%
TFD-S 19.33% 26.45% 29.41%

SHD 18.02% 23.88% 28.46%
SHD-S 16.63% 20.31% 27.13%

AED 13.43% 19.27% 26.11%
AED-S 11.33% 17.31% 25.05%

From Table 3, it can be seen that the proposed input feature, the AED matrix, is the
most efficient input feature for the azimuth estimation task. Furthermore, when the input
features are fixed, compared to the regular strategy, the segmentation strategy has higher
accuracy in the test of the azimuth estimation. Thus, the combination of the AED matrix
and the segmentation strategy is the best choice for the azimuth.

It can be known from Table 4 that the proposed input feature, the AED matrix, is also
the most efficient input feature for the elevation estimation task. Moreover, when the input
features are fixed, compared to the regular strategy, the segmentation strategy still has
higher accuracy in the test of the elevation estimation. Although the improvement is not as
remarkable as that in the azimuth estimation task, the segmentation strategy does bring
improvement. Therefore, the proposed method can effectively improve the accuracy for
both the azimuth estimation and elevation estimation.

The relationships between the results and the parameters are shown in Figures 7–9.
From Table 3, Table 4, it can be known that the SH-MUSIC method and the DPD-MUSIC
algorithm perform worse than the deep learning methods. Thus, these two methods
are removed from the experiments for exploring the relationship between results and
influencing factors. The relationship between the results and RT60 is given in Figure 7 with
the threshold λ = 20. Figure 7a shows the GE for azimuth against RT60, Figure 7b shows
the GE for elevation against RT60. Figure 8 shows the relationship between the results
and SNR with the threshold λ = 20. Figure 8a shows the GE for azimuth against SNR,
and Figure 8b shows the GE for elevation against SNR. Figure 9 indicates the relationship
between the results and parameters, which is given in with the threshold λ = 10. Figure 9a
shows the GE against RT60, and Figure 9b shows the GE against SNR.
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Figure 9. GE for estimation with the threshold λ = 10. (a) is the GE against RT60. (b) is the GE
against SNR.

From Figure 7, it can be obtained that the proposed input feature, the AED matrix, is
the best input feature for improving accuracy. Furthermore, the segmentation strategy is
also effective. Thus, the combination of the AED matrix and the segmentation strategy can
help to resist reverberation effectively.

From Figure 8, it can be found that the proposed input feature, the AED matrix, is also
the best input feature for reducing the error rate. Furthermore, the segmentation strategy is
still effective. Thus, the combination of the AED matrix and the segmentation strategy can
help to effectively resist noise.

From Figure 9, it can be seen that the proposed input feature still performs best even
with the lower threshold. Thus, it can be concluded that the proposed method can improve
accuracy in all the simulated conditions.

5.4. Results in the Real Dataset

The first task in the LOCATA challenge is used for real data test. It deals with the
localization of a single static loudspeaker using a static SMA. The mean and standard
deviation represent the performance errors showed in Table 5. From the table, it can be
seen that the proposed method has lower mean deviation and lower standard deviation for
the real dataset test.
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Table 5. Mean and standard deviation for the LOCATA TASK-1.

Method Mean Deviation Standard Deviation

FOA 10.55
◦

10.19
◦

TFD 11.02
◦

10.88
◦

TFD-S 10.77
◦

10.54
◦

SHD 10.36
◦

9.89
◦

SHD-S 10.14
◦

8.83
◦

AED 9.81
◦

8.38
◦

AED-S 9.46
◦

7.98
◦

6. Computational Complexity

This section shows the comparison of the computational complexity and elapsed time.
As shown before, a spherical microphone array is considered. Thus, the spherical harmonic
order needs to be taken into consideration. Thus, only DPD-MUSIC and the proposed
method are considered.

6.1. DPD-MUSIC

Ref. [46] shows the run-time complexity of the narrowband signal estimation using
SH-MUSIC method in the spatial domain. The complexity is O((N + 1)6 + (N + 1)2Nc),
where NC is the total number of the DOA search grids. In terms of DPD-MUSIC, each
rectangular window of time–frequency bins, whose size is Jτ × Jkh

, needs the eigenvalue
decomposition. The number of the windows is (NT − Jτ + 1) × (NF − Jkh

+ 1). The Jτ

and Jkh
are typically small compared to NT and NF [21,28]. Thus, the amount of the

rectangular windows is O(NT NF). Thus, the complexity of DPD-MUSIC is defined as
O(NT NF(N + 1)6 + (N + 1)2Nθ Nφ).

6.2. Proposed Method

For the proposed method, it can be known that for a traditional CNN, about 90% of
the parameters of the total network are in the FC layers [47]. Hence, the computational
complexity can be decided by the FC layers while ignoring the influence of the convo-
lutional layers. It can be understood that the input feature is directly given to the first
FC layer. Thus, the first part of the computational complexity is decided by the size of
the input feature and the number of the nodes in the first FC layer. Similarly, the second
part is decided by the output of the first FC layer and the number of the nodes in the
second FC layer. Thus, the complexity of the proposed method is O(NH NI + NH NC),
and NI indicates the dimension of the input feature. Moreover, the proposed method has
three different input features. From Table 1, the dimension can be obtained. Thus, the
complexities are O(NH(2M2) + NH NC) for TFD, O(NH(2(N + 1)4) + NH NC) for SHD and
O(NH(2(2N + 1)4) + NH NC) for AED. From the theorical analysis, it can be seen that the
proposed method has lower computational complexity than the DPD-MUSIC.

6.3. Elapsed Time Comparison

The elapsed time comparison among the algorithms for the test stage is shown in this
section. The elapsed time is calculated from acquiring the feature to obtaining the DOA.
For a fair comparison, all the experiments are conducted in the same system with Core (TM)
i5-4800S processor manufactured by Inter (R), RAM of 16 GB, 64-bit instruction set. A clock
speed of 2.81 GHz is used for execution. Figure 10 shows the elapsed time comparison in
the form of a bar chart. It can be observed that the computational complexity is reduced.
From the results of the bar chart and theoretical analysis, it can be known that the proposed
method reduces the computational complexity
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7. Conclusions

This paper proposed three different covariance matrices as the input features and
two different learning strategies for the DOA task. For the matrices, there is a progressive
relationship among the three covariance matrices. The second matrix can be obtained by
processing the first matrix, and the third matrix can be obtained by processing the second
matrix. Compared with TFD, SHD effectively filters out the effects of the microphone array
and mode strength to some extent. Compared with SHD, AED more efficiently removes
information irrelevant to location information. In terms of the strategies, the first strategy
is a regular learning strategy while the second strategy is to split the task into three parts
to be performed in parallel. Experiments were conducted both on the simulated and real
dataset to show that the combination of the AED features and the segmentation strategy
can achieve the best performance. Moreover, through theoretical analysis and elapsed time,
it can be observed that the proposed method has lower computational complexity. Thus, it
can be concluded that the proposed method can effectively resist reverberation and noise.
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