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Abstract: Despite the many benefits of additive manufacturing, the final quality of the fabricated
parts remains a barrier to the wide adoption of this technique in industry. Predicting the quality of
parts using advanced machine learning techniques may improve the repeatability of results and make
additive manufacturing accessible to different fields. This study aims to integrate data extracted
from various sources and use them to obtain accurate predictions of relative density with respect
to the governing process parameters. Process parameters such as laser power, scan speed, hatch
distance, and layer thickness are used to predict the relative density of 316L stainless steel specimens
fabricated by selective laser melting. An extensive dataset is created by systematically combining
experimental results from prior studies with the results of the current work. Analysis of the collected
dataset shows that the laser power and scan speed significantly impact the relative density. This
study compares ridge regression, kernel ridge regression, and support vector regression using the
data collected for SS316L. Computational results indicate that kernel ridge regression performs better
than both ridge regression and support vector regression based on the coefficient of determination
and mean square error.

Keywords: additive manufacturing; selective laser melting; porosity; 316L stainless steel; kernel
ridge regression; support vector regression

1. Introduction

Additive manufacturing (AM), as defined by ISO/ASTM 52900, is the process of
making parts from digital 3D models by joining materials layer-on-layer [1]. It is a relatively
recent technology that has emerged from the primary application of rapid prototyping.
However, AM has become more widely used to produce functional parts, prompting
greater interest from both researchers and industries [2]. The extreme flexibility of AM
to make complicated and customized functional parts is largely responsible for its rapid
development in industrial applications.

One of the main benefits of AM is the ability to generate lightweight, robust, and
complex shapes with enhanced properties and performance, as well as cost-effectiveness
and competitiveness [3]. Despite its many benefits, full-scale deployment of AM methods
has received little attention because of limitations linked to the final quality of the parts,
such as poor dimensional accuracy, poor surface finish, and long build times [4]. The
quality of fabricated parts is related to the process parameters, which can be improved by
adjustments to make the end product more appealing.
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Selective laser melting (SLM) is a laser powder bed fusion (L-PBF) process in which
layers of powdered metal are melted at specific locations by a high-power laser beam,
and dense sections of parts are fabricated at each layer after solidification according to
ASTM52900-15 [1]. Many parameters affect the performance characteristics of parts fabri-
cated by SLM, including material qualities; powder properties; machine specifications; and
process parameters such as laser power, scan speed, hatch distance, and layer thickness.
Surface roughness, strength, and relative density are the typically measured performance
characteristics of SLM-manufactured parts [5].

Modeling AM processes is critical to understanding and optimizing process parame-
ters and predicting performance characteristics in three-dimensional printed parts. Many
studies have attempted to model various AM processes using data-driven methodologies
that directly assess the effects of process parameters on part quality. A traditional design of
the experiment is commonly applied in data-driven methods for laser-based AM processes.
For instance, a two-level factorial design has been applied to determine the effects of build
parameters on the deposition of titanium alloys [6]. Averyanova et al. [7] have used a
full-factorial design to identify the optimal set of process parameters and analyze the
microstructure of the final parts and the mechanical properties resulting from different steel
powders. The response surface method has also been used to evaluate the fused deposition
modeling process and capture the relationships between multiple performance characteris-
tics and process parameters [8]. However, the design of the experimental approach usually
involved trial and error, which is time-consuming and expensive, especially in the case of
metal AM [9].

Empirical modeling techniques, such as regression models of linear and quadratic
functions, have been used to model AM and predict the performance characteristics of
fabricated parts [2,10]. Regression analysis and the analysis of variance rely strongly on
statistical assumptions and require a strong assumption of the model structure (e.g., linear
or nonlinear). As a result, the structure of a model and its dependence on statistical assump-
tions cause uncertainty in the prediction ability of the model [4]. Because of the nonlinearity
and complexity of AM processes, the possibility of using machine learning (ML) techniques
and kernel methods has been considered to overcome these modeling issues.

ML algorithms include but are not limited to artificial neural networks, genetic algo-
rithms, and support vector machines (SVMs). These techniques effectively simulate the
input–output interactions of complex systems. Support vector regression (SVR) and kernel
ridge regression (KRR) have been shown to perform well in various applications related to
materials design. SVR has been used in predicting the cutting forces and surface roughness
of turning 4140 steel [11], estimating the flow stress of austenitic stainless steel 304 at high
temperatures and low strain rates [12], and predicting the transition temperature of differ-
ent superconductors of doped MgB2 system [13]. Furthermore, KRR has been employed
in estimating the local magnetic moments and formation energies of metal alloys [14],
predicting the specific discharge capacity and properties of battery materials [15], and
fabricating high entropy alloys with a high degree of hardness [16].

ML has also been used to predict the porosity or relative density based on different
combinations of process parameters in L-PBF processes [9,10,17]. Metal AM aims to achieve
full density parts, as porosity substantially impacts the mechanical performance of the
parts, particularly the fatigue properties. Liu et al. [18] have developed a random forest
network ML model to predict the porosity of Inconel 718 parts fabricated using the L-PBF
process based on process parameters, including part orientation, part location, and the
fraction of recycled powder. Singh et al. [19] have used a multi-layer perceptron to predict
the porosity and microhardness of bronze parts based on the laser power, scan speed, and
hatch distance. Another study [20] has estimated the porosity of stainless steel 17-4 PH
parts at any combination of laser power and scan speed using genetic programming. Using
artificial neural networks and SVM, the porosity content of titanium alloy parts fabricated
by an L-PBF process has been quantified as a function of the hatch spacing, laser velocity,
and laser power [21].
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Few studies have compared different ML algorithms for either material extrusion pro-
cesses, such as fused deposition modeling, or the use of non-metal materials in powder bed
fusion processes. A hybrid M5′-genetic programming approach has been used to predict
the compressive strength of parts fabricated with fused deposition modeling [4]. This study
compared the goodness of fit of the model to those of the SVR and the adaptive neuro-fuzzy
inference system. Another study [2] has compared the results of multi-layer perceptron,
decision tree regression, gradient boosting regression, SVR, and linear regression of the
laser-sintered polyamide parts to predict their dimensional features.

Stainless steel 316L (SS316L) is commonly used in powder bed fusion processes due
to its excellent mechanical properties, including high structural strength and corrosion
resistance. A recent study by Barrionuevo et al. [22] has developed seven supervised ML
regression models (i.e., SVM, decision tree, random forest, gradient boosting, Gaussian
process, K-nearest neighbors, and multi-layer perceptron) to predict the relative density
of SS316 samples fabricated by the SLM process. They collected 112 data points from the
literature and applied 5-fold cross-validation to assess the developed models. However,
considering the importance of SS316L in L-PBF processes, the size of their collected dataset
might have limited their conclusions about the performance of regression. Furthermore,
there may be other promising regression algorithms to consider.

Hence, this study aims to construct a more comprehensive dataset from multiple
data sources extracted from the literature and lab experiments and use the selected ML
algorithms to develop predictive models for the relative density of SS316L parts fabricated
by SLM. The selected ML techniques are SVR and KRR; ridge regression (RR) is used as
a benchmark. KRR has become a very important data mining method, and little work
has been done using this powerful algorithm to predict the performance of AM parts [23].
In particular, this study has applied the truncated-Newton KRR in the area of additive
manufacturing for the first time.

The process parameters considered are the laser power, scan speed, hatch distance, and
layer thickness. Based on 10-fold cross-validation, the predictability of the ML models is
evaluated by the coefficient of determination (R2) and the mean square error (MSE) between
the actual and predicted values. The rest of the paper is structured as follows. Section 2
describes methods to construct a dataset. Section 3 explains regression modeling. Then,
Section 4 provides analytical and numerical results and discusses meaningful outcomes.
Lastly, Section 5 concludes.

2. Materials and Methods
2.1. Materials

In this study, SS316L powder with an average particle size of 65 µm was used as the
starting material to produce specimens by SLM. This alloy is an important engineering
material broadly used for a wide range of industrial applications and is one of the most
widely investigated materials for many laser-based AM processes because of its superior
mechanical properties. SS316L exhibits excellent corrosion and oxidation resistance, high
strength and ductility, and good weldability [24].

2.2. Experimental Results from the Literature

The data used in this study were collected from the literature by extracting experimen-
tal results from a number of studies primarily concerned with the relative density of SS316L
parts fabricated by SLM by varying several process parameters, such as laser power, scan
speed, hatch distance, and layer thickness. The extracted data include the experimental
build parameters and the measured relative density of the SS316L parts. Including data
from different resources typically involves different experimental set-ups and the use of
different raw powdered materials, which will have distinct characteristics.

Table 1 summarizes the experimental conditions of the studies used for data collection.
Despite using the same type of AM process (i.e., SLM), the machine characteristics, such as
build volume, scan strategy, laser profile, and maximum laser power output, differ between



Appl. Sci. 2022, 12, 4252 4 of 17

studies. Different powder characteristics, including the particle size distribution and
powder morphology, are used in different experiments. Thus, the resulting characteristics
of the printed parts (e.g., geometric shape and dimension) and the density or porosity
measurement methods also differ across the studies.

Table 1. Summary of experimental conditions of studies used for data collection.

Authors
Experimental Conditions

Machine Powder Fabricated Parts Density/Porosity
Measurement Method

Kamath
et al. [25]

- Concept Laser GmbH M2
machine under Argon
atmosphere.

- Processes performed at room
temperature.

- Machine has a 400-W
fiber laser.

- Two types of SS316L
powders: CL20 ES
and LPW.

Pillars of surface
area 10 × 10 mm2.

Archimedes method
and scanning electron

microscope.

Spierings
et al. [26]

- Concept Laser GmbH M1
machine equipped with an
Nd: YAG solid-state laser.

- Maximum laser power of
105W.

- Chessboard-like structure
scan strategy.

- Powder M and 16-45:
Gaussian particle size
distribution.

- Powder 1.4404–CL20:
Asymmetric
distribution.

Cubes of size
5 × 5 × 5 mm2. Archimedes method.

Choi
et al. [27]

- Concept Laser GmbH
Mlab-Cusing under Argon
atmosphere.

- Machine equipped with
Yb:YAG fiber laser, effective
power of 100 W.

- Line scanning strategy.
- Processes performed at room

temperature.

- SS316L CL20ES
powder.

- Spherical
morphology and
irregularly shaped
particles.

- Narrow particle size
distribution.

Cubes of size
10 × 10 × 10 mm3. Archimedes method.

Greco
et al. [28]

- Concept Laser GmbH
Mlab-Cusing equipped with
Nd:YAG fiber laser.

- Maximum power of 100 W.
- Building volume is 90 × 90
× 80 mm3.

- Maximum grain size
of 50 µm.

Cubes of size
8 × 8 × 8 mm3.

Relative density was
determined from an

analytical model
describing the parts

dimensions, mass, and
density of the
material used.

Leicht
et al. [29]

- EOS GmbH M290 machine.
- Ar environment and oxygen

content below 0.1%.
- Stripe scanning scan strategy.

- Gas-atomized 316L
powder.

- Size distribution of
25–53 µm.

Rectangular prisms
of 72 × 12 ×

2.5 mm3.

Light optical
microscopy

micrographs.

Larimian
et al. [30]

- SLM Solutions GmbH under
Argon atmosphere.

- Equipped with fiber laser
with a power of 100 W.

- Automatic powder layering
mechanism.

- Gas-atomized 316L
powder.

- Different particle size
distributions.

- Horizontally
built Blocks.

- Rectangular
prisms of 80×
10 × 6 mm3.

Scanning electron
microscope images

using ImageJ software.
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Table 1. Cont.

Authors

Experimental Conditions

Machine Powder Fabricated Parts Density/Porosity
Measurement Method

Tucho
et al. [31]

- SLM Solutions GmbH 280HL
machine under Argon
atmosphere.

- Equipped with 400 W fiber
laser.

- Cubes of size 10 ×
10 × 10 mm3.

Scanning electron
microscope images

using ImageJ software.

Peng and
Chen. [3] Renishaw AM250. - Cubes of size 10 ×

10 × 10 mm3.

Metallographic
microscope (Leica

DM2700P) after
polishing the samples.

Cherry
et al. [32]

- Renishaw AM250 equipped
with Nd:YAG laser.

- Maximum power of 200 W.
- Ambient temperature was

maintained at 21 ◦C.

- Particle size range 15
to 45 µm
manufactured via gas
atomization.

Cubes of size 10 ×
10 × 10 mm3.

In-house image
analysis software.
Microstructural
analysis using a

JEOL-35C scanning
electron microscope.

AlFaify
et al. [33]

- Renishaw AM250.
- Equipped with 200W

pulsed laser.
- Machine build volume of 250
× 250 × 300 mm3.

- Particle size range
15–45 µm
manufactured via gas
atomization.

Cubes of size10 ×
10 × 10 mm3. Archimedes method.

Shi
et al. [34]

- Renishaw AM400 equipped
with Nd: YAG laser.

- Maximum power of 400 W.
- Machine build volume of 250
× 250 × 300 mm3.

- Meander scan strategy.

- Particle size range
5–41 µm
manufactured via gas
atomization.

Specimen
dimensions of 5 × 5
× 10 mm3.

Optical microscope
images using Image J.

Wang
et al. [35]

- Laseradd DiMetal-100
machine

- Maximum laser power
200 W.

- Building envelope is 100 ×
100 × 120 mm.

- Process performed under
argon or nitrogen
atmosphere.

- Gas-atomized 316L
powder.

- Average particle size
of 17 µm.

- Density of
4.04 g/cm3.

Cubes of size10 ×
10 × 5 mm3.

Relative density was
measured through the

drainage method.

The data extracted from the literature are combined with the experimental data of the
current study to create predictive models for the relative density of SS316L parts fabricated
by SLM. The extracted and compiled datasets enable the generalization of the similarities
among different AM machines and aid in understanding the correlation between the
process parameters and the relative density of the parts using ML techniques.

2.3. Experimental Procedure and Density Measurement

Specimens were built using an EOS M400-4 AM machine [36]. The machine has a total
build volume of 400 × 400 × 400 mm and four 400 W fiber lasers that each work over an
area of 250 × 250 mm, with a 50 mm overlap.

Cubic specimens with an edge length of 10 mm were fabricated using different laser
powers, scan speeds, and hatch distances, with a constant layer thickness of 0.04 mm.
The base powder material was SS316L by EOS, having a powder particle size distribution
between 20 to 65 µm and typical chemical composition in weight percent as: Cr 18%, Ni
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14%, Mo 2.5% and C 0.03%. Table 2 gives selected values of the parameters used and the
measured relative densities. The parameter values are based on the usual ranges of AM
machines, and in particular for EOS M400 machine when printing with SS316L powders.
The printed SS316L samples are shown in Figure 1.

Table 2. Selected process parameters and measured relative density for the produced samples.

Sample No. Power (W) Speed (mm/s) Hatch Distance (mm) Relative Density (%)

1 150 500 0.090 100.00

2 150 500 0.100 99.97

3 150 500 0.125 87.70

4 200 700 0.090 100.00

5 200 700 0.100 99.95

6 200 700 0.125 96.41

7 250 900 0.090 100.00

8 250 900 0.100 99.96

9 250 900 0.125 96.80

10 300 1100 0.090 100.00

11 300 1100 0.100 99.98

12 300 1100 0.125 97.50

13 230 950 0.090 99.93

14 330 800 0.120 100.00

15 330 950 0.090 100.00

16 200 800 0.110 97.72

17 200 950 0.090 98.93

18 230 900 0.110 98.51

19 230 1100 0.090 98.93

20 260 1100 0.100 99.30
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Then, the samples were cut, grinded and polished across their mid-section to measure
the porosity, as shown in Figure 2a. An optical microscope was used capture the images
and the positions on the cross section where images were captured are also displayed in
Figure 2b.
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3. Applied Regression Models and Modelling

This section describes three regression models used in this study. Table 3 provides the
list of symbols used in the models.
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Table 3. List of symbols used in the models.

Symbols Remarks

β Coefficient vector in RR and KRR

ε Random error vector in RR and KRR

λ Regularization parameter in RR and KRR

Id d × d identity matrix in RR and KRR

γ Tuning parameter in the KRR radial basis function (= 1
2σ2 )

σ Tuning parameter in the KRR radial basis function

α Dual variable vector in KRR

ξi, ξi
∗ Slack variables in SVR

C Regularization parameter that adds a penalty in SVR

ε Maximum error in SVR

α, α∗ Lagrange multipliers in SVR

3.1. Ridge Regression (RR)

The least squares regression is the most fundamental regression model. Linear regres-
sion is the simplest form of the least squares method, where the relationship between the
variables is described by a line, which in matrix form can be expressed as

y = Xβ + ε (1)

where y ∈ RN is the dependent variable vector and X ∈ RN×d is the data matrix represent-
ing d− 1 independent variables and N rows, β is the coefficient vector, and ε ∈ RN is the
random error vector [37]. The solution to the minimization of the sum of squared errors
(SSE) with regard to β in Equation (2) is given by Equation (3):

SSE = (y−Xβ)T(y−Xβ) (2)

β̂ =
(

XTX
)−1

XTy (3)

RR is an estimation method that can be used to improve prediction in regression
situations involving strongly correlated parameters. This approach can prevent incorrect
regression coefficients induced by multicollinearity in the least squares regression [38]. As a
result, RR is frequently employed to avoid overfitting by adding a regularization parameter
λ ≥ 0 to the SSE function, as presented in Equation (4).

SSE = f (β) =
1
2
(y−Xβ)T(y−Xβ) +

λ

2

∣∣∣∣∣∣βT β
∣∣∣∣∣∣2 (4)

The solution to Equation (4) is given by

β̂ =
(

XTX + λId

)−1
XTy (5)

where I is the d× d identity matrix. Equation (5) shows that if λ = 0, the RR reduces to
the linear regression. Compared to ordinary unbiased linear regression, RR decreases the
complexity of the model and mitigates multicollinearity by accepting a small amount of
bias to reduce the variance and the MSE, thus helping to improve the prediction accuracy.

3.2. Kernel Ridge Regression (KRR)

KRR addresses nonlinearity in data by applying a mapping function φ(.) that maps
the data into a higher-dimensional space. The kernel function uses dot products such that
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K = k
(
xi, xj

)
=
〈
φ(xi), φ(xj)

〉
[39,40]. The most used kernels are the linear, polynomial,

and radial basis function kernels. For this study, the radial basis function kernel is used for
both SVR and KRR and can be written as:

k
(
xi, xj

)
= e−γ‖xi−xj‖2

= e−
1

2σ2 ||xi−xj ||2 (6)

where γ = 1
2σ2 is a tuning parameter that represents the width of the radial basis function.

The vector β in Equation (1) can be expressed as a linear combination of the data
points such that β = XTα. Rewriting the model in Equation (1) results in

y = XXTα + ε = Gα + ε (7)

where the matrix G = XXT is a Gram matrix.
When the kernel K replaces the Gramian matrix G in Equation (7), the KRR model becomes

y = Kα + ε (8)

The KRR function to be minimized with regard to the dual variable α ∈ becomes

f (α) =
1
2
(y−Kα)T(y−Kα) +

λ

2
||α||2 (9)

to which the solution is
α = (K + λIN)

−1y (10)

If the matrix (K + λIN) is dense, the computational time has a complexity of O
(

N3).
Hence, iterative methods are the most suitable to compute α. Thus, the model in
Equation (10) can be rewritten as

y = (K + λIN)α (11)

which is a linear system of equations and can be solved using iterative methods. Maalouf
and Homouz [40] have applied the linear conjugate gradient to the Newton step, creating a
truncated regularized kernel ridge regression (TR-KRR) algorithm. The TR-KRR algorithm
is much faster than SVR without compromising accuracy. In this research, the KRR method
is implemented as TR-KRR. Details about the TR-KRR algorithm can be found in [40].

3.3. Support Vector Regression (SVR)

SVM is a promising statistical learning technique based on the principle of structural
risk minimization. This ML method is less sensitive to the dimensionality of the input and
is more likely to achieve a lower generalization error of the regression model [2]. SVM is
well known in classification problems. It is also applied to regression problems, in which
case it is referred to as SVR. In brief, SVR finds an appropriate hyperplane to fit the data
and provides flexibility in defining how much error is acceptable in the model.

The regression hyperplane is determined by maximizing the distances between nearby
data points, known as support vectors, in a non-parametric regression model. The nonlinear
SVR formulation is obtained by considering kernel functions employed to map inputs into
high-dimensional feature spaces [41]. The goal of SVR is to search for a fitting function
f (x) = {w, x}+ b, where w is the weight vector, and b is the constant (bias), which has a
deviation of less than a small value ε from the target (yi) acquired for the related training
data set (xi) [16].

The objective function and constraints of SVR are given in Equations (12) and (13),
respectively, as follows [42]:

Minimize :
1
2
‖ w ‖2 +C ∑n

i=1(ξi + ξi
∗) (12)
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s. t


yi − f (xi) ≤ ε + ξi
f (xi)− yi ≤ ε + ξi

ξi, ξi
∗ ≥ 0, i = 1, 2, . . . , n

(13)

where, ξi and ξi
∗ are slack variables, and C is a regularization parameter that adds a penalty

for each misclassified data point.
SVR simultaneously minimizes both the coefficient sizes and the prediction errors.

The error term is included in the constraints, where the error is set as less than or equal
to a specified margin, called the maximum error, ε [12]. The maximum error, ε, has to be
properly tuned to obtain the desired accuracy of the model. Further, with the introduction
of the Lagrange multipliers α and α∗, and the application of the radial basis kernel function
to the dot product of the input vectors, the following formula can be obtained:

f (x) =
n

∑
i=1

(αi − α∗i )k
(
xi, xj

)
+ b (14)

The radial base function kernel is introduced in Equation (6). The parameters ε and γ
of the SVR model are user-defined.

3.4. Data Preparation and Model Evaluation
3.4.1. Data Pre-Processing

The quality of the data is a significant factor in the prediction process. Since multiple
data sources were combined into one dataset, data cleansing, including data validation,
outliers removal, and preparation for further analysis, should be completed before use [43].
The data cleansing process also modifies the data so that it is best suited to the data analysis
task. The cleansing of the dataset highly affects the overall performance and robustness of
the prediction model [44].

For this work, the initial data from the literature contained 232 observations. The
cleansing process started with detecting potential outliers by observing the standardized
residuals of the least squares regression. An observation with a standardized residual
larger than 3 (absolute value) is deemed an outlier [45]. After the outlier removal process,
181 observations from the literature remained in the dataset. These observations from the
literature were combined with the experimental results from the 20 specimens fabricated in
the current work. Thus, the compiled dataset consisted of 201 observations ready to use
for data analysis and modeling. The size of the dataset constructed in this study is almost
double that presented in [22] (i.e., 112 points), implying the robustness of this study.

A clean, standardized, or normalized dataset is usually required before data analysis.
This step is especially crucial when the data contains different parameter scales. For
example, the layer thickness values in our dataset range from 0.02 mm to 0.25 mm, while
the laser power values start at 30 W and increase to 400 W. These ranges in parameter
values have to be scaled to a mean of zero and a standard deviation of one. Normalizing the
dataset gives the input parameters an equal range of values, thus reducing their bias [46].

3.4.2. Model Evaluation with 10-Fold Cross-Validation

Cross-validation, which divides the dataset into several groups, is typically used to
improve the estimate of the test error of a predictive model. It is a common approach since
it is simple to understand and results in a less biased or positive judgment of the prediction
ability of the model than other approaches [47].

In this study, 10-fold cross-validation is used to validate the models and provide better
generalization. This technique randomly splits the dataset into k groups (usually k = 5 or
10) or folds of roughly equal size. The initial fold contains the test data that are used for
testing the generalization ability of the model, while the remaining k − 1 folds contain
the training and validation data used for formulating the model [47]. The accuracy of
each model is evaluated using the average of the MSEs and the R2 values from the 10-fold
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cross-validation. All the regression models have been developed and tested using MATLAB
R 2021a.

4. Results and Discussion
4.1. Analysis of Data Plots

The properties of the SLM-manufactured parts depend strongly on the input process
parameters. Thus, it is crucial to understand the relationships between the main process
parameters and the fabricated part characteristics. Although the compiled dataset is a subset
of the experimental data available on the relative density of SS316L parts fabricated by
SLM, it may provide valuable insight into the relationships between the process parameters
and the measured relative density within the investigated range of parameters.

Figure 4 shows the relative density versus the laser power, scan speed, hatch distance,
and layer thickness of the literature data combined with our experimental results. The
variation in the process parameters results in the variation in the relative density. The
process parameters in the compiled dataset have the following ranges: laser power between
30 and 400 W, scanning speed between 50 and 2400 mm/s, hatch distance between 0.04
and 0.3 mm, and layer thickness between 0.02 and 0.25 mm. The relative density of the
samples ranges from 75% to 100%.
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Figure 4a shows that the relative density is greater than 90% when the laser power
is above 150 W. As the laser power and thermal energy from the laser beam increase, a
greater percentage of the material within the volume is heated, possibly above its melting
point. As a result, less material is left intact or partially melted, resulting in a higher
relative density [22]. In contrast, low laser power may result in insufficient melting of the
powder, as well as a reduced depth of the laser penetration into the powder layer, which
is insufficient to melt the powder fully and fuse the layers [48]. Thus, increasing the laser
power may improve and enhance the relative density of the parts.

Furthermore, in Figure 4b, a high relative density is observed when the scan speed
exceeds 1500 mm/s. However, below a scan speed of 1500 mm/s, there is no clear corre-
lation between the scan speed and relative density based on this dataset. The lower scan
speed may incur irregular molten pools, which may yield larger grains and pores. Yusuf
et al. [49] have reported that a lower scan speed increased laser penetration depth, and
inhomogeneous rapid solidification occurred, resulting in lower relative density. A study
in [30] has also noted that samples processed at higher scan speeds had better densification
and more refined microstructure than samples processed at lower scan speeds.

Concerning the hatch distance, as shown in Figure 4c, most of the experiments used
small hatch distances in the range of 0.05–0.15 mm. Small hatch distances ensure overlap-
ping melt pools and hence, less pore formation than larger hatch distances that result in
weak overlapping and provide good conditions for pore formation [31].

Figure 4d shows the experimental results of different layer thicknesses and the result-
ing measured relative density of the parts. While there is no clear correlation between the
relative density and layer thickness in the range of 0.025–0.05 mm, increasing the layer
thickness from 0.05 mm to 0.1 mm results in a higher relative density. The appropriate layer
thickness adjustment allows the laser spots to overlap and result in sufficient melting of
the powder. However, if the powder layer is too thick, it would be hard to create a melt
pool with enough depth to melt and fuse the layers [48].

Based on Figure 4a,b, scan speed greater than 1500 mm/s and laser powers greater
than 150 W achieve high relative density. Figure 5 illustrates the combined effects of the
laser power and scan speed on the relative density. High laser power appears to compensate
for high scanning speed, preventing leftover unmelted powder. When the laser power
increases, the same volume of powder must absorb the same amount of thermal energy
to melt in a shorter time interval [28]. Based on the observation in Figures 4 and 5, the
relative density of SS316L parts is strongly dependent on the process parameters. Setting
the process parameters appropriately will yield fabricated parts with high relative density.
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4.2. Analysis of Regression Results

To check the ability and adequacy of the established models related to the real SLM
system, Figure 6 compares the relative density data determined experimentally with the
values predicted using (a) RR, (b) SVR, and (c) KRR. Ideally, if the predicted values are
equal to the actual data, the points should lie closer to the diagonal line on the graph.
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cross-validation.

The RR model results presented in Figure 6a show the lowest accuracy compared to
the other models. Furthermore, the plot of the SVR presented in Figure 6b shows better
agreement between the predicted and actual values, indicating a higher accuracy. Finally,
Figure 6c demonstrates the predicted vs. actual plot of the KRR model. This model gives
the highest accuracy, as the values were distributed closer to the diagonal line than other
models. The KRR model may be adequate for predicting the relative density and strong
enough to be used in future applications.

Table 4 presents the optimal tuning parameters for each model and their corresponding
accuracy represented by the R2 and MSE. An R2 of 0.701 and an MSE of 0.299 were obtained
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using RR with a tuning parameter (λ) of 0.006. Moreover, SVR showed a better performance
with R2 of 0.83 and MSE of 0.17, along with tuning parameters γ and ε equal to 0.4 and
0.05, respectively. Finally, the KRR resulted in the best accuracy among the three models
with an R2 of 0.853 and MSE of 0.1607, with tuning parameters λ and σ equal to 0.01 and
2.9, respectively. KRR has shown the best performance as it captures the nonlinearities and
complex interactions of the SLM process. It may be good to note that the studied machine
learning methods have employed a grid search approach to find the optimal tunning
parameters. However, there is still room to find the optimal tunning parameters effectively.

Table 4. Optimal tuning parameters and accuracy of the models.

Model Optimal Parameters
Accuracy

R2 MSE

RR λ = 0.006 0.701 0.299

SVR γ = 0.4, ε = 0.05 0.830 0.170

KRR λ = 0.01, σ = 2.9 0.853 0.161

KRR was not used in Barrionuevo et al. (2021), and SVM was one of the best regression
algorithms in their study. This implies that KRR may have better prediction capability for
the relative density of the SS316L parts than other regression techniques. The present paper
complements the recent study in [16] with the doubled data size and consideration of an
additional better regression algorithm (i.e., KRR).

5. Conclusions

The relative density of SS316L fabricated by SLM has been studied using data from
the literature merged with experimental data collected for this study. Different plots
visualize the trends between the input process parameters (i.e., laser power, scan speed,
hatch distance, and layer thickness) and the corresponding relative density. ML techniques,
such as RR, SVR, and KRR, are used to predict the relative density of the parts, and their
performances are compared.

Based on observational analysis of the dataset, the laser power and scan speed have
a strong effect on the relative density: high power and high speed would generate better
densification of the parts. In comparisons between the RR, SVR, and KRR models, KRR
outperformed RR and showed a slightly better performance than SVR based on its lower
MSE and higher R2 values. The KRR may have sufficient predictability for the relative
density of the SS316L parts as a function of the laser power, scan speed, hatch distance, and
layer thickness.

The methods and findings in this study would be beneficial for AM designers who
seek high-precision models to predict AM part properties using input process parameters.
It could also reduce the expense of more experimental trials by prescribing the optimal
process parameters, consuming less energy, and generating environmental benefits [50].
The presented machine learning methods predict the porosity of 3D printed materials by
identifying the relationship between the process parameters and pores. Thus, the formation
of pores can be inhibited by finding the appropriate process parameters. Future work can
use the developed predictive models combined with an optimization method to prescribe
the optimal process parameters for minimizing pores.
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