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Abstract: Advances in next-generation sequencing have provided high-dimensional RNA-seq
datasets, allowing the stratification of some tumor patients based on their transcriptomic profiles.
Machine learning methods have been used to reduce and cluster high-dimensional data. Recently,
uniform manifold approximation and projection (UMAP) was applied to project genomic datasets
in low-dimensional Euclidean latent space. Here, we evaluated how different representations of
the UMAP embedding can impact the analysis of breast cancer (BC) stratification. We projected
BC RNA-seq data on Euclidean, spherical, and hyperbolic spaces, and stratified BC patients via
clustering algorithms. We also proposed a pipeline to yield more reproducible clustering outputs.
The results show how the selection of the latent space can affect downstream stratification results and
suggest that the exploration of different geometrical representations is recommended to explore data
structure and samples’ relationships.

Keywords: UMAP; dimensionality reduction; clustering; embedding geometry; RNA-seq; breast
cancer; tumor stratification; reproducibility

1. Introduction

Due to heterogeneity in different cancer types, the stratification of cancer patients
is a major clinical challenge. It is also a key goal of precision medicine because it would
facilitate targeted therapies [1]. Breast cancer (BC) is the world’s most diagnosed female
tumor, with a high incidence (11.7% of female cancer cases) and mortality (15.5% of total
female deaths) worldwide in 2020 [2]. Moreover, incidence is estimated to increase to
around 3,000,000 cases in 2040 [3]. Tumor stratification for breast carcinoma will therefore
become increasingly important in clinical management, clinical trials, and epidemiological
and functional studies [4].

Recent advances in next-generation sequencing (NGS) have created massive datasets
for genomic big data [5]. NGS has enabled the fast, accurate, and cost-effective analysis
of DNA and RNA samples, allowing patients to be stratified by their transcriptomic
profiles [6–8].

As with all high-dimensional data, RNA-seq datasets suffer from the curse of dimen-
sionality [9]. Thus, several machine learning (ML) methods have been proposed to extract
relevant features and information [10,11].
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Of these, uniform manifold approximation and projection (UMAP) [12] has been
widely used in several tumor stratification and RNA-seq analyses [13–16].

Unlike other popular dimensionality reduction methods, such as principal component
analysis (PCA) [17], UMAP is nonlinear and emphasizes local data structures well. It is
therefore used in a preprocessing step to reduce the dimensionality of a genomic dataset,
either before implementing a full ML model [18] or before visualizing complex expres-
sion profiling data [19]. A recent comparative study [20] showed how UMAP can also
considerably improve the performances of clustering algorithms.

In general, users tune the number of neighbors, i.e., the main UMAP hyperparameters,
to project local data structures in a low-dimensional Euclidean space. Nevertheless, several
other tuning parameters can be specified. In particular, users can choose the embedding
metric onto which UMAP projects the data. By default (https://umap-learn.readthedocs.io/
en/latest/parameters.html, accessed on 20 April 2022), it is a Euclidean distance. Basically,
the more the geometry of the latent space matches the structure of the input data, the more
important the quality of the embedding representation [21]; therefore, different metric
spaces (onto which to project the data) might reveal different sample relationships and
structures. Recently, Ref. [22] proposed a deep generative model to embed cells into low-
dimensional hyperspherical or hyperbolic spaces, providing excellent visualization for data
exploration. In another study, Ref. [23] demonstrated how a hyperbolic embedding can
reveal meaningful hierarchies among samples starting from pairwise similarity information.

Hence, when we cannot know the geometry of the latent space a priori, different types
of metrics should be explored. To the best of our knowledge, the literature contains no
reports on investigating different curvatures of the UMAP embedding space.

Given the above, here we evaluated how non-Euclidean UMAP embeddings can
impact the results of a breast cancer stratification analysis. We used UMAP on RNA-seq
data with three different output metrics: Euclidean, spherical, and hyperbolic. Then, we
stratified the samples via clustering algorithms applied on each UMAP embedding. We
then compared the results in terms of clustering accuracy.

For the present study, we used the RNA-seq breast cancer data downloaded from
The Cancer Genome Atlas (TCGA) website. Details of the dataset are presented in the
Methods section.

Furthermore, UMAP reproducibility is not exact (https://umap-learn.readthedocs.
io/en/latest/reproducibility.html, accessed on 20 April 2022) because it is a stochastic
algorithm. Thus, downstream results might differ between runs. To overcome this, we
propose a pipeline to combine the clustering outputs obtained from different embeddings
into one final robust result.

Our results highlight how a different latent space, onto which practitioners project
high-dimensional data, can affect the final results, suggesting that the choice of the embed-
ding geometry is meaningful for tumor stratification. Specifically, our simulations show
similar performances between Euclidean and hyperbolic metrics, while the spherical one
performs worse than other metrics on three out of four tested algorithms.

2. Materials and Methods
2.1. Data

Because BC is the most commonly diagnosed female tumor [2] and similarly to [24], we
used the RNA-seq dataset and the clinical variables related to BC, profiled by The Cancer
Genome Atlas (TCGA) [25] (for more details on BC RNA-seq data, see the Data Availability
Statement section of the manuscript). We filtered out the male and metastatic samples,
then merged the data with the BC subtypes that include 192 basal-like, 563 luminal-A, 207
luminal-B, 82 HER2-enriched, and 40 normal-like samples. The final dataset comprises
20,530 gene expressions per 1084 samples.

https://umap-learn.readthedocs.io/en/latest/parameters.html
https://umap-learn.readthedocs.io/en/latest/parameters.html
https://umap-learn.readthedocs.io/en/latest/reproducibility.html
https://umap-learn.readthedocs.io/en/latest/reproducibility.html
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2.2. UMAP

To reduce the dimensionality of the RNA-seq data, we used UMAP (umap-learn
0.4.0 package in Python: https://umap-learn.readthedocs.io/en/latest/release_notes.html,
accessed on 20 April 2022), an unsupervised algorithm for nonlinear neighbor graph-based
dimensionality reduction [12], which is popular in various fields [16,26,27]. This was the
first step in a cluster analysis to address the “curse of dimensionality” [9], a common
problem for clustering algorithms.

Briefly, UMAP computes a high-dimensional weighted graph of the data, with edge
strength quantifying how a vertex (sample) is connected to another. Then, UMAP embeds
the data points into a low-dimensional space, minimizing the fuzzy-set cross-entropy
between the high- and low-dimensional graphs.

Several parameters must be specified to apply UMAP. First, the number of nearest
neighbors (NNs) is required to construct the initial graph. To select the best NN, we
embedded the data several times with different NN values, ranging from 10 to 100 (in
steps of five), and chose the one that improved the clustering performance in terms of
adjusted rand index (ARI) [28] and homogeneity score [29]. Second, to better visualize the
projected data, UMAP allows one to define a minimum distance (MD) between nearest
neighbors in low-dimensional space. Since a low MD value is more appropriate [30] for
downstream clustering analysis, we set MD equal to zero. Finally, two metrics can be
defined: one metric to compute the distance between the input data points, and the other
to compute distances in the final embedding, i.e., the output metric. Common choices
fall within Euclidean distance for both metrics, but there is no reason to assume that
the best topological representation of the input data lies in a low-dimensional Euclidean
space. Correspondence between the structure of the input data and the geometry of
latent space can improve embedding representation and downstream analysis such as
clustering and classification [31]. Therefore, setting the input metric as Euclidean, we
projected the 20,530 gene expressions not only onto 3-dimensional (we chose 3 dimensions
for the Euclidean space as it is viewable and more informative than the 2-dimensional
representation) Euclidean space but also onto 2-dimensional spherical and hyperbolic
surfaces, in order to visualize and evaluate how a different topology of the latent space can
affect the final results in terms of clustering performance.

2.3. Clustering Algorithms

Tumor stratification from transcriptomic data aims to identify groups of samples
with common characteristics (i.e., tumor subtype). This task is commonly addressed with
clustering techniques. In this study, we tested four clustering algorithms, comparing their
outputs: hierarchical density-based spatial clustering of applications with noise (HDB-
SCAN), density-based spatial clustering of applications with noise (DBSCAN), ordering
points to identify the clustering structure (OPTICS), and agglomerative clustering. We
chose these algorithms as they do not rely upon centroid computation which is a non trivial
operation for non-Euclidean metrics.

HDBSCAN is a density-based hierarchical method developed by Campello et al. [32].
By creating a series of nested sample groups, it allows one to perform hierarchical clustering
and so to explore tumor stratification on RNA-seq data in greater detail.

The algorithm does not assign lower density points to any cluster, marking them as
Noise. In this work, we referred to them as Not Clusterable (NC) points. Moreover, the
algorithm requires two main hyperparameters to be defined. The first hyperparameter,
Min Cluster Size (MCS), is the minimum number of elements required to build a group.
The second hyperparameter, Min Samples (MS), is related to the extent of NC points. In
our analysis, the MCS value was set to 30, while the MS was optimized based on the value
of ARI, with testing values ranging from 1 to 100.

The DBSCAN algorithm, proposed in 1996 [33], is the precursor of HDBSCAN. Its
main hyperparameters are the maximum distance between two samples (EPS) and MS. The

https://umap-learn.readthedocs.io/en/latest/release_notes.html
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first was optimized by testing values from 0.05 to 10, and the second one was optimized as
for HDBSCAN.

Moreover, the OPTICS algorithm [34] is closely related to DBSCAN and its main
hyperparameter is MS.

Finally, the agglomerative clustering [35] was the last one we tested. It recursively
merges pairs of clusters of sample data and it requires the number of clusters to be defined;
we fixed that value at 4.

The evaluation of clustering quality and the hyperparameter optimization were based
on two scores. The first score is ARI, a popular score for evaluating the quality of clus-
tering [36,37]. Ranging from −1 to 1, it computes the similarity between the partitions
generated by the algorithm and the one we expect, according to a specific clinical variable
(in our analysis, the BC subtype). A value of 1 indicates that the algorithm is able, in an
unsupervised manner, to aggregate the samples as defined in the clinical variable. The
second score is the homogeneity [29], ranging from 0 to 1, where 1 corresponds to a perfectly
homogeneous partition. A clustering result is homogeneous if all of its clusters contain
only data points that are members of a single class.

We considered it to be a good stratification result if we obtained simultaneously high
scores for ARI and homogeneity. In particular, a high ARI score means that the algorithm
found similar tumor subtypes to those we expected, while a high homogeneity score
indicates that tumor clusters comprise samples of the same BC subtype.

2.4. Reproducibility

Due to use of stochasticity for optimization, the UMAP reproducibility is not exact
(https://umap-learn.readthedocs.io/en/latest/reproducibility.html, accessed on 20 April
2022). This means that, for some datasets such as RNA-seq data, where the tumor subgroups
are a complex function of the transcriptomic profiles, applying a clustering algorithm
on two different runs of UMAP might return two different outputs. We showed that,
although relatively stable, the results have a minimum of variability in terms of the number
of estimated clusters, or samples belonging to the same or different group. When it is
important to identify the correct number of clusters, as in tumor stratification, it is crucial
to rely on algorithms that reproduce the same output over several runs, in order to have
reliable results.

Therefore, for each NN, to obtain a robust clustering result and to quantify how
frequently a sample was paired to another sample set, we propose a new pipeline of
analysis that applies a clustering algorithm to T different UMAP embeddings, where
T is the number of runs, and compacts all the HDBSCAN tumor groups into one final
reproducible output. Specifically, we defined the binary proximity matrix At, which
indicates if two samples belong to the same cluster. Then, after T iterations, we computed
the affinity matrix P as:

P =
1
T

T

∑
t=1

At.

The square matrix P quantifies how frequently a pair of samples was clustered together,
ranging from 0 (never) to 1 (always). Hence, from P we know the strength with which two
individuals belong to the same group, but to obtain a final stratification we must apply
a clustering algorithm to P. Spectral clustering (SC) is the most straightforward way to
perform clustering, starting from the affinity matrix [38–40]. However, the SC algorithm
requires the number of clusters k to be returned as a hyperparameter. We set k equal to the
mode of the number of partitions observed during the T runs, since it is the favorite solution
proposed over the T runs. In the Supplementary Material, we demonstrate via simulations
how our method yields a more reproducible clustering output than the implementation of
a clustering algorithm on a single UMAP run.

Nevertheless, result reproducibility came at the cost of losing latent space visualization,
since the final clusters were no longer computed on one specific embedding, but rather
were estimated from several embeddings. However, to visualize the UMAP data projection

https://umap-learn.readthedocs.io/en/latest/reproducibility.html
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in a way that best represents the final clustering labels, from T embeddings we selected
the one with the most similar clustering result in terms of ARI. This is just a visual approx-
imation, merely useful for results presentation; nevertheless, we were interested here in
the reproducibility of the tumor stratification results, that is, in having tumor subgroups
that are well-identifiable even if the entire analysis is run many times. Finally, once we had
reproducible cluster outputs coming from different geometrical representations, we chose
the one with the highest ARI.

Our methodological workflow is depicted in Figure 1.

Figure 1. Methodological workflow of our pipeline. Starting from RNA-seq data, on the left, given
an output metric and number of NN (our hyperparameters), we generated T UMAP embeddings,
onto which we applied a clustering algorithm. Then, we set k equal to the mode of the number of
clusters identified by the clustering technique on T embeddings and we computed the affinity matrix
P by summing all T proximity matrices related to each clustering result. Finally, we applied spectral
clustering on P with k groups to obtain one final reproducible cluster.

Hyperparameters of the pipeline (Algorithm 1) are: the output metric M, the NN, the
number of runs T, and the clustering algorithm. The pipeline can be summarized with the
following steps

Algorithm 1 Pseudocode of the pipeline

for clust_algo in {HDBSCAN, DBSCAN, OPTICS, agglomerative clustering} do
for M in {Euclidean, Spherical, Hyperbolic} do

for NN in {10, 15, . . . , 100} do
for t in {1, 2, . . . , T = 100} do

generate UMAP embedding E with output metric equal to M and
number of near neighbors equal to NN;
apply clust_algo on E and save the proximity matrix At, where the
aij element of matrix At is equal to 1 if the i-th and j-th sample were
assigned to the same cluster, 0 otherwise, for i, j = 1, . . . , n, with n
the sample size;

end for
set P = 1

T ∑T
t=1 At;

set k equal to the mode of the number of clusters identified over
the T clustering results;
implement spectral clustering with k groups and P as affinity matrix.

end for
end for

end for
among the M UMAP embeddings with different NN, select, within
the various clust_algo, the cluster output with the highest ARI.
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The code was implemented in R 4.1.3 (https://www.r-project.org/, accessed on 20
April 2022) and Python 3.8.10 (https://www.python.org/, accessed on 20 April 2022).
The figures were created using the Plotly 4.10.0 R package and Matplotlib 3.3.4 Python
package. The entire pipeline run on the high-performance computing (HPC) cluster at
the data center of Engineering D.HUB in Pont-Saint-Martin, which is equipped with
CPU and GPU computational nodes. The code to run the entire pipeline is available at:
https://bitbucket.org/jordy_bollon/jordy-bollon/src/master/, accessed on 20 April 2022.

3. Results
3.1. UMAP

We reduced the high dimensionality of RNA-seq data from 20,530 gene expressions
to two (spherical and hyperbolic surface) or three (Euclidean space) latent dimensions.
For clarity and to give a visual example of the latent spaces, for each metric, we only
visualized one UMAP embedding with an NN that returns the best ARI, after HDBSCAN
implementation (see Figure 2).

Figure 2. A 3D visualization of UMAP projection (NN = 65). The pictures show 1084 samples grouped
by five BC subtypes on a spherical surface (a), Euclidean space (b), and hyperboloid (c). The input
RNA-seq data comprised 20,530 genes. We reduced it to three dimensions for Euclidean space and
two dimensions for spherical and hyperbolic embedding.

3.2. Clustering
3.2.1. Irreproducibility Issues

As described in the Reproducibility section, for each output metric and NN, we
implemented the UMAP + clustering algorithm pipeline T = 100 times to highlight how
independent runs of UMAP + clustering yield inconsistent outputs in terms of variability of
the Nc and ARI. In Figure 3, for each clustering technique, we report the absolute frequency
of the estimated Nc over the T iterations for each NN. The Euclidean metric shows the
least variability in estimating Nc over the T runs for each NN: the mode of Nc is equal to 2
for HDBSCAN, 4 for DBSCAN, and 3 for OPTICS. The hyperbolic space is slightly more
variable than the Euclidean one: the mode of Nc is equal to 2 for HDBSCAN, except for
NN equal to 10 and 20, 4 for DBSCAN, and it varies between 3 and 4 for OPTICS. On the
contrary, the spherical surface has the highest variability in estimating Nc: the mode of Nc
varies between 3 and 4 for HDBSCAN, it ranges from 2 to 5 for DBSCAN, and it is equal to
3 for OPTICS.

The inconsistency in results arises even when considering the clustering quality,
which is quantified by means of the ARI score, as described in the Methods section. To
assess its irreproducibility, we evaluated the interquantile range of the ARI returned by
each implementation of the clustering method applied on T embeddings. Looking at
Figure 4, except for HDBSCAN and OPTICS applied on Euclidean and hyperbolic spaces,
the interquartile range of the ARI is quite large for each NN. Despite this high variability, if
we consider the median of the ARI value, the Euclidean and hyperbolic metrics have higher

https://www.r-project.org/
https://www.python.org/
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performances than the spherical one on three (DBSCAN, OPTICS, and agglomerative
clustering) clustering algorithms out of four.

Figure 3. Variability of the number of clusters (Nc) estimation. Absolute frequency of the Nc obtained
from implementing HDBSCAN, DBSCAN, OPTICS in T = 100 iterations on UMAP embeddings.
NN ranging from 10 to 100, for Euclidean, spherical, and hyperbolic space. A lighter color (yellow)
indicates a higher frequency value, while a darker color (blue) indicates a lower, tending to zero,
frequency value. We did not report Nc of the agglomerative clustering since it is fixed a priori.
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Figure 4. Variability of clustering performances. Quantitative results of HDBSCAN (a), DBSCAN
(b), OPTICS (c), and agglomerative clustering (d) applied to T = 100 UMAP embeddings, in terms
of ARI for each NN. From left to right, panels correspond, respectively, to Euclidean, spherical, and
hyperbolic space. Each boxplot represents the distribution of the ARI values, along the T iterations
for each specific NN.

3.2.2. Reproducible Results

To compare the clustering performances with reproducible output, as described in
the Methods section, from 100 clustering outputs, we computed a final and reproducible
clustering result for each NN. Of these, we selected the one with an NN that maximizes
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the ARI. As shown in supplementary results (Tables A2 and A3), the best reproducible
results are:

• Nc = 4 and ARI equal to 0.47 (spherical metric), Nc = 2 and ARI equal to 0.33 (Eu-
clidean metric), and Nc = 3 and ARI equal to 0.46 (hyperbolic metric), for HDBSCAN;

• Nc = 3 and ARI equal to 0.39 (spherical metric), Nc = 4 and ARI equal to 0.45 (Eu-
clidean metric), and Nc = 4 and ARI equal to 0.46 (hyperbolic metric), for DBSCAN;

• Nc = 4 and ARI equal to 0.28 (spherical metric), Nc = 4 and ARI equal to 0.38
(Euclidean metric), and Nc = 4 and ARI equal to 0.38 (hyperbolic metric), for agglom-
erative clustering;

• Nc = 3 and ARI equal to 0.41 (spherical metric), Nc = 3 and ARI equal to 0.44
(Euclidean metric), and Nc = 3 and ARI equal to 0.44 (hyperbolic metric), for OPTICS.

Even with our reproducible pipeline, in terms of ARI the Euclidean and hyperbolic
metrics have identical performances, higher than the spherical one on three (DBSCAN,
OPTICS, and agglomerative clustering) clustering algorithms out of four. Only with
HDBSCAN does the Euclidean metric perform worse than spherical and hyperbolic metrics
which have similar best ARI values: 0.47 and 0.46, respectively. Overall, we observed the
best performance with spherical embedding coupled with HDBSCAN: an ARI index of 0.47,
a homogeneity score of 0.43, and four clusters. However, as explained in the Reproducibility
section, we cannot have a truthful latent space visualization. We therefore plotted our best
final clustering labels on the more representative UMAP embedding (Figure 5b).

3.2.3. Biological Interpretation

At a glance, by comparing Figure 5a with Figure 5b, some of the identified clusters
can be directly associated with the different subtypes in the BC dataset. In particular,
as we expected (https://www.breastcancer.org/symptoms/types/molecular-subtypes,
accessed on 20 April 2022), the basal samples are detached well from the others, and form
a separate cluster (cluster 2 in Figure 5). However, as reported in the literature [41], the
normal, luminal-A, and luminal-B samples are more similar to each other. Unsurprisingly,
they are grouped together in cluster 1, while cluster 3 consists entirely of Her2 points.

Figure 5. Visualization of the best UMAP embedding. Two-dimensional spherical surface mapped by
UMAP with NN equal to 65 (see Table A2 in Appendix A). The points correspond to the BC samples.
In (a) on the left, the color indicates the tumor subtype, whose acronym is shown by labels, for a total
of 5 BC types. In (b), the colors refer to the different clusters identified by our method for HDBSCAN,
for a total of 4 groups. Latitude and longitude are the commonly used coordinates to identify a point
(i.e., a sample) on the spherical surface, expressed in radians. NC stands for the cluster constituted by
Not Clusterable points (see Methods section).

This comparison between subtypes and cluster groups is quantified in Figure 6, which
reports the relative and absolute frequency of BC subtypes for each estimated cluster. It
is clear that clusters 1, 2, and 3 represent three BC subtypes: luminal, basal, and Her2,
respectively. In contrast, the NC cluster is a mixture of all subtypes. However, we computed

https://www.breastcancer.org/symptoms/types/molecular-subtypes
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how frequently these samples were assigned to the NC group and we discovered that all 41
points were clustered as such in more than 55% of the iterations performed.

Figure 6. BC subtype distribution over estimated clusters. Relative (vertical axis) and absolute (top
of the bars) frequency of BC subtypes within each cluster, identified on spherical UMAP embedding
with NN = 65. On the horizontal axis, we report the cluster labels. NC stands for Not Clusterable
(see Methods section).

Although Figure 5b is not the authentic representation of the cluster labels, we can see
that the NC points (yellow) are those at the border of the luminal groups.

4. Discussion

Using the UMAP algorithm, here we projected 20,530 gene expression data onto three
different latent metric spaces in order to evaluate how different curvatures of the UMAP
embedding could affect breast cancer stratification. The evaluation focused on clustering
performances in terms of ARI, homogeneity, and number of estimated clusters returned by
HDBSCAN, DBSCAN, agglomerative clustering, and OPTICS. We also addressed UMAP
reproducibility by proposing an iterative approach to yield more stable clustering outputs.

UMAP has been widely implemented for transcriptomic analyses [13,14,42,43]. In
particular, starting from single-cell RNA-seq data, Bao et al. [42] and Landry et al. [43]
visualized tumor cell heterogeneity in triple-negative breast cancer and glioblastoma,
respectively. Yang et al. [13] and Lebedev et al. [14] performed transcriptomic analyses, ap-
plying the HDBSCAN algorithm to UMAP Euclidean embedding. Moreover, Yang et al. [13]
also addressed how the choice of the input metric in UMAP (i.e., how we measure the
distance between samples in high-dimensional input data) could influence the visualization
of clustering structures.

Nevertheless, none of the above approaches raised concerns about the reproducibility
and the geometry of the UMAP embedding and, to the best of our knowledge, no study
has addressed these issues.

Our work focused on the choice of the output metric in UMAP, showing that the
selection of the latent space can affect downstream clustering results. However, by explor-
ing different metric spaces, we encountered UMAP reproducibility issues: some pairwise
points were inconsistently projected onto latent spaces and so were not always clustered
together over several runs, leading to unstable clustering results (see Figures 3 and 4). Since
this work was the first attempt to investigate different curvatures of UMAP embedding, this
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reproducibility issue spurred us to propose a reproducible pipeline that returns consistent
results, regardless of the selected output metrics.

As reported in the Appendix (Tables A2 and A3), clustering performances were
improved by applying HDBSCAN to spherical and hyperbolic metric spaces. On non-
Euclidean embedding, the ARI score increased by 14 percentage points (from 0.33 to 0.47)
with respect to the Euclidean latent space. Hence, in this analysis the Euclidean output
metric, when applied on HDBSCAN, performs poorly compared to the other metrics. On
the contrary, Euclidean and hyperbolic latent spaces showed similar ARI scores that were
higher than the spherical one for three clustering algorithms out of four.

The above results are dataset-dependent. Therefore, to validate the generalizability
of our approach and the potentiality of our proposed pipeline, more datasets (single-cell
RNA-seq, multi-omics, methylation data) should be tested.

5. Conclusions

We consider our results a warning for future UMAP implementations applied up-
stream of other analyses, such as clustering. For the case study of tumor stratification, we
showed that, with HDBSCAN, keeping default UMAP parameters, i.e., Euclidean output
metric, would have impoverished the downstream results. Furthermore, we observed
high variability in estimating the number of clusters and in clustering performances. For
datasets with well-separated groups, it might not be necessary to worry about the UMAP
reproducibility issue and investigate various topological UMAP embeddings. However,
for more complex data such as RNA-seq, different geometries of output spaces should be
explored if one cannot be assumed a priori.

UMAP has mostly been implemented with a Euclidean metric. We hope our work
will encourage further research on non-Euclidean embeddings for the analysis of cluster-
ing or tumor stratification, even with other metric spaces to investigate further samples’
relationships. Future works should validate different UMAP output metrics on several
datasets, analogous to Yang et al. [13] who evaluated the importance of the UMAP input
metric. Moreover, as suggested by [44], supervised or semi-supervised dimensionality
reduction can provide more informative latent space representations. Therefore, future
efforts can integrate our pipeline with a supervised version of UMAP. Finally, even multi-
omics data should be exploited [45] within our approach to enhance medical and biological
interpretation of the final clustering results.
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Appendix A

Appendix A.1. Reproducibility

To demonstrate the reproducibility of our pipeline, we carried out the following steps:

1. comparison in terms of ARI of two clustering outputs generated by HDBSCAN
applied to two separate runs of UMAP (NN = 65; spherical embedding);

2. for each T = 10, 20, . . . , 100, comparison in terms of ARI of two clustering outputs
generated by two independent runs of our proposed pipeline.

After our simulations, with two independent runs of UMAP, we obtained an ARI of
about 0.37 (see Figure A1). In contrast, our approach was more reproducible, with the ARI
between these two clustering outputs converging to 0.99.

Figure A1. Reproducibility test. ARI scores between cluster labels obtained from two separate
runs of T UMAP embeddings. With T = 1, the figure reports the ARI between two clustering
outputs generated by HDBSCAN applied to two independent runs of UMAP. With T > 1, the ARI
indicates the concordance between two clustering outputs generated by two separate runs of our
proposed procedure.

To better quantify the difference between an ARI of 0.37 and 0.99, Table A1 reports the
number of BC subtype points assigned to each cluster. Looking at Table A1A,B, HDBSCAN
applied to two runs of UMAP returned quite different cluster results. In the first run,
luminal-A points were stratified into one major group with a size of 553. In the second run,

https://xenabrowser.net/datapages
https://github.com/yxchspring/GOEGCN_BRCA_Subtypes
https://github.com/yxchspring/GOEGCN_BRCA_Subtypes
https://5000genomivda.it/en/
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the same points were assigned to two main groups of 339 and 215 elements. Similarly, the
luminal-B samples were first divided into one major group and then into two groups.

In contrast, in Table A1C,D, the cluster distributions across the subtypes are consistent,
since we obtained almost identical results for both runs.

Table A1. Joint frequencies of cluster outputs and BC subtypes related to two separate UMAP runs
(top tables: A and B), and two independent runs of our proposed procedure with T = 100 (bottom
tables: C and D).

(A) 1 Embedding Iter1 (B) 1 Embedding Iter2

Clusters Clusters
NC 1 2 3 NC 1 2 3

Basal 1 1 184 6 Basal 8 0 179 5
Her2 0 31 4 47 Her2 5 41 0 36
LumA 1 553 8 1 LumA 9 339 0 215
LumB 2 200 1 4 LumB 9 132 0 66
Normal 1 24 12 3 Normal 12 21 3 4

(C) 100 Embeddings Iter1 (D) 100 Embeddings Iter2

Clusters Clusters
NC 1 2 3 NC 1 2 3

Basal 9 1 180 2 Basal 9 1 180 2
Her2 8 35 0 39 Her2 7 35 0 40
LumA 2 560 0 1 LumA 3 559 0 1
LumB 11 196 0 0 LumB 9 198 0 0
Normal 11 24 3 2 Normal 10 24 3 3

Appendix A.2. Clustering Results

Table A2. Comparison of clustering performances. Nc, ARI, and homogeneity score estimated for
each NN and latent space (spherical, Euclidean, hyperbolic) for HDBSCAN and DBSCAN cluster-
ing methods.

HDBSCAN Euclidean Sphere Hyperboloid

NN Nclust Ari Homog Nclust Ari Homog Nclust Ari Homog

10 2 0.33 0.31 4 0.45 0.43 3 0.46 0.42
15 2 0.33 0.32 4 0.46 0.44 2 0.33 0.32
20 2 0.33 0.32 4 0.46 0.44 3 0.45 0.42
25 2 0.33 0.32 4 0.46 0.44 2 0.33 0.32
30 2 0.33 0.32 4 0.46 0.44 2 0.33 0.32
35 2 0.33 0.32 4 0.45 0.43 2 0.33 0.32
40 2 0.33 0.32 3 0.37 0.35 2 0.33 0.32
45 2 0.33 0.32 3 0.37 0.35 2 0.33 0.32
50 2 0.33 0.32 4 0.46 0.43 2 0.33 0.32
55 2 0.33 0.32 4 0.46 0.43 2 0.33 0.32
60 2 0.33 0.32 4 0.46 0.43 2 0.33 0.32
65 2 0.33 0.32 4 0.47 0.43 2 0.33 0.32
70 2 0.33 0.32 4 0.47 0.43 2 0.33 0.32
75 2 0.33 0.32 4 0.47 0.43 2 0.33 0.32
80 2 0.33 0.32 4 0.46 0.43 2 0.33 0.32
85 2 0.33 0.32 4 0.46 0.43 2 0.33 0.32
90 2 0.33 0.32 3 0.45 0.4 2 0.33 0.32
95 2 0.33 0.32 3 0.45 0.39 2 0.33 0.32

100 2 0.33 0.32 3 0.46 0.4 2 0.33 0.32
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Table A2. Cont.

DBSCAN Euclidean Sphere Hyperboloid

NN Nclust Ari Homog Nclust Ari Homog Nclust Ari Homog

10 4 0.39 0.42 4 0.28 0.39 4 0.45 0.43
15 4 0.45 0.42 2 0.33 0.32 4 0.46 0.43
20 4 0.45 0.43 2 0.33 0.32 4 0.45 0.42
25 4 0.45 0.43 2 0.33 0.32 4 0.46 0.43
30 4 0.45 0.43 2 0.32 0.31 4 0.45 0.43
35 4 0.45 0.42 2 0.31 0.3 4 0.45 0.43
40 4 0.45 0.42 2 0.32 0.3 4 0.45 0.43
45 4 0.45 0.42 2 0.32 0.3 4 0.45 0.43
50 4 0.44 0.42 2 0.32 0.31 4 0.45 0.43
55 4 0.43 0.4 2 0.29 0.28 4 0.45 0.43
60 4 0.45 0.42 2 0.31 0.29 4 0.45 0.43
65 4 0.45 0.42 2 0.32 0.31 4 0.45 0.43
70 4 0.36 0.38 2 0.32 0.3 4 0.45 0.43
75 4 0.39 0.38 3 0.37 0.38 4 0.45 0.43
80 4 0.37 0.36 3 0.38 0.38 4 0.45 0.43
85 4 0.37 0.36 2 0.32 0.31 4 0.44 0.43
90 4 0.38 0.37 3 0.4 0.39 4 0.45 0.43
95 4 0.37 0.36 2 0.32 0.31 4 0.45 0.43
100 4 0.36 0.36 3 0.39 0.38 4 0.44 0.42

Table A3. Comparison of clustering performances. Nc, ARI, and homogeneity score estimated
for each NN and latent space (spherical, Euclidean, hyperbolic) for OPTICS and agglomerative
clustering (Agg.).

OPTICS Euclidean Sphere Hyperboloid

NN Nclust Ari Homog Nclust Ari Homog Nclust Ari Homog

10 3 0.42 0.39 3 0.4 0.38 3 0.43 0.4
15 3 0.43 0.4 3 0.41 0.38 3 0.44 0.41
20 3 0.44 0.41 3 0.41 0.39 4 0.36 0.41
25 3 0.44 0.41 3 0.41 0.39 3 0.44 0.41
30 3 0.44 0.41 3 0.41 0.39 3 0.44 0.41
35 3 0.43 0.41 3 0.4 0.38 3 0.43 0.41
40 3 0.44 0.41 3 0.4 0.38 3 0.44 0.41
45 3 0.43 0.41 3 0.4 0.38 3 0.44 0.41
50 3 0.44 0.41 3 0.4 0.38 3 0.44 0.41
55 3 0.44 0.41 3 0.4 0.38 3 0.44 0.41
60 3 0.44 0.41 3 0.4 0.38 3 0.44 0.41
65 3 0.43 0.41 3 0.4 0.38 3 0.43 0.41
70 3 0.43 0.41 3 0.4 0.38 3 0.42 0.4
75 3 0.43 0.41 3 0.4 0.38 3 0.43 0.4
80 3 0.43 0.41 3 0.4 0.38 3 0.43 0.41
85 3 0.43 0.4 3 0.41 0.39 3 0.43 0.4
90 3 0.43 0.41 3 0.4 0.38 3 0.43 0.4
95 3 0.43 0.4 3 0.4 0.38 3 0.42 0.4

100 3 0.43 0.41 3 0.39 0.37 3 0.42 0.4
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Table A3. Cont.

Agg. Euclidean Sphere Hyperboloid

NN Nclust Ari Homog Nclust Ari Homog Nclust Ari Homog

10 4 0.37 0.48 4 0.28 0.42 4 0.38 0.49
15 4 0.37 0.48 4 0.28 0.42 4 0.38 0.49
20 4 0.36 0.48 4 0.24 0.4 4 0.36 0.49
25 4 0.36 0.49 4 0.24 0.4 4 0.37 0.47
30 4 0.37 0.48 4 0.24 0.4 4 0.36 0.47
35 4 0.37 0.48 4 0.24 0.4 4 0.36 0.47
40 4 0.37 0.49 4 0.24 0.41 4 0.36 0.47
45 4 0.38 0.49 4 0.24 0.4 4 0.36 0.47
50 4 0.38 0.49 4 0.24 0.4 4 0.35 0.47
55 4 0.38 0.49 4 0.24 0.4 4 0.35 0.47
60 4 0.37 0.49 4 0.24 0.41 4 0.35 0.47
65 4 0.37 0.48 4 0.24 0.41 4 0.35 0.47
70 4 0.38 0.49 4 0.24 0.4 4 0.36 0.48
75 4 0.37 0.49 4 0.24 0.4 4 0.36 0.48
80 4 0.37 0.48 4 0.24 0.4 4 0.35 0.48
85 4 0.37 0.49 4 0.24 0.4 4 0.36 0.48
90 4 0.38 0.49 4 0.24 0.4 4 0.35 0.48
95 4 0.37 0.48 4 0.24 0.39 4 0.34 0.47
100 4 0.38 0.49 4 0.24 0.41 4 0.34 0.47
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