
����������
�������

Citation: Asaf, K.; Khan, B.; Kim,

G.-Y. Wireless Lan Performance

Enhancement Using Double Deep

Q-Networks. Appl. Sci. 2022, 12, 4145.

https://doi.org/10.3390/

app12094145

Academic Editor: Amadeo

Benavent-Climent

Received: 11 March 2022

Accepted: 15 April 2022

Published: 20 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Wireless Lan Performance Enhancement Using Double
Deep Q-Networks
Khizra Asaf 1,†, Bilal Khan 1,† and Ga-Young Kim 2,*

1 Department of Computer Science, National University of Computer and Emerging Sciences,
Chiniot-Faisalabad Campus, Chiniot 35400, Pakistan; khizraasaf94@gmail.com (K.A.);
khan.bilal@nu.edu.pk (B.K.)

2 Faculty of General Education, Kangnam University, Yongin-si 16979, Korea
* Correspondence: dolga2000@kangnam.ac.kr
† These authors contributed equally to this work.

Abstract: Due to the exponential growth in the use of Wi-Fi networks, it is necessary to study its
usage pattern in dense environments for which the legacy IEEE 802.11 MAC (Medium Access Control)
protocol was not specially designed. Although 802.11ax aims to improve Wi-Fi performance in dense
scenarios due to modifications in the physical layer (PHY), however, MAC layer operations remain
unchanged, and are not capable enough to provide stable performance in dense scenarios. Potential
applications of Deep Learning (DL) to Media Access Control (MAC) layer of WLAN has now been
recognized due to their unique features. Deep Reinforcement Learning (DRL) is a technique focused
on behavioral sensitivity and control philosophy. In this paper, we have proposed an algorithm
for setting optimal contention window (CW) under different network conditions called DRL-based
Contention Window Optimization (DCWO). The proposed algorithm operates in three steps. In the
initial step, Wi-Fi is being controlled by the 802.11 standards. In the second step, the agent makes
the decisions concerning the value of CW after the TRAIN procedure for the proposed algorithm.
The final phase begins after the training, defined by a time duration specified by the user. Now, the
agent is fully trained, and no updates will be no longer received. Now the CW is updated via the
OPTIMIZE process of DCWO. We have selected total network throughput, instantaneous network
throughput, fairness index, and cumulative reward, and compared our proposed scheme DCWO
with the Centralized Contention window Optimization with DRL (CCOD). Simulation results show
that DCWO with Double Deep Q-Networks (DDQN) performs better than CCOD with (i) Deep
Deterministic Policy Gradient (DDPG) and (ii) Deep Q-Network (DQN). More specifically, DCWO
with DDQN gives on average 28% and 23% higher network throughput than CCOD in static and
dynamic scenarios. Whereas in terms of instantaneous network throughput DCWO gives around
10% better results than the CCOD. DCWO achieves almost near to optimal fairness in static scenarios
and better than DQN and DDPG with CCOD in dynamic scenarios. Similarly, while the cumulative
reward achieved by DCWO is almost the same with CCOD with DDPG, the uptrend of DCWO is
still encouraging.

Keywords: WLAN; 802.11; DRL; DDQN; DCWO

1. Introduction

Wireless networks have seen increasing and continuous popularity resulting in in-
creased data traffic over all the networks [1]. Wi-Fi networks have experienced incredible
growth concerning traffic consumption. Due to the increased use of mobile devices, it is
expected that 63% of the mobile data traffic will be shifted to Wi-Fi networks by the year
2021 [2].

IEEE 802.11 is a set of progressively improved standards to continue developing
further modifications to overcome the limitations once discovered. Due to flexibility,
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manageability, and popularity, IEEE 802.11 technologies can be used in different scenarios
and become the right candidate for many applications with several requirements. With
the ever-increasing demand for wireless traffic and quality services, WLANs have become
one of the major wireless networks that affect human life entirely. WLAN development
has led to an increasing number of wireless devices, such as access points and mobile
nodes. Not only is the number of these devices increasing rapidly, but the communication
speed required for each device is also increasing. IEEE 802.11 based WLAN has evolved
significantly to provide a better performance and throughput [3] in recent years. The
main factors behind 802.11 WLAN deployments’ success were high performance and low
technological cost. However, when these devices rarely operate in densely populated
areas and share limited channels, and sometimes the same channel, performance will
be affected due to the overlap of the common channel of its neighbors. Therefore, the
increasingly intensive deployment of access points and nodes may not help to improve
network performance.

Significance of IEEE 802.11ax

WLANs are facing significant expansion in internet-centric applications. High-tech
markets are using WLANs, and their deployment is growing rapidly in private and public
areas, such as cafes, shopping malls, hotels, bus/train stations, restaurants, airports, etc.
Due to the exponential expansion in the usage of Wi-Fi networks, it is necessary to study
its use pattern in dense environments for which the IEEE 802.11 standard was not specially
designed. As the number of orthogonal channels available for IEEE 802.11 is limited, the
status of OBSS in WLAN-based networks is redundant. Collision avoidance approaches
tend to decrease network performance and increase transmission delays; however, all
medium is never used despite the acceptable collision potential.

While the present IEEE 802.11 standards have been developed to enhance the overall
peak performance of several nodes in the network, appropriate mitigation of the increase
in interference encountered has not been tackled yet. In addition, the channel access
method is highly protective and results in reduced spatial reuse. This standard aims to
use technologies that will enhance the physical bit rate, reduce the data rate, and enhance
spectrum reuse by enabling highly efficient multiple users.

Due to the exponential growth in the use of Wi-Fi networks, it is necessary to study
its use pattern in dense environments for which the legacy IEEE 802.11 standard was
not specially designed. Considering the performance issues affecting WLAN in dense
environments, a study group was launched in May 2013 called High-Efficiency WLAN
(HEW) within the working group of IEEE 802.11 [4]. HEW activities considered spectral
efficiency to improve system performance in high-density environments, including a
number of APs and non-AP nodes. Following the success of the Project Approval Request
(PAR) and Criteria for Standard Development (CSD), the group was promoted to status of
team to design a new standard; IEEE 802.11ax, in July 2014.

IEEE 802.11ax standard is the latest contribution to the innovation journey [5,6]. The
Wi-Fi Alliance established a new naming standard with previous known as Wi-Fi 4 (802.11n)
and Wi-Fi 5 (802.11ac). The development of the 802.11ax amendment began in 2013 when a
team of technical experts met to discuss the challenges that Wi-Fi may face in the years to
come. Wi-Fi was threatened by the possibility of being the victim of its success because
of its global use. With more devices, Wi-Fi would experience increased interference and
poor performance. The working group discussed data and solutions to the problem and
finally described the requirements for Wi-Fi 6, also known as Highly Efficient WLANs
(HEW). This new generation of Wi-Fi will be smart enough to enable dense and complete
wireless environments in the future; 802.11ax takes advantage of the strengths of 802.11ac,
with the added scalability and flexibility that allow existing and new networks to operate
next-generation applications.

So, 802.11ax takes advantage of the strengths of 802.11ac, with the added scalability
and flexibility that allows existing and new networks to operate next-generation applica-
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tions. This new generation of Wi-Fi will be smart enough to enable dense and complete
wireless environments in the future. However, the channel access method remains the
same to ensure backward compatibility. This approach is robust; however, it can lead to
inefficient operation in dense scenarios because of sudden increases and decreases in the
Contention Window. This problem is described in detail in Section IV of the paper.

Artificial Intelligence (AI) can solve complex problems without the need for explicit
programming. Motivated by its applications to several beneficial tasks like image recogni-
tion, research community has encouraged applications of AI in wireless communication [7].
AI practices for network operations, automation, and management deal with designing
and implementing AI practices to enhance how we deal with networking nowadays. This
growth towards better design opportunities and the increased complexity in networks and
network-based applications have expanded the demand for better automation of network
in agile infrastructures. Researchers in communication networks are applying AI tech-
niques to improve network design, management, and to enhance performance leading to
even more automation in network functions. Machine learning (ML) applies AI by using
different algorithms to analyze the data, learn from the data, and make accurate predic-
tions and decisions about real-world applications. Deep learning (DL) is an ML execution
technology that empowers ML to perform and extends the scope of AI. DL involves huge
amounts of training data and considerable computational capability. In recent years, data
volumes have grown while computing power costs have decreased significantly, allowing
deep learning applications to explode. Given the uncertainties and dynamics of wireless
networking environments, traditional approaches require complete and perfect systems
knowledge and are inefficient. RL has proven to be a practical tool for solving real-time
decision-making challenges. Reinforcement Learning (RL) is a field of ML that focuses on
learning via interaction. Deep Reinforcement Learning (DRL) combines the architecture of
DL(NN) and RL [8,9]. In DRL, NNs act as function approximators and can be used in RL to
estimate value function or policy. DRL has been intended to conquer these shortcomings,
as it has the potential for managing dynamic systems on a large scale. Unlike traditional
ML, RL does not provide instant results; instead, only a short-term reward is observed [10].
DRL on the other hand, is a potential solution [11,12].

Predicting the optimal Contention Window (CW) value for better performance of
Wi-Fi networks is important for avoiding collision and enhancing the performance of Wi-Fi.
Current approaches to improving MAC layer channel access and collision control have been
found to have some research gaps, mainly when used with real-time applications. This
research focuses on the effective use of a Deep Reinforcement Learning (DRL) technique
i.e., DDQN for enhancing the performance of WLAN. For this, we have proposed an
algorithm named DRL-based Contention Window Optimization (DCWO) for setting an
optimal contention window (CW) under different network conditions. The main research
objectives are:

• Address the open problems in the future deployable 802.11 networks (IEEE 802.11ax)
using DRL.

• Enhance WLAN performance by predicting the values of CW correctly using DRL.

2. Deep Reinforcement Learning (DRL)

DRL differs from the traditional techniques and is the latest, targeted research in DL.
In situations such as those that require the application of DRL, the state space and size, in
general, can be quite large, and the agent can take a long time to learn adequate information
about the environment and determine which actions can yield the best immediate or
total rewards. In these situations, opportunities for exploration may be swept away,
and the agent may get caught in exploring and estimating action-state combinations
with fairly higher values. This results in the overestimation of Q values for some of the
combinations. The overestimation problem might become huge if the actions are taken
based on a Q network whose values are not updated frequently.
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2.1. DQN

The concept of Double Q-Learning deals with the overestimation through a process-
target analysis of the selection and evaluation of actions. Though not completely separate,
the target network in the architecture of DQN offers a natural candidate for the role of the
second value without the need for any additional networks [13]. The DQN-based model
uses online and target networks to stabilize the performance. The agent is not familiar with
the environment at the start of the training. Hence, choosing the maximum value of Q as
the best action results in overestimating action values. Due to these issues, noises from the
expected Q value will lead to significant positive biases, and hence the learning process
will become complex. Implementing two DQN is the solution to this problem.

2.2. DDQN

DDQN combines DQN and Double Q-learning to solve the problems of overestimation
for Q values. DQN and Double Q learning maintain two weights sets; however, the use
of both sets is different. For both the algorithms, the online network is updated at every
step by the square error of Q value as well as the target value. In the DQN algorithm, the
target network selects and evaluates the action, while in Double Q learning, both the online
network and target network are used in the target value function. One selects the best
action and the other to get the value of Q.

DDQN keeps the target and online networks in DQN but uses the Double Q learning
target feature with both the networks. It is still compatible with all the methods of DQN,
i.e., target network and experience replay. For reusing the online network, there is no
need for additional weights. With Double Q like target function, the value of Q is unlikely
to be overestimated. DDQN estimates the greed policy as per the online network and
uses the target network to calculate its value. In DDQN, at each step, the value of all
the action value combinations of all possible actions in the given state is read from the
constantly updated online network. Then argmax is applied to all state action values
for those possible actions [14]. The value of the state action combination increases the
value to the maximum, and that specific action is selected. However, the resultant value
of a set of these specific actions is taken from the target network to update the online
network. DDQN can simultaneously overcome the overestimation problem while avoiding
the unpredictability of the target values.

2.3. Working of DDQN

Double DQN (DDQN) provides two approximations of value Q, characterized by
two Neural Networks(NN’s), each NN being updated by the other NN for the next state.
Originally, the DQN calculates both the expected Q value and the target Q value [15].
This can lead to differences between the two [16]. So, with DDQN, we have one of the
Q networks which estimates the target Q values, which will later be called the target
network. The other network, called local network or prediction network, will be used to
estimate the expected Q values. The destination network will have the same local network
architecture and the same initial parameters.

The architecture of DQN provides a real candidate for the second value function
devoid of the introduction of any other networks. Therefore, DDQN uses the DQN network
to choose the best action to make a decision on the next transition. It uses the target
network to estimate the selected action target value at the next state. To update the
destination network, we copy the parameters of the local network , and this is done at
each iteration. The overall effect of DDQN reduces the overestimation effect, which leads
to better performance over standard DQN and more stable training as it keeps the target
network more or less stable.

In DQN, the value of Q is calculated with a reward added to the maximum value of Q
for the next state. If the value of Q estimates a high number for a given state everytime, the
value obtained from the neural network output for that particular state will be incremented.
Each output value of the neuron will increase more and more up to the high difference
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between every output value. If we say that action for the state has a higher value than the
action b, then every time, action a will be chosen. Consider a case where for a memory
experience, action b is a better choice than action a. Therefore, as the NN is trained to give
the action a much higher value when in the given state, training the network to know that
action b is the best action in some circumstances will be problematic. To deal with the
difference in output values, a secondary model is used. This model is the version of the
primary model of the last episode and, as the difference in values of the second model is
lesser as compared to the main model, this second model will be used to obtain the Q value.
This is how the Q value is calculated in a DDQN. The index of the highest Q value for main
model is determined, and this index is used to attain the action from second model.

3. Related Work

Wi-Fi technology has a vital influence on how the broadband access is shared in home
and business networks. However, High Efficiency 802.11 Wireless Local Area Network Task
Group (TG) visualizes congested scenarios as one of the main future challenges for WLAN
protocols. To deal with the problem of WLAN performance degradation in dense scenarios,
researchers from the field of networking have proposed different solutions. Motivated by
the success of the application of machine learning to wireless networks, recent researches
have used different machine learning techniques for enhancing WLAN performance.

The physical medium is the main reason behind performance drop and errors in most
cases. Therefore, Kremer et al. have introduced a method for the predictive estimation of
wireless link performance using two machine learning techniques [17]. For this purpose, a
measurement bench has been designed to precisely control the level of noise in a unidirec-
tional Wi-Fi link in the safe environment of the echoic room. Furthermore, the study has
also presented an analysis of the relationships between PHY WI-FI connection parameters
and performance parameters on the IP layer. SVR and k-NN (nearest neighbors) algorithms
were selected to estimate the performance drops at a one-second scale. Finally, the authors
have assessed SNR’s importance in predicting the throughput of WiFi.This study, however,
focuses on the physical layer of wireless LAN instead of the MAC layer.

Most mobile devices today are equipped with many wireless interfaces. This led
to developing research interest in Device to Device (D2D) communication. Testa et al.
have proposed a new method to accurately estimate the active user equipment using ML
techniques and only client-side information without the need for change in the standard
communication protocol [18]. Information about the number of receiving nodes is vital
in some cases, such as the user wants an accurate prediction of transmission approximate
time of arrival when downloading a file. To achieve this, the time required to transfer the
first part of the file from an access point to the receiving node is calculated, along with
other information. The retrieved information then analyzed using ML techniques. In the
paper, classification results of Naive Bayes (NB), Linear Support Vector Machines (SVM-L),
Radial Support Vector Machines (SVMR), and k-Nearest Neighbor (kNN) are presented.
This research work, however, considers Device to Device communication rather than the
infrastructure based Wireless LAN.

Edalat et al. presented a new mechanism for estimating the performance of future
network, based on the previous conditions of network, which is presented in [19]. This
approach for estimating network performance is called SENSE (Smart Experts for Net-
work State Estimation). It makes use of a simple but effective algorithm that combines
a machine learning technique fixed share with EWMA (Exponentially Weighted Moving
Average). SENSE, however, is only applicable to accurately estimate the RTT (return
trip time) of the TCP (transmission control protocol) of the transport layer. In [20], Deep
Reinforcement Learning-based MAC protocol for wireless networking, also known as
a Deep-reinforcement Learning Multiple Access (DLMA) is proposed. DLMA learns an
optimal channel access strategy to maximize throughput and fairness. DLMA, however, is a
customized MAC protocol which does not follow the rules of binary exponential backoff as
stated in IEEE 802.11. Correct setting of the Contention Window (CW) value has a massive
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impact on the efficacy of Wi-Fi networks. Witold Wydma’nski and Szymon Szott proposed
an approach to control the value of CW that takes advantage of the principles of Deep
Reinforcement Learning (DRL) for learning the accurate setting under various network
conditions [21]. The proposed method, Centralized Contention window Optimization
with DRL (CCOD), supports two trainable algorithms offering near-optimal efficiency. The
performance of CCOD is exhibited under 802.11ax using Deep Q-Network (DQN) and
Deep Deterministic Policy Gradient (DDPG). DQN is a showcase algorithm, while DDPG is
an advanced method expected to offer higher network performance, particularly in dense
areas. In addition, the authors also explained how time series analysis could be applied to
recurrent neural networks of both DRL methods. In [22], the authors have designed an in-
telligent node capable of dynamically adapting a minimum contention window parameter
to increase utility at the network level. For this work, authors have adopted Reinforcement
Learning framework based on DQN architecture. It learns the optimal minimum contention
value from the local observations. This research, however, unrealistically assumes that
some nodes in network my deviate from the standard behavior and may choose a reduced
Minimum Contention Window unfairly to acquire more channel access.

From the literature review, we conclude that the problem of optimization of CW has
provided an opportunity to exhibit DRL features and successful applications of DRL in
WLAN research. Recent researchers have focused on the used Q-networks and Deep
Q-networks (DQN); however, these techniques suffer overestimation problems. To deal
with the overestimation problem of DQN and to enhance WLAN performance, we have
extended the work presented in [21] and proposed a scheme that uses DDQN to improve
the performance of WLAN in dense scenarios. DDQN tackles the problem of DQN by
decoupling action selection from the action evaluation. Main Neural Network decides best
next action among all the available next actions and target Neural Network evaluates this
action to know its Q-value thus providing better final policies.

4. Problem Statement

Wi-Fi has appeared as a significant technology to mitigate the outbreak of data on
cellular networks, offering many benefits such as ease of setup, high data rates, and free
internet access. Research results show there will be around 5.3 billion Wi-Fi users globally
by the year 2023 and the volume of mobile traffic will also increase exponentially [23].
Dense implementation scenarios will become more widespread than today, and users
will likely anticipate a high level of Wi-Fi. IEEE 802.11ax aims to increase the efficiency
of Wi-Fi [24]. However, an efficiency-related aspect, the channel access method remains
the same to ensure backward compatibility. This method is Carrier Sensitive Multiple
Access/Collision Avoidance (CSMA/CA). This method, however, is robust to the dynamic
network environment leading to incompetent and ineffective operation, specifically in
dense scenarios [25,26].

It is a simple approach; however, it suffers from some limitations because of expo-
nential increase in CW and sudden decrease in CW to its lowest value [27] as shown in
Figure 1 and will be further explained in the next subsection.

4.1. Exponential Increase in CW

A double increase in CW in the event of a collision decreases the access time to the
channel. As the CW doubles due to collision, the backoff values of the node increase and
as a result, more time is spent sensing the channel than accessing it. Failure to optimize
the channel access time reduces throughput. Moreover, collisions are assumed based on
the lack of CTS or ACK, thus contributing to packet loss, and CW doubling based on this
assumption is not a good idea. Additionally, with the increase in active nodes, doubling
the size of CW to decrease the potential for collision becomes less effective. Figure 1 shows
the exponential increase and sudden decreases in CW.
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Figure 1. Variation in the size of CW due to collision and successful transmission.

4.2. Sudden Decrease in CW

Resetting the CW to its lowest value after a successful submission will destroy fairness.
A node with successful transmission will have a better chance of channel access because of
smaller CW as compared to a node that has had a collision. Concerning the analytical mod-
els of IEEE 802.11, most models assume a collision probability independent of the history
of the node’s transmission, which results in an inaccurate estimate of the possibility that a
node transmits in a random period, thus resulting in an inaccurate analysis of throughput.
This sudden increase and resetting of CW results in degraded performance [28]. In a dense
scenario, resetting of CW to its minimum size can lead to high collisions probability result-
ing in poor network performance. Similarly, in the case of a small network, sudden increase
in the size of CW can cause an unnecessary delay while accessing the channel. Moreover,
doubling the CW size after every collision will take time and have to wait for a long time
before counting down to zero, resulting in starvation. Furthermore, the Binary Exponential
Backoff (BEB) algorithm always prefers the last node, which transmitted successfully. This
can lead to an intensification of the fairness problem, resulting in the degradation of system
performance. Frequent retransmissions also caused a lot of unnecessary energy waste.

This problem can be explained with a simple scenario. Figure 2 shows a simple
scenario where four nodes N1, N2, N3, and N4 are sensing the channel for data transmission
using BEB.
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Figure 2. Four nodes competing for the channel using binary exponential backoff based distributed
coordinated function.

Both nodes N1 and N2, send data at the same time which causes collision. When the
collision occurs, CW size is doubled which forces the collided nodes to wait for additional
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time before transmission attempt. N1 selects the value of the backoff counter (k) as 5, while
N2 selects k = 12. N3 also senses the channel for data transmission and selects k = 10.
N1 sends the data successfully and again decides k = 4 to send another packet of data.
The backoff value chosen randomly by Node N1 in the second round is smaller than the
remaining backoff counter of N2; therefore, N1 will again get the transmission opportunity.
Moreover, as the remaining backoff of N3 is smaller than the remaining backoff of N2, N3
will get the opportunity of transmission. Now, N4 senses the channel for transmission and
selects k = 2, which is smaller than the remaining backoff of N2 (i.e., k = 2), and N4 will get
the transmission opportunity. The larger the size of the CW a node selects, the lower the
opportunity to the channel it gets. This unfairness seriously compromises the performance
of the network.

To tackle the problems mentioned above, we have proposed an efficient method
of setting the optimal value of CW using the principles of DRL. Using DRL techniques,
individual devices and entire networks can be characterized from a high-level perspective
that relies on the data extracted directly from the measurements. Our proposed scheme
will provide better results regarding network performance.

5. Proposed Scheme

As discussed in the previous Section, opting for a smaller value of CW results in
more collisions. While opting for a large value of CW can result in excess downtime and
additional delays. In both the cases, the channel will not be used effectively. Hence, it
is important that the CW value should be adjusted, keeping in mind the actual level of
contention in the channel.

With the presence of a massive number of advanced network devices, CW optimization
can now be examined using DRL methods. DRL is well suitable for the problem of
optimizing wireless networks as it deals with smart software agents that take actions in
a specific environment in order to maximize the reward [29]. Ref. [21] showed that DRL
could be applied successfully to a CW optimization problem as both algorithms, DQN and
DDPG, provided close to optimal efficiency. However, DDPG performs slightly better than
the DQN.

The main problem with Q-Learning is the slow pace of convergence owing to its
iterative nature [30]. Moreover, it does not depend on any previous information while
experiencing a new state. With DRL, a Deep Neural Network (DNN) estimates the state-
action value function. The NN of Deep Q-Networks (DQN) is trained to reduce the
prediction error caused by the loss function [31]. To further optimize DQN for the context
of WLAN, we will use DDQN in this paper.

We decided to use DDQN for two main reasons.

• DQN estimates a set of strongly correlated values solved by DDQN
• DQNs tend to be overly optimistic. It will overreact to you being in this situation,

even if it only happened due to a statistical error, and DDQN solves this problem.

The overestimation problem means that the estimated value function in DQN is
greater than the actual value function. The root of this problem lies in the Q-Learning
maximization process. By calculating the target Q, the maximum value of Q is obtained
in the next state. For authentic approaches, the specific action that maximizes the Q value
is not always selected because real strategies are stochastic strategies. Thus, choosing the
maximum Q value of the action here often results in a target value more significant than
the actual value. DDQN extends DQN by reducing the overestimation of the Q function.
DDQN suggests using two value functions that lead to two sets of weights to avoid overly
optimistic reward estimates. One weight set is used to identify the action, while the other
weight set is used to assess its reward [13]. In this way, DDQN enhances the strength and
performance of the learned model.

In order to deal with the limitations of CSMA/CA, we have proposed an algorithm
named DRL Based Contention Window Optimization (DCWO) inspired by CCOD algo-
rithm [21]. (see Algorithem 1).
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Algorithm 1 DRL Based Contention Window Optimization (DCWO) [21]

1: D ← datasent
2: Define Nt, Nr
3: CPobs ← observed collision probability
4: s = state, a = Previous action, A = agent
5: CW ← 31
6: function TRAIN PROCEDURE(D, CPobs, a)
7: obs← preprocess(CPobs)
8: n← normalize(D)
9: A.step(s, a, n)

10: a← A.act(s) + noise
11: CW ← 2i − 1
12: return CW
13: end function
14: function OPTIMIZE PROCEDURE(CPobs)
15: obs← preprocess(CPobs)
16: a← A.act(s)
17: CW ← 2i − 1
18: return CW
19: end function

The proposed algorithm operates in three steps.

1. In the initial step, Wi-Fi is being controlled by the 802.11 standard. This phase
evaluates the history of observed probability of collision in the network.

2. In the second step, selected DRL model, DDQN is trained by maximizing the reward.
The agent makes the decisions with regards to the value of CW after the TRAIN
Procedure for the proposed algorithm. Pre-processing consists of computing the mean
as well as the standard deviation probabilities of observed collisions.
For exploration, every action is revised with a noise factor that degrades during the
training phase. For DDQN, noise is the possibility of exceeding the action of the agent
with a random action. The final phase begins after the training, which is defined by a
time duration defined by the user. Now, the agent is fully trained, and updates will
no longer be received.

3. In the third phase, the DRL model is deployed in the network. Now the CW is updated
via OPTIMIZE Procedure of our proposed algorithm. The flow chart of DCWO is
shown in Figure 3.
Applying the DRL algorithm also requires the setting of some key parameters. Perfor-
mance of DRL is based on the reward discount γ, which is linked to the significance
of future rewards on immediate ones. Also, the integration of DL and RL algorithms
creates a challenge in the form of a number of new hyperparameters; therefore, every
neural network involves a file to configure the learning rate as a coefficient of update.
The learning is performed by random gradient descent of the mini-batch, so choosing
an appropriate batch size is also very important. The algorithm also splits local and
target neural networks to smooth the reward noise. Finally, the algorithm uses a
replay buffer that records all the interactions between the environment and agent,
serving as a base for sampling mini-batch.
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Figure 3. DCWO Flow Chart.

6. Scenario and Methodology

For the experimentation, we have created a scenario example in NS-3, taking the
idea from the base paper. The NS-3 scenario for DCWO algorithm consists of maximum
of 50 nodes connected to a single AP. Simulations in NS-3 used a simple topology and
following settings.

• IEEE 802.11ax
• Single-user transmission
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• Error-free radio channels
• 1024-QAM with 5/6 coding rate
• 20 MHz channel
• 1500 B packets
• CBR UDP uplink traffic to a single access point

In the considered topology, the nodes transmit data to AP. The AP calculates the
observed probability of collision and selects an optimal CW value. The optimal CW value
is calculated considering the network behavior and a new CW value is broadcasted. We
have assumed immediate and perfect transfer of information from the state to the agent
and also immediate CW configuration at each node.

All the hyperparameters used for DCWO are listed in Table 1.

Table 1. DCWO Hyperparameters.

Parameter Value

Learning Rate (LR) 5.0 × 10−6

curr_step 14

Batch Size 32

envStepTime 0.01

Interaction Period 10 ms

Reward Discount (γ) 0.9

History Length (h) 300

Episode Count 15

Scenario Convergence

SimTime 60

Steps per episode 6300

TAU 0.001

UPDATE EVERY 1

Replay Buffer 18,000

The Neural Network of DDQN is implemented in tensorflow. TensorFlow is an open-
source library designed for fast numerical computing. An illustration of our proposed
approach is shown in Figure 4. Our proposed approach considers channel, number of
nodes, data to be transferred, Contention Window(CW), and collisions, and decides an
optimal CW value. Every observation in the scenario is defined as the current probability of
collision in the network. This probability is calculated based on the number of successfully
received frames and total transmitted frames.

6.1. Performance Metrics

We have evaluated our proposed scheme on the basis of following parameters.

6.1.1. Network Throughput

Network throughput is the amount of traffic flowing from the source towards the
destination. It indicates the performance of a network and determines how many data
packets have been successfully delivered from source to destination. Low throughput
results in poor performance for the end-users. Packet loss, jitter, and latency are the three
important factors that affect throughput of a network.
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Network throughput is calculated as

NetworkThroughput =
Nt

∆t
(1)

In Equation (1), Nt is the number of transmitted frames and ∆t is the interaction period.

6.1.2. Fairness Index

Fairness metrics determine whether the nodes are getting a fair share of the available
resources. Jain’s fairness index is one of the most commonly used metrics for fairness
evaluation. This is independent of its population size and the values lies in 0 to 1. Jain’s
fairness index is calculated as

f (x1.x2.x3 . . . . . . xn) =

( n

∑
i=1

xi

)2

n
(

∑n
i=1 x2

i

) (2)

In Equation (2), x is normalized throughput and n is the number of nodes. J equals to
1 means the fairest allocation of resources, and all the users can enjoy the resources.

6.1.3. Cumulative Reward

A DRL algorithm is judged by the quality of the policy it finds and the received
reward. Rewards are the values in number an agent receives when it acts under certain
environmental conditions. This value can be negative or positive, depending on the agent’s
actions. In RL, the goal is to maximize the cumulative reward rather than the reward
received from the current state. The cumulative reward is the sum of all the rewards
received so far. It shows the performance of a RL algorithm by plotting the cumulative
reward as a function of a number of time frames.

CR = rt+1 + γrt+2 + γ2rt+3 + . . . . . . =
∞

∑
k=0

γkrt+k+1 (3)

In Equation (3), cumulative reward at every time step t is given by rt+1 and γ is the
discount factor. rt+1 is the reward agent received at time step t when performing an action
to go from one state to another state and the discount factor defines the importance of
immediate and future rewards and must satisfy 0≤ γ ≥1. The agent selects the actions in
order to maximize the expected (discounted) return. Reward discount γ is set to refine the
agent goal. A value close to 0 emphasizes the importance of immediate rewards, and a
value close to 1 means that future rewards are more important.

6.2. Simulation Parameters

DDQN was executed using the hyperparameters listed in Table 2. These hyperparam-
eters were determined through empirical observation by a simulation campaign for better
performance. Random grid search is used to select the hyperparameters.

Table 2. DDQN Hyperparameters.

Parameter Value

Learning Rate (LR) 5.0 × 10−6

Batch Size 32

Interaction Period 10 ms

Reward Discount (γ) 0.9

History Length (h) 300

Replay Buffer 18,000
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Figure 4. DDQN Approach for DCWO.

7. Results and Discussion

For the implementation of the proposed scheme, we have used NS3-gym. The archi-
tecture of the Ns3-gym framework has two modules, OpenAI Gym and the NS-3. OpenAI
Gym framework is utilized to deploy agents, while NS-3 serves as the environment. The
general interface between NS-3 and OpenAI Gym allows the perfect integration of these
two frameworks. The interface manages the life cycle of the NS-3 simulation process, as
well as providing state and action information between the Gym agent and simulation
environment.

We have compared the results of our proposed scheme DCWO with that of CCOD [21].
DCWO control the value of CW taking advantage of the principles of Deep Reinforcement
Learning (DRL) for learning the correct setting under various network conditions. Every
experiment was carried out for 15 rounds of 60 s simulations. The first 14 rounds were
training phase, and the 15th round was the operational phase. Every simulation consisted
of interaction times of 10 ms, between which the proposed algorithm was executed.

The result of DCWO is evaluated in static and dynamic scenarios and are compared
with CCOD. Graphs are plotted to observe the overall performance of the proposed al-
gorithm in terms of instantaneous and average network throughput, fairness index and
cumulative reward. Moreover, we have also represented the variation of CW as the number
of nodes increases over the time.

For network throughput and fairness index, we evaluate the DCWO in static as well
as dynamic scenarios and compare the results with those obtained from CCOD. A mean
CW value was selected by DDQN in every round of simulation scenario for 25 nodes.

In the static scenario, number of nodes connected to AP were fixed throughout the
simulations. In such a scenario, constant CW value is optimal. It can be seen from the
Figure 5 that our proposed scheme, DCWO with DDQN performs better than CCOD
for both the algorithms i.e., DQN and DDPG, and can optimize the value of CW in static
network conditions. Figure 5 shows that DCWO achieves 25% higher throughput compared
to CCOD when the number of nodes in the network exceed 30.



Appl. Sci. 2022, 12, 4145 15 of 20

Figure 5. Network Throughput for Static Scenario.

As the standard 802.11 results in decrease of network throughput in such a scenario
while our proposed scheme maintains the network efficiency, thus resulting in enhanced
network performance. The results show that DDQN outperforms DQN and DDPG in terms
of network throughput in the static scenario.

In the dynamic scenario, the number of nodes is not fixed and increases from 10 to
50. The purpose for designing this scenario was to evaluate the performance of proposed
algorithm in a dynamic network. As the number of nodes increased from 10 to 50, it results
in an increase in the collision rate. With the increase in the number of nodes, the values
of CW are updated dynamically. Figure 6 shows the Instantaneous network throughput.
It can be seen that DCWO performs better than CCOD with DQN and DDPG. CCOD
improves instantaneous throughput by 5% and 10%, respectively, compared to the CCOD
with DDPG and CCOD with DQN due to the former choosing optimal CW dynamically.
The dynamic selection of the optimal size of the CW is shown in Figure 7.

The network throughput for the dynamic scenario is shown in Figure 8. From the
Figure it is evident that DCWO is also outperforming CCOD with DQN and with DDPG in
the dynamic scenario. DCWO achieves on average 23% higher network throughput than
CCOD when the network size exceeds 40 nodes. DCWO also gives better performance
even when the total number of nodes in the network are below 40.

Giving fair opportunity to access the wireless channel is also an important performance
metric for an algorithm. We have also evaluated our simulation results considering the
Jain’s fairness index. Figures 9 and 10 show the Fainess index for DCWO in static and
dynamic scenarios, respectively. The figures further compare the performance of DCWO
and CCOD with DQN as well as CCOD with DDPG. In both scenarios it is shown that
CCOD performance better than both of the algorithms of the CCOD.

Our scheme also performs better in terms of cumulative reward, as in the case of
network throughput and the fairness index. The plot of cumulative reward against the
number of steps shows performance of DDQN against DQN, and DDPG. The uptrend of
DCWO(DDQN) curve, as shown in Figure 11, is learning to select the best control actions
to get more rewards, thus achieving the optimal control policy more rapidly as compared
to CCOD with DDPG and DQN.
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Figure 6. Instantaneous Network Throughput for Dynamic Scenario.

Figure 7. CW Variation by DCWO in Dynamic Scenario.
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Figure 8. Network Throughput for Dynamic Scenario.

Figure 9. Network Fairness Index for Static Scenario.
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Figure 10. Network Fairness Index for Dynamic Scenario.

Figure 11. Cumulative Reward vs. No. of Time Frames.

8. Conclusions

With the presence of a massive number of advanced network devices, CW optimization
can now be examined using DRL methods. DRL is suitable for optimizing wireless networks
as it deals with smart software agents that take action in a specific environment to maximize
the reward. We have proposed DCWO, a method that takes advantage of the principles
of DRL for correct CW configuration for 802.11ax under different network conditions. It
makes use of a trainable control algorithm, DDQN. Our experiments have shown that DRL
can be used successfully for dealing with CW optimization problems. We have evaluated
our proposed scheme in terms of total network throughput, instantaneous throughput
and fairness in static as well as dynamic scenario and cumulative reward. The simulation
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results show the effectiveness of our scheme as it yields overall better network performance
than those obtained from CCOD. In terms of total network throughput DCWO gives 28%
and 23% better performance than CCOD in static and dynamic scenarios, respectively.
DCWO also gives around 10% better instantaneous throughput than the CCOD. In terms
of fairness, DCWO with DDQN achieves almost near to optimal fairness in static scenario
and better than CCOD with DQN and DDPG in dynamic scenarios. Similarly, cumulative
reward achieved by DCWO with DDQN is much better than DQN with CCOD and almost
the same with CCOD with DDPG; however, the uptrend of DCWO is better.
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