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Abstract: Deep convolutional neural networks with strong expressive ability have achieved impres-
sive performances in single-image super-resolution algorithms. However, excessive convolutions
usually consume high computational cost, which limits the application of super-resolution technology
in low computing power devices. Besides, super-resolution of arbitrary scale factor has been ignored
for a long time. Most previous researchers have trained a specific network model separately for each
factor, and taken the super-resolution of several integer scale factors into consideration. In this
paper, we put forward a multi-scale factor network (MFN), which dynamically predicts the weights
of the upscale filter by taking the scale factor as input, and generates HR images with corresponding
scale factors from the weights. This method is suitable for arbitrary scale factors (integer or non-
integer). In addition, we use an information distillation structure to gradually extract multi-scale
spatial features. Extensive experiments suggest that the proposed method performs favorably against
the state-of-the-art SR algorithms in term of visual quality, PSNR/SSIM evaluation indicators, and
model parameters.

Keywords: single image super-resolution; information distillation; multi-scale factor network

1. Introduction

In computer vision, single image super-resolution (SISR) is currently a hot research
topic, which reconstructs a high-resolution (HR) image from a low-resolution (LR) image
through image processing methods in the same scene [1]. SISR is widely used in the fields
of medicine, transportation, and remote sensing. Since one LR image can generate several
HR images, SISR has no unique solution [2]. To address this problem, numerous image SR
methods based on deep neural network architectures have been proposed and have shown
prominent performance.

Since deep learning shows strong advantages in various computer vision tasks, Dong
et al. [3,4] achieved feature extraction, nonlinear matching, and image reconstruction
by a three-layer network. VDSR [5] expanded dramatically the depth of the network to
20 by stacking multiple layers to enhance the receptive field. At the same time, Kim et al. [6]
proposed DRCN for the first time to apply recursive learning to SR tasks. Tai et al. [7]
first adopted a DRRN to reduce parameters. In addition, Tai et al. [8] used a persistent
memory network (Mem-Net) that stacks with a densely connected structure to resolve
the dependency problem. EDSR [9] removed the batch normalization (BN) layer and used
the residual scaling to speed up the training. Zhang et al. [10] added densely connected
blocks to the residual to form a residual dense network (RDN). The RDN makes full
use of global and local features to enhance SR performance. GFSR [11] used a gradient-
guided and multi-scale feature network for image super-resolution. HRFFN [12] designed
an enhanced residual block (ERB) containing multiple mixed-attention blocks (MABs)
to boost the representative ability of the network. The above algorithms all increased
the network depth to upgrade the quality of images [13]. Kim Seonjae proposed two
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lightweight neural networks with a hybrid residual and dense connection structure to
improve the super-resolution performance [14]. However, they usually ignore the problems
such as memory consumption and the network is prone to overfitting.

As for the upsampling methods, most use post-upsampling, and need to train a single
model for each magnification. Dong et al. first upscaled the resolution as the output size
in SRCNN [3,4]. Then they proposed FSRCNN [15], which used a transposed convolution
at the end of the network to finish the upsampling operation. Afterwards, Lai et al. [16,17]
believed that when the scale factor is large (×8), it is difficult to restore image texture
through a one-step operation. So, they proposed Lap-SRN [16,17], which progressively
extracted image features and achieved image super-resolution. Shi et al. [18] first used
the sub-pixel convolution to upscale the size of feature map for reducing computation.
In recent years, many methods have used sub-pixel convolution, such as EDSR [1] and
RCAN [19]. However, these SISR methods only consider certain integer scale factors
(×2, ×4, ×8). We need to train a module for each scale factor. LESRCNN [20] can obtain
a high-quality image by a model for different scales. Few previous works have discussed
how to implement super-resolution of the arbitrary scale factor. Meta-SR [21] first proposed
to use a single model to achieve multiple magnification.

To solve the above problems, we propose a multi-factor image super-resolution network
based on information distillation (IDMF-SR) to realize arbitrary scale SR with the smallest
parameters. IDMF-SR mainly includes two parts: a feature learning block and a multi-scale
factor upsampling block. The feature learning block is a collection of several information
distillation modules. In the information distillation structure, four 3 × 3 convolutions are
used to extract image features. After each convolutional layer, a channel split operation
divides the extracted features into two parts, and one part is sent to the next convolutional
layer, while another part of the feature is retained. We adopted a channel attention mechanism
based on contrast-aware. Then the retained feature maps are fused through concatenation
at the end. The feature fusion is carried out according to the importance of the feature
maps. In the upsampling steps, we adopted a multi-factor network, which includes position
projection, weight prediction, and feature mapping. As shown in Figure 1, our IDMF-SR
achieves better visual results compared with state-of-the-art methods.
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Figure 1. Visual results under ×4 upscale factor. (a) VDSR; (b) Lap-SRN; (c) Meta-SR; (d) RCAN;
(e) IDMF-SR; (f) HR; (g) Urban100 img_76 (3×).

The contribution of this paper can be summarized as the following four points:

• We propose the multi-scale factor image super-resolution network (IDMF-SR) based
on information distillation for significantly reducing the number of parameters. Our
IDMF-SR is an end-to-end network model, which can utilize hierarchical features more
than previous CNN-based methods and balance performance against applicability;

• We put forward a new information distillation network to gradually extract and
cascade features. IDN divides the feature map extracted from each layer into two
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parts. One of the parts flows into the next convolutional layer, and the retrained part
is cascaded in the end;

• We propose a contrast-aware channel attention mechanism (CCAM) in the information
distillation network. The traditional channel attention mechanism obtains the impor-
tance of the channel through the squeeze-and-excitation module, which is conducive
to improving the PSNR value. Our CCAM can further enhance image details, such as
edges, textures, and structures;

• IDMF-SR is inspired by meta-learning, and the network achieves image magnification
by predicting filter weights by scale factors. Only training one network model can
realize the image magnification at any multiple, which is conducive to application
in the real scene.

2. Materials and Methods
2.1. Network Structure

IDMF-SR mainly includes two parts: a deep feature learning block and a multi-scale
factor up-sampling block, as shown in Figure 2. First, a Conv-3 is used to extract coarse
image features. The key component of IDMF-SR utilizes multiple-stacked information
distillation blocks (IDBs). After each information distillation block, the feature maps flow
into the next IDB and flows on to the last IDB. When several convolution operations
are completed, the retained multi-scale feature maps are fused through concatenation.
The upsampling module mainly includes position projection, weight prediction, and feature
mapping, as shown in Figure 2. Details are introduced in Section 2.3.

Figure 2. Network architecture of multi-factor image super-resolution based on information dis-
tillation (IDMF-SR). (a) The blue box represents Conv-3; (b) The green box represents Conv-1.

2.2. Information Distillation Module

In Figure 3, the information distillation block firstly uses four 3 × 3 convolutions to
progressively extract image features. After each convolution, a channel split operation
is used to divide the feature maps into two parts. One of the parts flows into the next
convolutional layer, and the other part is retained. Finally, the retained feature maps are
concatenated to flow into the next IDB. Assuming that the input of the n_th information
distillation module is F_in , the process can be expressed as Formulas (1)–(4).

Fn
r_1, Fn

c_1 = Splitn
1 (C

n
1 (Fn

in)) (1)

Fn
r_2, Fn

c_2 = Splitn
2
(
Cn

2
(

Fn
c_1
))

(2)

Fn
r_3, Fn

c_3 = Splitn
3
(
Cn

3
(

Fn
c_2
))

(3)

Fn
r_4 = Cn

4
(

Fn
c_3
)
) (4)
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Figure 3. Information distillation module.

Cn
1 represents the first convolutional layer of the n_th information distillation module,

Cn
2 , Cn

3 , Cn
4 , and so on. Splitn

1 represents the first channel split layer of the n_th information
distillation module. Fn

r_1 represents the first retained feature maps, and Fn
c_1 represents the first

coarse feature, which is fed into the next calculation unit. After each level of convolutional
layer, the feature maps are divided into two parts. Two-thirds flow into the next level, and
one-third are retained. Table 1 shows the hyperparameter in the information distillation
module. We set 3 × 3 as the kernel size in the convolutional layer. The output channels
numbered 64, 48, and 16 are the convolutional layer. The number of the retained feature
maps are 16, after four convolutional layers, the number of the output channels is also 64.
The convolution kernel and stride follow the common operations in the SISR method.

Table 1. Convolutional parameter setting in the information distillation module.

Layer Number of Input_Channel Kernel_SizeStride Number of Output_Channel

C_1 64 3 1 64
C_2 48 3 1 64
C_3 48 3 1 64
C_4 48 3 1 16

Next, we connect the previously retained feature maps Fn
r , which can be expressed

by Formula (5):
Fn

distilled = Concat
(

Fn
r1

, Fn
r2

, Fn
r3

, Fn
r_4
)

(5)

We discard the traditional channel attention mechanism and add contrast variables to
the original channel attention. In low-level image tasks, such as image super-resolution
reconstruction, the contrast-based channel attention mechanism can enhance image details,
such as edges and textures. In Figure 4, the contrast is the sum of the standard deviation
and the mean. Assuming that the input feature has C feature maps, the size of each feature
map is H ×W, and the input is expressed as X = [x1, x2, . . . xc, . . . xC], and the contrast is
calculated as Formula (6):

Zc = HGC(xc) =

√√√√ 1
HW ∑

(i,j)∈xc

(xi,j
c −

1
HW ∑

(i,j)∈xc

xi,j
c )

2
+

1
HW ∑

(i,j)∈xc

xi,j
c (6)

Figure 4. Contrast-based channel attention mechanism (S is sigmoid function).
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Among them, HGC(•) represents the global contrast information measurement func-

tion of the feature map,
√

1
HW ∑

(i,j)∈xc

(xi,j
c − 1

HW ∑
(i,j)∈xc

xi,j
c )

2
represents the standard devi-

ation, and 1
HW ∑

(i,j)∈xc

xi,j
c represents the mean. IDMF-SR can effectively enhance image

texture and improve SISR performance by using the contrast-based channel attention
mechanism.

2.3. Multi-Factor Upsampling Module

The upsampling module mainly includes position projection, weight prediction, and
feature mapping. The Location Projection projects pixels onto the LR image. The Weight
Prediction Module predicts the weights of the filter for each pixel on the SR image. Fi-
nally, the Feature Mapping function maps the feature on the LR image with the predicted
weights back to the SR image to calculate the value of the pixel. After ILR extracts image
features through the information distillation module, the output feature map is FLR′ , and
the network finally outputs ISR. According to the principle that a pixel on the HR image
can be back-projected to the ILR, pixel (i, j) on the ISR can be determined by a pixel (i′, j′)
on the LR image and the filter weight. Therefore, the upsampling module needs a specific
filter to match (i′, j′) and (i, j). The formula is shown in Formula (7). Φ(•) is the mapping
function from ILR to IHR. FLR′(i′, j′) represents the pixel on the ILR, and ISR(i, j) represents
the pixel on the ISR.

ISR(i, j) = Φ
(

FLR′
(
i′, j′

)
, W(i, j)

)
(7)

(1) Position projection

Position projection is to back-project ISR onto FLR′ , as shown in Figure 5. The value
of pixel (i, j) on ISR is determined by the point (i′, j′) on FLR′ .the relationship between these
two pixels is expressed by Formula (8).

(
i′, j′

)
= T(i, j) =

(∣∣∣∣ i
r

,
j
r

∣∣∣∣) (8)

Figure 5. Location projection schematic diagram.

Among them, T(•) is the conversion function, which converts the point (i, j) into

(i′, j′).
∣∣∣ i

r , j
r

∣∣∣ is floor function, and r is scale-factor. It can be seen that adding a scale factor
to calculate the relationship between two pixels is suitable for SISR with any scale factor.

The Location Projection can upscale the feature maps with arbitrary scale factor.
The scale factor r is divided into two types: integer and non-integer. When r is an integer,
for example, when r is 2, one pixel in the LR image can determine two pixels in the HR
image, as shown in Figure 6a. When the scale factor is a non-integer, for example, r is
1.5, one pixel in the LR image determines one or two pixels in the HR image, as shown
in Figure 6b. No matter whether r is an integer or a non-integer, there is always a unique
point on the LR image corresponding to a point on the SR image, and these two pixels are
called the most relevant pixel pair.
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Figure 6. Pixel mapping schematic diagram. (a) r = 2; (b) r = 1.5.

Different from the typical upscale module, we use a network to predict the filter
weights. This process is called weight prediction, expressed by Formula (9):

W(i, j) = ϕ
(

Ii,j; θ
)

(9)

ϕ
(

Ii,j; θ
)

represents the weight prediction process, Ii,j is the input of the weight predic-
tion network, θ is the parameter of the weight prediction network, and W(i, j) is the weight
at the pixel (i, j). At the pixel (i, j), the input Iij of ϕ(•) can be expanded to the relative
offset of (i′, j′), which is expressed as followed by Formula (10):

Iij =

(
i
r
−
∣∣∣∣ i
r

∣∣∣∣, j
r
−
∣∣∣∣ j
r

∣∣∣∣) (10)

To train multiple scale factors for a network, we add scale factor r to the expression of Iij.
Assuming that the image is upscaled by 2 and 4, then ISR2 and ISR4 are obtained. Arbitrary
pixels (i, j) on ISR2 will have the same filter weights and position projection coordinates as
(2i, 2j) pixels on ISR4 . Therefore, we improve the Iij expression to the Formula (11):

Iij =

(
i
r
−
∣∣∣∣ i
r

∣∣∣∣, j
r
−
∣∣∣∣ j
r

∣∣∣∣, 1
r

)
(11)

The weight prediction network is the key of IDMF-SR. Its input is the vector Iij related
to the pixel (i, j), and the weight matrix is generated through several fully connected
layers and activation layers, as shown in Figure 7. Finally, the size of the weight matrix is
(inC, outC, k, k), inC represents the number of FLR′ , outC represents the number of channels
of the predicted HR image, and k is the size of kernel.

Figure 7. Weight prediction network schematic diagram.

(2) Feature mapping

We got the feature of (i′, j′) on the LR image from FLR′ . We predict the filter weights
with weight prediction network. The last step is feature mapping, that is, FLR′ is mapped
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onto the SR image, as shown in Figure 8. We multiply FLR′(i′, j′) and the weights to get
Φ(•), as expressed in Formula (12):

Φ
(

FLR(i′, j′
)

, W(i, j)
)
= FLR′

(
i′, j′

)
•W(i, j) (12)

Figure 8. Feature mapping schematic diagram.

2.4. Datasets and Evaluation Metrics

In our experiments, we train the network by DIV2K [22], which contains 800 high-
quality images. We use Set5 [23], Set14 [24], BSD100 [25], and Manga109 [26] for evaluation.
There are two metrics to evaluate the performance of the SR, such as peak signal-to-
noise ratio (PSNR) and structure similarity (SSIM) [27]. We calculate the values on the Y
channel transformed from YCbCr space. As for the degradation methods, we use bicubic
downsampling on the Matlab platform, the original HR image is downscaled to obtain
the LR image. We randomly cropped into image patches with size 192 × 192, which are
used as input for network training.

2.5. Implementation Details

In the experiment, we set the optimizer as the Adam, where β1 = 0.9, β2 = 0.999,
and ε = 10−8. The initial learning rate is set to 2 × 10−4, and the learning rate is reduced
by half for every 2 × 105 steps. The loss function uses the L1 and the kernel size is generally
set to 3 × 3. The number of 3 × 3 convolutional layers of the information distillation
module is set to 4. The IDMF-SR is implemented by the Pytorch framework. The code runs
in the Windows 10 operating system, which is equipped with NVIDIA GeForce GTX1080Ti.
We use CUDA9.0 and CuDNN7.1 to accelerate training.

3. Results

This section will analyze IDMF-SR from PSNR and SSIM evaluation indicators and
visual effects.

3.1. Comparison of Objective Evaluation Indicators

In this experiment, SRCNN [3,4], VDSR [5], Lap-SRN [16,17], LESRCNN [20], and
Meta-SR [21] are selected as reference methods for comparative experiments. BSD100 is
selected as the test dataset, and the upscaling factor is 1.1–1.9. In Table 2, we compare
the PSNR value between IDMF-SR and state-of-the-art SR methods. It can be seen that
IDMF-SR is slightly better than the PSNR value of Meta-SR [21], but has a similar PSNR
value to RCAN [19]. Compared with LESRCNN [20], IDMF-SR almost comprehensively
outperforms LESRCNN. Under×2, the performance is slightly different. It can be seen from
the PSNR and SSIM that IDMF-SR has improved PSNR and SSIM performance indicators
compared to Meta-SR [21] and RCAN [19] methods. As shown in Table 3, the PSNR index
of IDMF-SR can reach 40.15 dB on the Manga109 test data set with factor of 2, which is
2.8 dB, 0.91 dB and 1.42 dB higher than Meta-SR [21], RCAN [19], and LESRCNN [20].
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Table 2. The PSNR value of IDMF-SR under non-integer upscale factors.

Method
×1.1 ×1.2 ×1.3 ×1.4 ×1.5 ×1.6 ×1.7 ×1.8 ×1.9

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

Bicubic 36.56 35.01 33.84 32.93 32.14 31.49 30.90 30.38 29.97
SRCNN [3,4] 38.01 37.21 35.87 34.40 33.28 32.30 31.94 31.85 31.04

VDSR [5] 39.67 38.16 36.43 35.18 34.39 33.12 32.50 32.36 31.58
Lap-SRN [16,17] 40.35 39.12 37.85 35.99 34.97 34.01 33.82 32.97 31.95

Meta-SR [21] 42.82 40.40 38.28 36.95 35.86 34.90 34.13 33.45 32.86
RCAN [19] 42.83 40.39 38.30 36.97 35.86 34.91 34.14 33.46 32.89

LESRCNN [20] 42.91 40.35 38.29 36.93 35.85 34.88 34.10 33.45 32.88
IDMF-SR 42.83 40.40 38.29 36.95 35.87 34.92 34.14 33.46 32.88

Table 3. Average PSNR and SSIM values of different methods under ×2, ×4, and ×8 on datasets
Set5, Set14, BSD100, Urban100, and Manga109.

Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

×2

33.66 0.930 30.23 0.879 29.55 0.826 26.75 0.826 30.73 0.931

SRCNN [3,4] 36.50 0.954 32.42 0.910 31.36 0.863 29.34 0.893 35.60 0.957

VDSR [5] 37.54 0.956 33.03 0.912 31.53 0.895 30.48 0.917 37.06 0.968

Lap-SRN [16,17] 37.52 0.959 33.08 0.913 31.90 0.897 30.41 0.919 37.22 0.969

Meta-SR [21] 37.10 0.957 34.18 0.911 31.88 0.910 30.52 0.932 37.35 0.985

RCAN [19] 38.34 0.967 34.37 0.927 32.53 0.934 33.02 0.939 39.24 0.977

LESRCNN [20] 37.65 0.9586 33.32 0.915 31.95 0.896 31.45 0.921 38.73 0.984

IDMF-SR 38.20 0.967 34.38 0.930 32.57 0.938 32.96 0.920 40.15 0.980

Bicubic

×4

28.30 0.810 25.98 0.639 25.79 0.668 23.04 0.658 24.86 0.787

SRCNN [3,4] 30.12 0.862 26.89 0.745 26.87 0.710 24.48 0.722 27.54 0.856

VDSR [5] 31.34 0.866 27.68 0.752 27.25 0.723 25.16 0.754 28.82 0.889

Lap-SRN [16,17] 31.45 0.885 28.17 0.769 27.32 0.736 25.21 0.756 29.17 0.890

Meta-SR [21] 31.85 0.906 28.32 0.778 27.52 0.790 25.82 0.760 29.89 0.917

RCAN [19] 32.62 0.912 28.89 0.790 27.99 0.751 26.88 0.812 30.97 0.921

LESRCNN [20] 31.88 0.890 28.44 0.778 27.45 0.731 25.77 0.773 30.99 0.919

IDMF-SR 32.62 0.910 28.90 0.792 27.99 0.790 27.10 0.818 30.98 0.921

Bicubic

×8

24.40 0.656 23.06 0.567 23.67 0.545 20.74 0.516 21.48 0.650

SRCNN [3,4] 25.24 0.691 23.74 0.593 24.23 0.566 21.29 0.548 22.45 0.695

VDSR [5] 25.59 0.710 24.02 0.603 24.50 0.583 21.52 0.573 23.17 0.732

Lap-SRN [16,17] 25.92 0.728 24.28 0.614 24.54 0.590 21.67 0.582 23.40 0.759

Meta-SR [21] 26.91 0.750 24.32 0.663 24.65 0.682 22.04 0.680 24.10 0.810

RCAN [19] 38.34 0.795 25.43 0.668 25.16 0.614 23.50 0.653 25.47 0.826

LESRCNN [20] 38.30 0.783 25.47 0.665 25.10 0.677 23.48 0.680 25.38 0.827

IDMF-SR 38.35 0.796 25.50 0.669 25.10 0.674 23.51 0.682 25.49 0.827

Under ×4, on the Urban100, the PSNR value of IDMF-SR reaches 27.10 dB, which is
1.28 dB and 0.22 dB higher than Meta-SR [21] and RCAN [19]. When the scale factor is 8, on
the Set14 dataset, the PSNR value of IDMF-SR reaches 25.50 dB, which is 1.18 dB and 0.07
dB higher than Meta-SR [21], RCAN [19], and LESRCNN [20], as shown in Table 3. It can
be seen from the data that when the magnification factor is large and the image details
are difficult to recover, the PSNR value of the IDMF-SR is slightly higher than the other
algorithms. In summary, from the perspective of objective data, IDMF-SR can effectively
restore image details. The objective evaluation index is higher than other algorithms, and
the reconstruction effect is good.
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3.2. Comparison of Subjective Visual Effects

In Figure 9, VDSR [5], Lap-SRN [16,17], Meta-SR [21], and RCAN [19] all optimize
details to reduce edge blur. From the overall picture, IDMF-SR and RCAN [19] have similar
visual effects to the naked eye. In order to observe the pros and cons of each algorithm more
clearly, we select some details of the image to upscale them, and observe the differences
in image detail processing of each algorithm, as shown in Figure 9. There is a big difference
in the restoration of the detail information of the image. The images (a)–(c) on Set14
img_005 are blurred. Compared with the previous methods, IDMF-SR has an improved
reconstruction effect.
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3.3. Comparison of Model Parameters

Compare the traditional algorithms and the IDMF-SR on the Urban100 test dataset
Under ×4, the relationship between the average PSNR of the model and the parameter, as
shown in Figure 10. The IDMF-SR proposed in this section changes the feature learning
module based on Meta-SR [21], adopts an information distillation structure, progressively
extracts image features, and cascades features. The feature does not fully participate in the
next stage of the feature learning task. Therefore, only a few parameters can be used to
achieve fast and accurate image super-resolution reconstruction, preventing parameter
redundancy. It can be seen from Figure 10 that IDMF-SR has a 69.8% reduction in parameter
quantity than Meta-SR [21] and a 2% increase in PSNR value. The algorithm in this section
makes a trade-off between the number of model parameters and the PSNR value, which
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not only ensures the improvement of the SISR performance but also reduces the number
of parameters.

Figure 10. Multiple model PSNR value and parameter quantity relation diagram.

4. Discussion
Ablation Studies of IDM and CCAM

To quickly demonstrate the effect of the information distillation module (IDM) and
contrast-based channel attention mechanism (CCAM), we remove the IDM between IDB
and/or CCAM, so the IDMF-SR becomes the basis of a deep network, which we named
IMDN-Basic, as described in Figure 11. Firstly, we use four IDB to certify the effect of IDM
and CCAM. In Table 4, when both IDM and CCAM are removed, the PSNR on Set5 at
the scale factor of 4 is 32.48 dB as the first column. When CCAM is added, the PSNR value
reached 32.56 dB. This is because CCAM can improve the information about structures,
textures, and edges that are propitious to enhance image details. The PSNR value reaches
32.62 dB with the contribution of IDM and CCAM. This indicates that IDM and CCAM are
essential for improving SISR performance.

Figure 11. IMDN-Basic. The grey box represents multi-factor upscaling module.

Table 4. Investigations of CCA module and IIC scheme.

Different Combination of IDM and CCAM

IDM 7 7 X X
CCAM 7 X 7 X

PSNR on Set5 (×4) 32.48 32.56 32.60 32.62

5. Conclusions

In this paper, we propose an information distillation structure to progressively extract
multi-scale spatial features to achieve fast and accurate image super-resolution. The infor-
mation distillation module divides the captured feature map into two parts. After each
level of convolution, one third of the feature maps are retained and cascaded after the last
convolutional layer. CCAM can further enhance image details, such as edges, textures, and
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structures. In addition, we propose a multi-factor upsampling module, which uses scale
factors to predict filter weights. IDMF-SR can train a single model for super-resolution
of arbitrary scale factor to achieve image super-resolution. Extensive experiments illustrate
that the proposed IDMF-SR outperforms state-of-the-art versus SISR in terms of qualitative
and quantitative evaluation.
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