
����������
�������

Citation: Hong, J.; Jeong, D.; Kim,

S.-W. Classifying Malicious

Documents on the Basis of Plain-Text

Features: Problem, Solution, and

Experiences. Appl. Sci. 2022, 12, 4088.

https://doi.org/10.3390/

app12084088

Academic Editor: Shi-Jinn Horng

Received: 28 February 2022

Accepted: 15 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Classifying Malicious Documents on the Basis of Plain-Text
Features: Problem, Solution, and Experiences

Jiwon Hong 1 , Dongho Jeong 2 and Sang-Wook Kim 1,*

1 Department of Computer Science, Hanyang University, Seoul 04763, Korea; nowiz@hanyang.ac.kr
2 Department of Artificial Intelligence, Hanyang University, Seoul 04763, Korea; mars9954@hanyang.ac.kr
* Correspondence: wook@hanyang.ac.kr

Abstract: Cyberattacks widely occur by using malicious documents. A malicious document is an
electronic document containing malicious codes along with some plain-text data that is human-
readable. In this paper, we propose a novel framework that takes advantage of such plaintext data to
determine whether a given document is malicious. We extracted plaintext features from the corpus
of electronic documents and utilized them to train a classification model for detecting malicious
documents. Our extensive experimental results with different combinations of three well-known
vectorization strategies and three popular classification methods on five types of electronic documents
demonstrate that our framework provides high prediction accuracy in detecting malicious documents.

Keywords: malware; malicious document; classification; text analysis

1. Introduction

The threat of cyberattacks continues to increase. Various types of new cyberattacks
are happening every month. Phishing and ransomware attacks are on a steep rise despite
the efforts of governments and companies. Various studies to avoid such risks from
cyberattacks were conducted [1–5].

Cyberattacks are in most cases ultimately achieved by executable code called malware.
In the past, attackers mainly distributed such executable code directly (e.g., by using the
autorun feature of an external storage device). However, recently, most systems have
been able to easily detect this malicious executable code [6,7]. Therefore, attackers started
to distribute the malicious code indirectly by hiding it inside the electronic document
delivered through the web or e-mails [7–9].

The electronic document having the malicious code is called a malicious document.
There have been a number of efforts on the detection of malicious documents in the
literature [1–3,8,10]. Many of them perform detection by finding signatures for mostly
encrypted malicious code in documents. However, in many cases, malicious documents
contain plaintext data in addition to the malicious code, as in normal (i.e., benign) electronic
documents [8,10].

Generally, plaintext data in a malicious document are used to disguise the document
as a benign one [2,8,11]. However, even among plaintext data, in many cases, we could
find signatures that are beneficial in determining whether the document is malicious [12].
Such signatures include reusing sentences, techniques, and habits that had been used in
previous malicious documents by a group of attackers.

Our contributions in this paper are summarized as follows:

• We propose a malicious-document classification framework that only exploits plaintext
data. Our proposed framework extracts plaintext features from given malicious or
benign electronic documents and builds vector representations of the documents
(i.e., vectorization). After that, it trains a classification model by using the vector
representations of all documents. By applying the trained model to an unseen (new)
document, our framework predicts whether the target document is malicious.

Appl. Sci. 2022, 12, 4088. https://doi.org/10.3390/app12084088 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12084088
https://doi.org/10.3390/app12084088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8664-3258
https://orcid.org/0000-0001-5988-3301
https://orcid.org/0000-0002-6345-9084
https://doi.org/10.3390/app12084088
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12084088?type=check_update&version=1

Appl. Sci. 2022, 12, 4088 2 of 13

• We designed our proposed framework to be capable of adopting various vectorization
strategies and classification methods. We adopted three well-known vectorization
strategies (i.e., bag of words (BoW), term frequency-inverse document frequency
(TF-IDF), and Word2Vec) and three popular classification methods (i.e., deep neural
networks (DNNs), support vector machines (SVMs), and decision trees) in this paper.

• We show that the proposed framework works well in practice. We carefully evaluate
the effectiveness of our framework equipped with different combinations of vectoriza-
tion strategies and classification methods by conducting extensive experiments on five
types of electronic documents. Experimental results demonstrate that our framework
provides accuracy higher than 98% in detecting malicious documents.

Furthermore, since our proposed framework successfully detects malicious documents
by exploiting only the plaintext data without using the signature of malicious codes, it can
be easily combined with those methods that utilize only the signature of malicious codes,
thereby utilizing both plaintext data and the signature of malicious codes for detecting
malicious documents.

The paper is organized as follows: Section 2 briefly introduces the concept of a mali-
cious document, and Section 3 presents our framework of malicious-document detection
using plaintext features. Section 4 evaluates the effectiveness of the proposed framework
by using different types of real-world document sets. Lastly, Section 5 summarizes and
concludes our paper.

2. Malicious Code and Malicious Documents

In general, the word ‘malware’ indicates both malicious code and malicious documents.
Most cyberattacks are ultimately performed by malicious code, which is basically executable
code that exists as a portable executable (PE) file [13]. There could also be malicious code
that is fileless malware stored in the system configuration file or registry in the form of
shellcode [11]. When a system is compromised by malicious code, sensitive information
in the system may be stolen or destroyed, or important files may be encrypted (e.g.,
ransomware). In addition, an attacker can remotely manipulate a compromised system to
perform malicious tasks, such as attacking other systems.

Traditionally, approaches most widely used to deliver malware include deceiving a
legitimate user to copy it and exploiting a security hole in the system such as the autorun
of an external storage device [1,7,13]. Attackers commonly try to use web pages, e-mail
messages, and attachment files as attack vectors for malware distribution [8,11,14].

Figure 1 depicts these recent attack vectors. The attacker (1) plants malicious code
into electronic documents, (2) delivers them through a webpage, an e-mail, or a message
disguised as a benign one to a victim, and convinces the victim to download and open the
electronic document file [11]. When the victim (3) opens the malicious document using a
legitimate but vulnerable program, the malicious code hidden inside the document (4) is
activated and compromises the system. The most common file types used to convey such
cyberattacks include hypertext markup language (HTML) [14], extensible markup language
(XML) [14], rich text format (RTF) [15], e-mail (EML) [16], Microsoft Word (DOC) [17],
Microsoft Excel (XLS) [17], and portable document format (PDF) [12]. Such electronic
documents used in attack vectors are called malicious documents [14,18].

Malicious documents are used in attack vectors instead of executable files mainly be-
cause they are easier to be disguised than executable files are. Malicious documents contain
some or all of the malicious code that performs the actual cyberattack in an encrypted
state or downloads actual malicious code via the network (i.e., called drop). However,
malicious documents are not executable by themselves, thereby bypassing the traditional
signature-based detection of malicious PE files. Such malicious documents may not be
detected by antivirus software, firewalls, or intrusion prevention systems (IPS).

Appl. Sci. 2022, 12, 4088 3 of 13

E-mail

Web-page

Message

Malicious Documents

.HTML
.XML
.EML
.RTF
.VBA
︙

Program

W

Malicious
Code

②Deliver

① Plant

③Open

④ Compromise

Target System

Figure 1. Malicious documents used as attack vectors.

Malicious documents contain plaintext data in addition to malicious code for the
actual cyberattack. In such plaintext data, there exist specified attributes in the electronic
document format (e.g., tags for an HTML file and control keywords for an RTF file) and text
contents intended to be readable by humans (e.g., the body of an e-mail message). Format-
specific attributes are not intended to be executable but may convey executable malicious
code. Attackers may use plaintext contents to disguise the document as legitimate.

In this paper, we address how to detect malicious documents by exploiting these
plaintext features. Our scope covers the accurate detection of malicious documents in five
types of electronic documents commonly used in attack vectors: HTML, XML (including
XHTML), EML (e-mail message), RTF, and Visual Basic for Application (VBA).

3. Malicious Document Classification

In this section, we present our proposed framework of detecting malicious documents
by using plaintext features in detail.

3.1. Overview

We propose a simple but effective two-step classification framework to detect malicious
documents containing plaintext features. Figure 2 shows the overview of the proposed
framework composed of two steps: (1) feature extraction and (2) classification.

In the feature extraction step, (1) we first preprocess the given set of documents to read
their plaintext data properly. Then, (2) we perform tokenization to extract only plaintext
features from the electronic document. After that, (3) we construct a vector representation
for each document on the basis of extracted plaintext features by applying a text analysis
technique. The detailed process is described in Section 3.3.

In the classification step, (4) a classification model is trained with the obtained vector
representations of the training samples (i.e., documents with class labels). (5) By using the
trained classification model, our framework predicts whether a given (unknown) document
is malicious or not. The detailed process is described in Section 3.4.

Appl. Sci. 2022, 12, 4088 4 of 13

Documents
with Class Labels

Document Vectors

Unknown
Target Document

① Preprocessing

② Tokenization

③ Vectorization

⑤ Prediction ④ Training

Classification Model

MaliciousBenign
Predicted

Class Label

F
e

a
tu

re
 E

x
tra

ctio
n

C
la

ssifica
tio

n

Figure 2. Overview of the proposed framework.

3.2. Electronic Documents

In the field of natural-language processing (NLP), a document conceptually indicates
a group of text that human beings can understand. A document is made up of multiple
sentences, each of which subsequently consists of words. Most text analysis techniques
simply consider a document as a sequence of words. Text analysis techniques attain the
vector representations of words that appear in the entire corpus, aggregating them to obtain
the vector representation of the document for its classification [19–22].

An electronic document corresponds to a computer file whose content is a document.
An electronic document has a specific structure that allows for itself to be processed
by a particular computer program (e.g., word processor, web browser, and/or e-mail
client). This structure has two types of elements: plaintext is text that human beings
can understand; attributes are those used to specify how the plaintext is displayed in a
document or to express information other than plaintext (e.g., figures, tables, and other

Appl. Sci. 2022, 12, 4088 5 of 13

documents). Common examples of attributes include HTML tags and the markdown
formatting syntax.

Plaintext is encoded in various character encodings (e.g., extended ASCII encodings
and UTF-8 encoding) and stored as a byte array in an electronic document file. The human-
readable text is obtained by decoding these byte strings with an appropriate encoding.
Similarly, attributes are also encoded in various ways and stored as a byte array in the file.
Generally, attributes surround or are included in the plaintext; so, plaintext and attributes
appear alternately in a document.

In the following sections, we briefly describe the structures of the most common file
types used to convey cyberattacks.

3.2.1. HTML and XML

HTML is a language for marking up documents to be shown in a web browser. HTML
files have the .html extension. Although XML is a more general-purpose markup language
than HTML, we mainly cover extensible hypertext markup language (XHTML) files with
the .xml extension and consider them to be documents displayed in a web browser similar to
HTML. In these two markup languages, attributes constituting the structure of a document
are the words surrounded by ‘<’ and ‘>’, which are called tags. These tags surround
plaintext meant to be shown to the user.

3.2.2. EML

The .eml extension is used by e-mail clients such as Windows Mail, Microsoft Outlook,
and Mozilla Thunderbird to store e-mail messages. In an EML file, header fields store the
information such as the sender or receiver of the message and the date of transmission.
The message body and attachments are stored together according to the multipurpose
Internet mail extensions (MIME) standard. Among the message body and attachments,
we decode only those with a MIME type starting with ’text/’ with the specified encoding,
using them as plaintext data. Data in header fields are treated as attributes.

3.2.3. RTF

RTF is a document format commonly used by various word processors. RTF contains
attributes called control keywords that start with a ‘\’. With the proper encoding, we could
decode both control keywords and plaintext data into human-readable texts.

3.2.4. VBA

VBA is a scripting language used in various Microsoft applications; unlike aforemen-
tioned file types, it is not generally considered to be electronic documents. However, files
with the .vba extension are composed of human-readable scripts and are used in various
cyberattacks as a common attack vector. Each VBA file is regarded as a document with
keywords and plaintext strings constituting the language syntax of VBA as words.

Table 1 shows the sample plaintext contents of each file type above. In many cases,
a cyberattack using an electronic document tries to hide the actual cyberattack code in
attributes to exploit the vulnerability when the program used to open the file renders a
particular attribute [15]. We equally regarded words from plaintext and attributes as words,
so that the arrangement of these words represents an electronic document.

3.3. Feature Extraction

This subsection discusses how to generate a representation vector from each electronic
document. We considered each electronic document as a list of words (both plaintext and
attributes), as mentioned in Section 3.2.

Appl. Sci. 2022, 12, 4088 6 of 13

Table 1. Examples of document contents for HTML (XML), EML, RTF, and VBA.

File Type Plaintext Examples

HTML
& XML

. . .
<div style=“border: 1 px solid #f90; margin: 0–15 px;
padding: 10 px;”>
<h2>Big Size Clothing for Men</h2>
Clothes sizes from 2XL to 8XLwith
chest and waist sizesup to 72 inches.
</div><section class=’home_page_links’>
...

EML

. . .
Content-Type: text/plain; charset=“utf-8”
Content-Transfer-Encoding: quoted-printable
Content-Disposition: inline
Hallo. Im Anhang finden Sie eine Zahlungskopie.
. . .

RTF

. . .
{\f0\fswiss\fcharset0 Arial;}
{\f1\fmodern Courier New;}
{\colortbl\red0\green0\blue0;\red0\green0\blue255;}
\uc1\pard\plain\deftab360 \f0\fs20 Invio file invoice.xml,
con identificativo 123456789. In allegato il file contenente
la fattura ed il file contenente i metadati.\par
. . .

VBA

. . .
Set SomeDoc = App.OpenDocumentByCode(“DOC”)
Set rsSomeDoc = SomeDoc.DataSets(“MAIN”)
For i = 0 To rsSomeDoc.Fields.Count − 1

Fld_Name = rsSomeDoc.Fields.Item(i).Name
If Left(Fld_Name, 1) = “A” Then

FldVal(Fld_Name) = rsSomeDoc.FldVal(Fld_Name)
End if

Next
. . .

3.3.1. Preprocessing

We extracted human-readable text from a target document by using its appropriate
encoding on the basis of its file type. First, we established the encoding of a file by using
the description in the file or encoding predictor. Then, we decoded the file to convert
it into Unicode text. We applied this process recursively to decode MIME data for EML
files. We read each file and stored the extracted plaintext into Unicode byte arrays with
predicted encoding.

3.3.2. Tokenization

To extract and build the list of words from a plaintext chunk, we performed tokeniza-
tion [23,24]. After preprocessing, we extracted the words from these Unicode byte arrays
by using regular expressions [25]. In most target file types, both words for attributes and
plaintext are separated by whitespace characters and nonalphanumeric characters (e.g., ‘\’,

Appl. Sci. 2022, 12, 4088 7 of 13

‘"’, ‘>’, and ‘<’). We performed tokenization by writing a regular expression suitable for
each file type.

Lastly, we removed too-long tokens and tokens with appearances less than a certain
number from the entire corpus [26]. We could thus safely remove nonplaintext tokens such
as binary code or images.

3.3.3. Vectorization

In order to apply a classification model to detect malicious documents, we need to
represent the documents as vectors. To this end, existing text analysis techniques first build
a vector representation of each word in the corpus, aggregating vectors of words included
in a document to build a vector representation of the document. We use the three following
well-known techniques in our framework for this document vectorization.

Bag of words (BoW) is a document representation technique widely used in NLP and
information retrieval fields. In BoW vectorization, each word included in the corpus is
encoded as a one-hot vector with a length equal to the number of words included in the
corpus [27]. Each document becomes a sum of vectors of words included in the document.
In the document vector obtained with the BoW technique, the value corresponding to
a word appearing in the document is set as 1, and the value corresponding to a word
not appearing in the document is set as 0. The time complexity of BoW vectorization is
O(Nl + NV), where N is the size of the dataset, l is the number of tokens in each sample,
and V is the size of the global vocabulary (e.g., the size of feature vector dimension).

Term Frequency-Inverse Document Frequency (TF-IDF) is another vectorization tech-
nique that considers the importance of each word within the corpus [28,29]. In TF-IDF,
a document is represented as a vector with the length same as the number of words in-
cluded in the corpus. An element of the document vector has a value multiplied by TFw,d,
which indicates the frequency with which the corresponding word appears in the docu-
ment, and IDFw,D, which indicates the importance of the word in the entire corpus. TFw,d
is computed by counting the occurrences of word w in the document d, and IDFw,D is
done by counting the documents containing w, which is scaled logarithmically. The time
complexity of TF-IDF vectorization is O(2Nl + NV).

Word2Vec is a technique for learning the vector representation of each word in the
corpus by using a neural network [30,31]. The vectors of words learned from Word2Vec are
located more closely if they have similar meanings within the corpus. Word2Vec extracts
a continuous skip-gram [32] from the corpus and then uses it to train a shallow neural
network to predict the surrounding words of a given word [30,31]. A vector corresponding
to each word is extracted from the projection layer of the neural network learned in this way.
Since Word2Vec is a technique for obtaining a vector representation of a word, an additional
aggregation step is required to obtain the final document vector. In this paper, we use the
sum and average of the word vectors included in a document as the vector representation of
the document. The time complexity of vectorization using Word2Vec could be represented
as O(NC(D + D log2 V)), where C is the size of the sliding window, D represents the size
of the resulting vectors.

3.4. Model Construction

The proposed framework uses classification methods for malicious document detec-
tion. As described in Section 3.3, we obtained the document vector of a document in a
training corpus. We built a classification model with training documents and used the
model to predict whether a given target document is malicious. In this paper, we use
three well-known classification models: decision trees, support vector machines (SVMs),
and deep neural networks (DNNs).

3.4.1. Decision Tree

The decision tree is a traditional method for classifying a given sample by using a
treelike structure. A tree-shaped classification model is generated by using the decision

Appl. Sci. 2022, 12, 4088 8 of 13

tree induction where it assesses all features in a dataset [33–37]. The class of a given sample
can be determined by using this classification model thus built. The decision tree is one of
the most intuitive classifiers; looking at a tree helps us in seeing which features most affect
a sample’s classification. So, its explainability is considered to be high. The time complexity
of the decision tree is O(DN log N).

3.4.2. SVM

SVM is another classical classification model. SVM can achieve a high level of classifi-
cation accuracy in a variety of fields and build sophisticated classification models [38,39]. It
seeks an ideal hyperplane or a group of hyperplanes that distinguishes the class of data in a
given dataset correctly and clearly. The ideal hyperplane is the one with the widest margin
between classes, which helps the classifier in reducing future errors. Classification using
SVM predicts the class of a given sample by determining the side of the found hyperplane
to which the given sample belongs. The training complexity of nonlinear SVM is generally
between O(N2) and O(N3).

3.4.3. DNN

Recently, thanks to the power of deep learning, various efforts on neural-network-
based classification have been undertaken [20,21,40,41]. DNN performs classification by
training an artificial neural network with a multilayer structure. Each layer of DNN learns
to turn the data it receives into a more abstract and more composite representation. After the
neural network is trained, it can be used to predict the class of a given sample in testing.
The time complexity of DNN is O(NTAB), where T represents the number of iterations, A
and B represent the input and output dimensions of a hidden layer, respectively.

In summary, we first preprocessed each electronic document into a Unicode text;
second, we tokenized each Unicode text into a set of words; third, we built a vector
representation of each document with BoW, TF-IDF, or Word2Vec methods; then, we built a
classification model with the vectorized set of documents (i.e., the training set) by using
the decision tree, SVM, or DNN methods; lastly, we predicted whether each of the given
set of unknown documents (i.e., the test set) is malicious by using the classification model.

4. Evaluation

In this section, we evaluate and discuss the effectiveness of the proposed framework.
Section 4.1 describes the experimental setup of the evaluation, and Section 4.2 presents and
analyzes the results.

4.1. Experimental Setup
4.1.1. Datasets

For evaluation, we used a dataset built by cybersecurity domain experts. For each
target file type, the experts crawled 1000 samples from VirusTotal [42] and adjusted the
numbers of malicious or benign samples for each file type to be the same (i.e., 500 malicious
samples and 500 benign samples). Each dataset was split into five folds by using stratified
sampling [43] to perform cross-validation [43]. Then, in each run of cross-validation, words
with less than 2 occurrences and those with lengths higher than 30 characters were removed
from the corpus of our training set. In the vectorization using BoW and TF-IDF, the length
of a document vector (i.e., dimensionality) was set as the number of words remaining
in the final corpus of the training set; in vectorization using Word2Vec, it was set as 600,
following [30].

4.1.2. Model Parameters in Classification

We conducted our experiments by using various parameters and improvement tactics
as follows to build each classification model:

Appl. Sci. 2022, 12, 4088 9 of 13

• Decision tree: we used the classification and regression trees (CART) algorithm [44] and
built a decision tree on the basis of Gini impurity. We employ multiple class weight
settings of (100:1, 10:1, 1:1, 1:10, and 1:100).

• SVM: The model was built by using the radial basis function (RBF) kernel and the linear
kernel [38,39].

• DNN: the model in our case uses five layers having 64 units for the document vector
obtained from BoW and TF-IDF and 4096 units for the document vector obtained from
Word2Vec. The activation function in the intermediate layer uses a rectified linear unit
(ReLU) [45], and the sigmoid function was used in the last layer. We used AdaGrad
and Adam optimizers [46,47]. We added the batch normalization, drop out, and early
stop as improvement tactics [48–50]. We set patience parameters to 20, 30, and 40 for
early stop.

After performing experiments on the various combinations of parameters above, we
show only the result with the best score in each accuracy metric (described later).

4.1.3. Evaluation Metrics

As metrics for evaluating classification model performance, we used accuracy, preci-
sion, and recall [51] defined as follows:

Accuracy =
tp + tn

tp + tn + f p + f n
, (1)

Precision =
tp

tp + f p
, (2)

Recall =
tp

tp + f n
(3)

where tp, f p, tn, and f n are numbers of true-positive, false-positive, true-negative, and false-
negative predictions, respectively [51]. For example, tp indicates the number of malicious
samples correctly predicted by a model as malicious.

4.2. Results

Table 2 shows the results for five datasets (i.e., HTML, XML, EML, RTF and VBA):
each part of the table shows the average accuracy, precision, and recall of all five folds for
every combination of a feature extraction method and a classification model. The boldfaced
results indicates the best performance for each file type.

In the case of HTML files, the best accuracy and precision were obtained with the
combination of DNN with Word2VecAvg. SVM with BoW showed the best recall, but lower
accuracy and precision than DNN with Word2VecAvg. For XML files, DNN with BoW
achieved 100% accuracy as shown in Table 2. SVM with BoW also showed very high
accuracy. In the case of the EML files, DNN with BoW showed the best accuracy and recall.
DNN with Word2VecAvg showed 100% precision, but provided unreasonably low recall.
In the case of RTF files, BoW presented remarkably high accuracy with both the SVM and
the DNN model. Results for VBA files showed reasonably high accuracy both DNN with
Word2VecAvg and SVM with BoW.

Results showed mostly reasonably high accuracy for all file types and with most
combinations of a feature extraction method and a classification model. As shown in
Table 2, lower accuracy was obtained with EML than that with other datasets except for
DNN with BoW. A possible reason is that some EML files did not include enough plaintext
data for the classification. Word2Vec, a more sophisticated method for vectorization, was
not more accurate than simple BoW and TF-IDF. This could have been due to the use
of a naive aggregation strategy. Overall, DNN with BoW showed the highest accuracy.
Experimental results validated that the proposed framework effectively detects malicious
documents in a practical sense.

Appl. Sci. 2022, 12, 4088 10 of 13

Table 2. Classification accuracy, precision, and recall.

Model
HTML XML EML

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

V
ec

to
ri

za
ti

on

B
oW

SVM 0.979 0.965 0.994 0.997 1.000 0.994 0.900 0.899 0.886
DT 0.975 0.986 0.970 0.996 0.992 1.000 0.836 0.845 0.829

DNN 0.987 0.998 0.980 1.000 1.000 1.000 0.965 0.964 1.000
T

F-
ID

F SVM 0.934 0.952 0.914 0.991 0.990 0.992 0.875 0.889 0.838
DT 0.973 0.982 0.964 0.995 0.996 0.998 0.829 0.858 0.831

DNN 0.982 0.994 0.970 0.997 1.000 0.998 0.946 0.975 0.920

W
2V

Su
m SVM 0.936 0.954 0.916 0.990 0.988 0.992 0.831 0.828 0.826

DT 0.920 0.920 0.920 0.988 0.992 0.992 0.798 0.791 0.810
DNN 0.973 0.996 0.950 0.980 1.000 0.992 0.770 0.919 0.962

W
2V

A
vg SVM 0.936 0.950 0.948 0.990 0.988 0.992 0.842 0.834 0.826

DT 0.915 0.912 0.920 0.988 0.984 0.992 0.809 0.791 0.773
DNN 0.995 1.000 0.992 1.000 1.000 1.000 0.885 1.000 0.784

Model
RTF VBA

Acc. Prec. Rec. Acc. Prec. Rec.

V
ec

to
ri

za
ti

on

B
oW

SVM 0.998 0.998 0.998 0.996 0.996 0.996
DT 0.997 0.998 0.996 0.991 0.992 0.992

DNN 0.998 1.000 1.000 1.000 1.000 1.000

T
F-

ID
F SVM 0.991 0.990 0.992 0.985 0.974 0.996

DT 0.996 0.996 0.996 0.984 0.984 0.984
DNN 0.993 1.000 0.992 0.993 1.000 0.992

W
2V

Su
m SVM 0.966 0.972 0.960 0.982 0.984 0.980

DT 0.966 0.970 0.974 0.979 0.973 0.986
DNN 0.952 0.952 0.958 0.924 1.000 0.968

W
2V

A
vg SVM 0.955 0.976 0.984 0.990 0.990 0.990

DT 0.974 0.966 0.960 0.987 0.980 0.998
DNN 0.985 0.990 0.982 0.996 0.996 0.996

5. Conclusions and Further Studies

In this paper, we proposed a framework that effectively detects malicious documents
by using only plaintext features of electronic documents via text analysis techniques.
The proposed framework extracts only human-readable plaintext features from a given
document, excluding executable binary, and applies it to classification methods to determine
whether it is malicious. To this end, we used three feature extraction strategies and three
classification methods in this paper. In addition, we verified the effectiveness of our
proposed framework through a series of experiments, which showed that it achieved more
than 98% accuracy in detecting malicious documents thanks to the appropriate combination
of a feature extraction strategy and a classification method.

As further studies, instead of simply using plaintext features, we improved detection
performance by combining our framework with an existing signature-based detection
technique for executable code. Adopting the ensemble methods [52,53] could also improve
the accuracy of our proposed framework even further. In addition, we also plan to consider
and exploit the order of words to obtain more accurate classification.

Appl. Sci. 2022, 12, 4088 11 of 13

Another future study is to address real-world data imbalances where the number of
malicious documents is significantly lower than that of benign documents.

Author Contributions: Conceptualization, J.H.; data curation, D.J.; funding acquisition, S.-W.K.;
methodology, J.H.; project administration, J.H.; software, J.H. and D.J.; supervision, S.-W.K.; valida-
tion, J.H. and D.J.; visualization, J.H.; writing—original draft, J.H. and D.J.; writing—review and
editing, S.-W.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work is the result of commissioned research project supported by the affiliated institute
of ETRI[2021-015]. This work was also supported by the National Research Foundation of Korea
(NRF) under Project Number 2020R1A2B5B03001960 and Institute of Information & Communications
Technology Planning & Evaluation (IITP) under Project Number 2020-0-01373.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ye, Y.; Li, T.; Adjeroh, D.; Iyengar, S.S. A Survey on Malware Detection Using Data Mining Techniques. ACM Comput. Surv. 2017,

50, 1–40. [CrossRef]
2. Or-Meir, O.; Nissim, N.; Elovici, Y.; Rokach, L. Dynamic Malware Analysis in the Modern Era—A State of the Art Survey. ACM

Comput. Surv. 2019, 52, 1–48. [CrossRef]
3. Sihwail, R.; Omar, K.; Ariffin, K.A.Z. A Survey on Malware Analysis Techniques: Static, Dynamic, Hybrid and Memory Analysis.

Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1662. [CrossRef]
4. Kim, E.; Park, S.J.; Choi, S.; Chae, D.K.; Kim, S.W. MANIAC: A man-machine collaborative system for classifying malware

author groups. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS), Virtual,
15–19 November 2021; pp. 2441–2443.

5. Pinhero, A.; Anupama, M.; Vinod, P.; Visaggio, C.A.; Aneesh, N.; Abhijith, S.; AnanthaKrishnan, S. Malware Detection Employed
by Visualization and Deep Neural Network. Comput. Secur. 2021, 105, 102247. [CrossRef]

6. Bott, E. Introducing Windows 10 for IT Professionals; Microsoft Press: Redmond, WA, USA, 2016.
7. Singh, J.; Singh, J. A Survey on Machine Learning-Based Malware Detection in Executable Files. J. Syst. Archit. 2021, 112, 101861.

[CrossRef]
8. Sudhakar; Kumar, S. An Emerging Threat Fileless Malware: A Survey and Research Challenges. Cybersecurity 2020, 3, 1–12.

[CrossRef]
9. Mimura, M.; Tajiri, Y. Static Detection of Malicious PowerShell Based on Word Embeddings. Internet Things 2021, 15, 100404.

[CrossRef]
10. Afreen, A.; Aslam, M.; Ahmed, S. Analysis of fileless malware and its evasive behavior. In Proceedings of the 2020 International

Conference on Cyber Warfare and Security (ICCWS), Islamabad, Pakistan, 20–21 October 2020; pp. 1–8.
11. Mansfield-Devine, S. Fileless Attacks: Compromising Targets without Malware. Netw. Secur. 2017, 2017, 7–11. [CrossRef]
12. Smutz, C.; Stavrou, A. Malicious PDF detection using metadata and structural features. In Proceedings of the 28th Annual

Computer Security Applications Conference (ACSAC), Orlando, FL, USA, 3–7 December 2012; pp. 239–248.
13. Ye, Y.; Wang, D.; Li, T.; Ye, D. IMDS: Intelligent malware detection system. In Proceedings of the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (SIGKDD), San Jose, CA, USA, 12–15 August 2007; pp. 1043–1047.
14. Hou, Y.T.; Chang, Y.; Chen, T.; Laih, C.S.; Chen, C.M. Malicious Web Content Detection by Machine Learning. Expert Syst. Appl.

2010, 37, 55–60. [CrossRef]
15. Saad, G.; Raggi, M.A. Attribution is in the object: Using RTF object dimensions to track APT phishing weaponizers. Virus Bull.

2020, 12, 1–2.
16. Yadav, N.; Panda, S.P. Feature selection for email phishing detection using machine learning. In Proceedings of the International

Conference on Innovative Computing and Communications (ICICC), New Delhi, India, 19–20 February 2022; pp. 365–378.
17. Yang, S.; Chen, W.; Li, S.; Xu, Q. Approach using transforming structural data into image for detection of malicious MS-DOC files

based on deep learning models. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), Lanzhou, China, 18–21 November 2019; pp. 28–32.

18. Tzermias, Z.; Sykiotakis, G.; Polychronakis, M.; Markatos, E.P. Combining static and dynamic analysis for the detection of
malicious documents. In Proceedings of the Fourth European Workshop on System Security (EUROSEC), Salzburg, Austria,
10 April 2011; pp. 1–6.

19. Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text Classification Algorithms: A Survey.
Information 2019, 10, 150. [CrossRef]

20. Kowsari, K.; Brown, D.E.; Heidarysafa, M.; Meimandi, K.J.; Gerber, M.S.; Barnes, L.E. Hdltex: Hierarchical deep learning for text
classification. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA),
Cancun, Mexico, 18–21 December 2017; pp. 364–371.

http://dx.doi.org/10.1145/3073559
http://dx.doi.org/10.1145/3329786
http://dx.doi.org/10.18517/ijaseit.8.4-2.6827
http://dx.doi.org/10.1016/j.cose.2021.102247
http://dx.doi.org/10.1016/j.sysarc.2020.101861
http://dx.doi.org/10.1186/s42400-019-0043-x
http://dx.doi.org/10.1016/j.iot.2021.100404
http://dx.doi.org/10.1016/S1353-4858(17)30037-5
http://dx.doi.org/10.1016/j.eswa.2009.05.023
http://dx.doi.org/10.3390/info10040150

Appl. Sci. 2022, 12, 4088 12 of 13

21. Kowsari, K.; Heidarysafa, M.; Brown, D.E.; Meimandi, K.J.; Barnes, L.E. Rmdl: Random multimodel deep learning for
classification. In Proceedings of the 2nd International Conference on Information System and Data Mining (ICISDM), Lakeland,
FL, USA, 9–11 April 2018; pp. 19–28.

22. Aggarwal, C.C.; Zhai, C. A Survey of Text Classification Algorithms. In Mining Text Data; Springer: Berlin/Heidelberg, Germany,
2012; pp. 163–222.

23. Gupta, G.; Malhotra, S. Text Document Tokenization for Word Frequency Count Using Rapid Miner. Int. J. Comput. Appl. 2015,
975, 8887.

24. Verma, T.; Renu, R.; Gaur, D. Tokenization and Filtering Process in RapidMiner. Int. J. Appl. Inf. Syst. 2014, 7, 16–18. [CrossRef]
25. Friedl, J.E. Mastering Regular Expressions; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2006.
26. Pahwa, B.; Taruna, S.; Kasliwal, N. Sentiment Analysis-Strategy for Text Pre-Processing. Int. J. Comput. Appl. 2018, 180, 15–18.

[CrossRef]
27. Harris, Z.S. Distributional Structure. Word 1954, 10, 146–162. [CrossRef]
28. Salton, G.; Buckley, C. Term-Weighting Approaches in Automatic Text Retrieval. Inf. Process. Manag. 1988, 24, 513–523. [CrossRef]
29. Jones, K.S. A Statistical Interpretation of Term Specificity and Its Application in Retrieval. J. Doc. 1972, 28, 11–21. [CrossRef]
30. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the

International Conference on Learning Representations Workshop Track (ICLR Workshop), Scottsdale, AZ, USA, 2–4 May 2013;
pp. 1301–3781.

31. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA,
5–8 December 2013; pp. 3111–3119.

32. Goldberg, Y.; Levy, O. Word2vec explained: Deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv 2014,
arXiv:1402.3722.

33. Morgan, J.N.; Sonquist, J.A. Problems in the Analysis of Survey Data, and a Proposal. J. Am. Stat. Assoc. 1963, 58, 415–434.
[CrossRef]

34. Safavian, S.R.; Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Syst. Man Cybern. Syst. 1991,
21, 660–674. [CrossRef]

35. Magerman, D.M. Statistical decision-tree models for parsing. In Proceedings of the 33rd Annual Meeting of the Association for
Computational Linguistics (ACL), Cambridge, MA, USA, 26–30 June 1995; pp. 276–283.

36. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
37. De Mántaras, R.L. A Distance-Based Attribute Selection Measure for Decision Tree Induction. Mach. Learn. 1991, 6, 81–92.

[CrossRef]
38. Manevitz, L.M.; Yousef, M. One-Class SVMs for Document Classification. J. Mach. Learn. Res. 2001, 2, 139–154.
39. Han, E.H.S.; Karypis, G. Centroid-based document classification: Analysis and experimental results. In Proceedings of the

European Conference on Principles of Data Mining and Knowledge Discovery (PKDD), Lyon, France, 13–16 September 2000;
pp. 424–431.

40. Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

41. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
42. Virustotal. Available online: https://www.virustotal.com/ (accessed on 9 January 2019).
43. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the

14th International Joint Conference on Artificial Intelligence (IJCAI), Montreal, QC, Canada, 20–25 August 1995; Volume 2,
pp. 1137–1143.

44. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.

45. Brownlee, J. A Gentle Introduction to the Rectified Linear Unit (ReLU). 2019. Available online: https://machinelearningmastery.
com/rectified-linear-activation-function-for-deep-learning-neural-networks/ (accessed on 9 January 2019).

46. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

47. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.
Syst. Sci. 1997, 55, 119–139. [CrossRef]

48. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning (PMLR), Lille, France, 7–9 July 2015; pp. 448–456.

49. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

50. Yao, Y.; Rosasco, L.; Caponnetto, A. On Early Stopping in Gradient Descent Learning. Constr. Approx. 2007, 26, 289–315.
[CrossRef]

51. Powers, D. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. J. Mach. Learn.
Technol. 2011, 2, 37–63.

http://dx.doi.org/10.5120/ijais14-451139
http://dx.doi.org/10.5120/ijca2018916865
http://dx.doi.org/10.1080/00437956.1954.11659520
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1108/eb026526
http://dx.doi.org/10.1080/01621459.1963.10500855
http://dx.doi.org/10.1109/21.97458
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1023/A:1022694001379
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://www.virustotal.com/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1007/s00365-006-0663-2

Appl. Sci. 2022, 12, 4088 13 of 13

52. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
53. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the International Conference on

Machine Learning (ICML), Bari, Italy, 3–6 July 1996; Volume 96, pp. 148–156.

http://dx.doi.org/10.1007/BF00058655

	Introduction
	Malicious Code and Malicious Documents
	Malicious Document Classification
	Overview
	Electronic Documents
	HTML and XML
	EML
	RTF
	VBA

	Feature Extraction
	Preprocessing
	Tokenization
	Vectorization

	Model Construction
	Decision Tree
	SVM
	DNN

	Evaluation
	Experimental Setup
	Datasets
	Model Parameters in Classification
	Evaluation Metrics

	Results

	Conclusions and Further Studies
	References

