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Abstract: In the future of automated production processes, the manipulator must be more efficient to
complete certain tasks. Compared to single-arm robots, dual-arm robots have a larger workspace and
stronger load capacity. Coordinated motion planning of multi-arm robots is a problem that must be
solved in the process of robot development. This paper proposes an obstacle avoidance path planning
method for the dual-arm robot based on the goal probability bias and cost function in a rapidly-
exploring random tree algorithm (GA_RRT). The random tree grows to the goal point with a certain
probability. At the same time, the cost function is calculated when the random state is generated. The
point with the lowest cost is selected as the child node. This reduces the randomness and blindness of
the RRT algorithm in the expansion process. The detection algorithm of the bounding sphere is used
in the process of collision detection of two arms. The main arm conducts obstacle avoidance path
planning for static obstacles. The slave arm not only considers static obstacles, but also takes on the
role of the main arm at each moment as a dynamic obstacle for path planning. Finally, MATLAB is
used for algorithm simulation, which proves the effectiveness of the algorithm for obstacle avoidance
path planning problems for the dual-arm robot.

Keywords: dual-arm robot; improved RRT algorithm; path planning; autonomous obstacle avoidance

1. Introduction

With the development of science and industrial automation, robot technology has
been greatly developed in recent decades, and gradually applied in military, aerospace,
industry, medical, service, and other fields [1,2]. Single-arm industrial robots have achieved
notable development and application in China, widely replacing manual casting, welding,
palletizing, and other operations [3,4]. However, many complex operational tasks require
collaboration between the robotic arms. The dual-arm robot has a larger working space,
stronger load capacity, and obvious advantages in heavy lifting and assembly scenarios.
However, unlike a simple combination of two single-arm robots, a dual-arm robot has some
overlap in its workspace. The path planning of two arms should not only consider static
obstacles in space, but also consider the interference between the two arms. In the field
of dual-arm robotics, how to realize obstacle avoidance motion planning is always a hot
issue [5,6].

In the field of robot path planning, many path planning algorithms have been formed.
The traditional methods mainly include the artificial potential field algorithm [7–9], the A*
algorithm [10,11], and the RRT algorithm [12,13], etc. The methods based on computational
networks mainly include neural network algorithms [14,15] and bioinspired planning
algorithms [16,17]. Bioinspired planning algorithms mainly include the genetic algorithm,
ant colony optimization (ACO), and so on. The genetic algorithm is an intelligent bionic al-
gorithm based on natural selection and genetic mechanisms [18]. The ACO is an intelligent
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optimization search model established with reference to the foraging method of ant popu-
lations [19,20]. However, in the joint space of a manipulator with high degrees of freedom,
each movement of the arms will generate a high computational workload. Algorithms
based on computational networks have problems such as excessive computational load
and insufficient real-time performance in the field of dual-arm robot path planning.

Among the traditional path planning algorithms, the artificial potential field method
has the characteristics of simple implementation and good real-time performance, and has
been widely used. Nonetheless, once the resultant force is zero, that is, at the local potential
energy minimum point, the algorithm will fall into a deadlock state and stop searching [21].
In addition, the artificial potential field algorithm needs the sampling information of the
entire workspace to avoid local minima, which affects the dynamic obstacle avoidance of
the dual-arm robot.

The A* algorithm is a method for solving the shortest path in a known static road
network. This method is a search algorithm obtained by adding a heuristic function to the
Dijkstra algorithm [22]. It evaluates the nodes and guides the search process based on the
evaluation value. Latombe et al. applied a PRM (probabilistic road map) to multi-robot
path planning, but the increase in degrees of freedom and obstacles reduced the speed of
the method [23].

In the field of multi-axis robot planning, due to the constraints of complex environ-
ments, most search methods are based on random sampling. Among the path planning
methods used in the past few decades, the RRT algorithm, based on random search strategy,
is suitable for path planning in high-dimensional space, and has been widely used in
the path planning of robots [24–26]. The algorithm avoids modeling the entire space by
detecting collisions at sample points in the state space. Therefore, it can effectively solve
path planning problems with complex constraints in high-dimensional space, and has the
advantages of probabilistic completeness and perfect scalability.

RRT is a fast search algorithm proposed by LaValle [27]. However, it is a random
search algorithm, and the search path may not be in the direction of the target, therefore
the convergence speed is relatively slow. In order to improve the target orientation of the
RRT algorithm, Chris Urmson et al. [28] proposed a P probability RRT algorithm based
on goal bias strategy. Li et al. [29] proposed a variable step size trunk fast exploration
random tree (VT-RRT) algorithm. By transforming the search space of random nodes in
the RRT algorithm and adaptively adjusting the step size according to the target position,
the search efficiency is effectively improved, and the path planning time is reduced. Jiang
Hong et al. [30] proposed a new node expansion method that is biased towards the target
point. The method combines the target point gravity, obstacle repulsion, and random
point gravity, and adds an adaptive function related to the obstacle distance. A pruning
optimization method is proposed to optimize the path length. Lei Shao et al. [31] used
an ant colony algorithm to optimize RRT. Experiments show that the combination of an
ant colony algorithm and RRT algorithm effectively reduces the number of nodes and
the average computing time. Kun Wei [32] proposed a dynamic path planning method
for robot autonomous obstacle avoidance based on an improved RRT algorithm, namely
smooth RRT (S-RRT). This method takes the directional node as the goal, which greatly
improves the sampling speed and efficiency of RRT.

In the field of path planning for dual-arm robots, Andreas [33] proposed a dual-arm
path planning method based on closed-chain kinematics to meet the motion constraints of
the manipulator. Kim [34] proposed a dimension reduction RRT method, which reduced
the dimension of high-dimensional path planning space according to the task requirements
of the dual-arm robot. To ensure that the RRT algorithm has higher efficiency, Li yang [35]
proposed a cooperative path planning method for a dual-arm robot based on gravity
adaptive step length RRT. The simulation results show that the gravity adaptive step
size RRT method can effectively constrain the step size in the workspace to ensure the
effectiveness of the collision detection algorithm.
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In this paper, the GA_RRT path planning algorithm is proposed based on the tradi-
tional RRT algorithm by introducing the goal probability bias strategy and A* cost function.
In addition, two manipulators use the bounding sphere collision detection method. The
main arm considers static obstacles, and the slave arm considers static obstacles and dy-
namic main arm obstacles. Finally, MATLAB software is used to simulate the obstacle
avoidance path planning for the dual-arm robot. It is finally proved that the algorithm is
effective and superior for the path planning of dual-arm robot.

2. Model Building

In this paper, the robot platform composed of two UR5 robotic arms is taken as an
example. It mainly includes one base and two 6-DOF manipulators. According to the DH
modeling method, we construct the dual-arm robot model, as shown in Figure 1. The joint
diagram of the main manipulator is shown in Figure 2. Using the parameters of the robotic
arm and DH method, we obtain the DH parameters in Table 1. The joint diagram of the
slave manipulator, and the joint diagram of the main manipulator, are mirror-symmetric
with the robot body. For example, the DH parameters α and θ of the master manipulator
are opposite to those of the slave manipulator.
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Figure 2. Coordinate system of the main manipulator joint.
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Table 1. DH parameters of the main robot arm.

Joint Number α a θ d

1 90 0 θ1 89.2
2 0 −425 θ2 0
3 0 −392 θ3 0
4 90 0 θ4 109.3
5 −90 0 θ5 94.75
6 0 0 θ6 82.5

The homogeneous coordinate transformation matrix of a six-axis manipulator with
this parameter is shown in Equation (1).

i−1
i T =


cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) αi cos(θi)
sin(θi) cos(θi) − cos(θi) sin(αi) αi sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (1)

The transformation matrix of all adjacent coordinate systems can be obtained by substitut-
ing DH parameters. The transformation matrix relative to the base coordinate system is shown
in Equation (2).

T = 0
1T1

2T2
3T3

4T4
5T5

6T (2)

Finally, the dual-arm manipulator needs to be unified into the base coordinate system
using Equation (3).

S = S0T (3)

3. Algorithm Improvement
3.1. Basic RRT

RRT constructs a random tree through random sampling. In the space with obsta-
cles, the algorithm starts to explore from the initial node, Xinit. This process is shown in
Figure 3. Firstly, the random point, Xrand, is generated. In all the added path nodes of the
tree [Xinit, X1, X2, X3, Xnearest], the node Xnearest, which is nearest to Xrand, is selected. Taking
Xnearest as the root node, a fixed step R is added to the direction of Xrand to obtain Xnew. The
collision detection algorithm is used to detect whether the path between Xnearest and Xrand
is feasible. If there is no collision, Xnew is added to the random tree, T. Alternatively, if there
is a collision, Xrand will be regenerated. Repeat the whole process until the distance between
the latest node and Xgoal is less than the step value, and there are no obstacles between them;
at this point it is considered that the algorithm has converged. When the planning algorithm
converges, we start from Xgoal and trace back along its parent node to find an effective path
between the start point and the end point.

The process of the RRT algorithm is shown in Algorithm 1.

Algorithm 1: RRT algorithm

1: T = init Tree(); // Initialize the random tree
2: R = init R(); // Initialize the step size
3: T[0] = Node(Xinit);
4: for i = 1 to N:
5: Xrand= Random sampling(); // Random sampling
6: Xnearest= min the distance (Xrand)Nodetree); // Find the nearest node
7: Xnew = extend (Xnearest, Xrand, R); // Expand towards random points
8: if not obstacle(Xnearest, Xnew):
9: T[i] = add Node(Xnew); // Add a new node to the tree
10: end if
11: end for
12: return T
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3.2. Path Planning of Dual-Arm Based on GA_RRT

The disadvantage of the traditional RRT algorithm is that it is a random exploration of
the whole space, and does not consider the path cost. This paper provides some knowledge
of goal probability bias and path cost.

Some principles of the goal probability bias and A* cost function are mainly introduced
in this section. Due to the computational complexity of collision detection for dual-arm
robots, collision detection is mainly performed using the method of the bounding sphere.

3.2.1. The Goal Probability Bias

The traditional RRT algorithm is a random search of space, which ensures the effec-
tiveness of the RRT algorithm. However, excessive blind search reduces the convergence
speed and consumes a large amount of computation power. Therefore, we adopt a goal
probability bias strategy. This method sets a parameter, Pa, in sampling judgment. Before
each extension, a random value, Prand, (between point 0, 1) is randomly generated. When
0 < Prand < Pa, the random tree grows toward the target point, making the random tree
expansion more objective. When Pa < Prand < 1, Xrand points are generated randomly.

For the dual-arm manipulator environment, when the goal point is taken as a random
point with probability Pa, we need to read the real-time position of the manipulator, and
detect whether there are static obstacles and dynamic obstacles of the manipulator under
the path. When there are obstacles, the cost of expansion is infinite. We abandon the
random point and restart the random process.

3.2.2. A* Cost Function

Although the probability-biased RRT algorithm greatly shortens the search time,
there are still many redundant random points. Therefore, this paper combines the goal
probability bias RRT algorithm with the A* search algorithm. The cost function was used
to search for the best sampling point, so as to reduce the level of redundant computing
and optimize the path. We consider the forward and backward cost of the current node in
the RRT algorithm. The distance from the initial point, Xinit, to the selected node is called
forward cost, which can also be called heuristic function H(i). The distance between Xselect
and Xgoal is called backward cost B(i). The cost function of the current node is represented
by F(i), shown in Equation (4).

F(i) = H(i) + B(i)
B(i) = ‖Xgoal − Xrand(i)‖
H(i) = ‖Xrand − Xinit(i)‖

(4)
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After calculating the random node, select the random point with the smallest cost
function to join the random tree list. Repeat the calculation process until extended to the
target node.

We need to add two additional data groups. One is the optional random point data
group, and the other is the cost function data group corresponding to the optional random
point. Each time we expand the random tree, multiple random points, Xrand, are generated
and put into the optional random point group. Next, the cost function is calculated for the
optional random point group. According to the cost function data group, the minimum
cost node is taken.

3.2.3. Collision Detection of Dual-Arm Robots

In order to simplify the calculation of the 6-DOF manipulator, the method of the
bounding sphere is used for obstacle avoidance detection. It is the smallest sphere that
surrounds three-dimensional objects. In order to reduce the complex calculation of collision
detection during the movement of the arms, this method is selected in this paper. Its
advantages are convenient calculation, simple structure, and it is not affected by spin. This
algorithm has better security while generating partial redundant spaces. When considering
whether there is a collision between the manipulator and the obstacle, or a collision between
the main manipulator and the slave manipulator, it is only necessary to consider the distance
and radius of the object center.

The base point of the main manipulator is denoted as O10, and the center points of
the six joints are denoted as {O11, O12, O13, O14, O15, O16}. Then, the center points of the
connecting rod are denoted as {A1, A2, A3, A4, A5, A6}. These values are determined by
the parameters of the manipulator body. Taking the joint bounding sphere as an example,
the joint bounding sphere can be expressed as:

R =
{
(x, y, z)

∣∣∣(x− oijx)
2 + (y− oijy)

2 + (z− oijz)
2 < r2

}
(5)

The radius of the joint bounding sphere for the main manipulator is set as {R11, R12, R13,
R14, R15, R16}, and the bounding sphere radius of the connecting rod is set as {Ra1, Ra2, Ra3,
Ra4, Ra5, Ra6}. The slave arm parameters are represented by O2i, Bi, R2i, Rbi. The radius
can be calculated using Equation (6)

Rij =
1
2

√
(xijmax − xijmin)

2 + (yijmax − yijmin)
2 + (zijmax − zijmin)

2 (6)

where xijmax, xijmin, yijmax, yijmin, zijmax, zijmax, respectively, represent the maximum and
minimum values of the object projected on the XYZ coordinate axes. Bounding sphere
model of the dual-arm robot is shown in Figure 4.

The conditions for collision detection of an enclosing ball are shown in Equations (5)–(7).

1. No collision between each connecting rod and the joint in the main manipulator:{
‖O1l −O1j‖ < (R1l + R1j)
‖O1i − Aj‖ < (R1i + Raj)

, i 6= j, i = 1, 2, . . . , 6, j = 1, 2, . . . , 6 (7)

2. No collision between each connecting rod and the joint in the slave manipulator:{
‖O2i −O2j‖ < (R2i + R2j)
‖O2i − Bj‖ < (R2i + Rbj)

, i 6= j, i = 1, 2, . . . , 6, j = 1, 2, . . . , 6 (8)

3. No collision between the links of the main manipulator and the links of the
slave manipulator:
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‖O1i −O2j‖ < (R1i + R2j)
‖O1i − Bj‖ < (R1i + Rbj)
‖Ai −O2j‖ < (Rai + R2j)
‖Ai − Bj‖ < (Rai + Rbj)

, i = 1, 2, . . . , 6, j = 1, 2, . . . , 6 (9)

The static obstacle collision detection in the environment mainly calculates the distance,
D, from the center of the manipulator to the center of the obstacle ball. The collision is
judged by comparing the distance, D, with the sum of the radius of the enclosing ball.
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3.2.4. Overall Process of GA_RRT

The GA_RRT algorithm combines the probabilistic bias method and A* algorithm with
RRT. The process of the algorithm is shown in Algorithm 2.

Algorithm 2: GA_RRT algorithm

1: T = init Tree(); // Initialize the random tree
2: R = init R(); // Initialize the step size
3: T[0] = Node(Xinit);
4: for i = 1 to N:
5: for j = 1 to M: // M random states are generated, recommended value 4
6: if Prand < Pa:
7: Xdirection = Xgoal ;// Select random points as target points
8: else:
9: Xdirection = Random sampling(); // Random sampling
10: Xnearest = min the distance Xdirection, Nodetree);
10: Xselect = extend (Xnearest, Xdirection, R); // Expand
11: Xpath(j) = add Xselect // Add random states to cost function group
12: end for
13: F(j) = the distance(Xpath(j), Xinit) + the distance(Xpath(j), Xgoal); // cost function
14: Xnew = min F(j); // The minimum cost node is taken in tree
15: if not obstacle(Xnearest, Xnew):
16: T[i] = add Node(Xnew); // Add new nodes
17: end if
18: end for
19: return T
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The overall flow of GA_RRT algorithm is shown in Figure 5. First, the main flow of
the algorithm is used to perform random sampling. Then, the target point is expanded as a
direction point with a probability of Pa, and a random point is generated with a probability
of 1 − Pa for expansion. After randomly generating multiple random points for expansion,
the algorithm calculates the A* cost function and selects the node with the smallest cost
function for the next collision detection. If it passes the detection, the node is added to the
random tree. Loop this process until you are near the target point.
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4. Simulation
4.1. Obstacle Avoidance Path Planning for Static Plane

In order to analyze the effectiveness of the GA_RRT algorithm for the path planning
problem, this paper compares with the traditional RRT algorithm and the RRT algorithm
based on goal bias probability (G_RRT) in two different scenarios. The hardware platform
is Intel(R) Core (TM) i7-10700f CPU with 16GB of memory. The simulation experiment is
built using MATLAB software.

The simulation mainly adopts two common methods to verify the validity of the path
planning algorithm. Scenario A is shown in Figure 6, the initial point is 1, 1 and the target
point is 750,750. As can be seen in Figure 6a, the RRT algorithm explores the entire space,
while the G_RRT algorithm explores the target point with a probability of 0.5, presented
in Figure 6b. This greatly reduces the number of nodes for spatial search. The GA_RRT
algorithm performs node pruning by calculating the cost function while exploring the goal
point. This further effectively reduces the number of tree node branches and speeds up the
search efficiency.
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In the experiment, since the paths generated by the RRT algorithm have high random-
ness, the number of nodes and time of each path may be quite different. Therefore, this
paper conducts ten experiments for each algorithm, and takes the average value as the final
data. The path data for Scenario A are shown in Table 2.

Table 2. The average experimental data for Scenario A.

RRT G_RRT GA_RRT

Total number of nodes 256 105 49

Path length 1539 1360 1373

Average time/s 8.35 4.5 3.38

It is calculated that the average number of nodes explored by the G_RRT algorithm
is 58.9% less than that of the RRT algorithm. The GA_RRT algorithm is further reduced
by 51.3% on the basis of the G_RRT algorithm. Due to the addition of the cost function,
the path length is also optimized. Compared with the RRT algorithm, the GA_RRT path
length is optimized by 10.7%. Due to the reduction in node redundancy, the time cost
of the GA_RRT algorithm is reduced by 59.5% in this scenario. Compared to the G_RRT
algorithm, it is reduced by 24.8%.

In scenario B, the target point is directly occluded, as shown in Figure 7. The initial
point is 400,400 and the target point is 750,750.
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The average experimental data for Scenario B is shown in Table 3.
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Table 3. The average experimental data for Scenario B.

RRT G_RRT GA_RRT

Total number of nodes 348 129 75

Path length 683.53 465.42 459.3

Average time/s 13.1 5.5 3.6

In scenario B, the starting point and the target point are directly blocked. Theoretically,
there is no significant difference among the three algorithms in the U-shaped obstacle
space. However, outside the obstacle space, the GA_RRT algorithm should have better
performance. By comparing the data in Table 3, we can draw similar conclusions.

The total number of nodes explored by G_RRT is 62.9% lower than that of the RRT
algorithm. The GA_RRT algorithm is further reduced by 41.8% on the basis of the G_RRT
algorithm. Compared to the RRT algorithm, the GA_RRT path length is optimized by
32.8%, and the time cost is reduced by 72.5%.

4.2. Obstacle Avoidance Path Planning for Dynamic Dual-Arm Robots

Through the above path planning simulations in conventional scenarios, the effective-
ness of the GA_RRT algorithm in path searching and reducing redundancy is successfully
verified. Finally, in order to verify the effectiveness of the algorithm for the obstacle
avoidance path planning of the dual-arm robot, this paper establishes a three-dimensional
obstacle environment through the robot simulation toolbox.

The starting joint angle and target joint angle of the main arm are set to 45, −15, −15,
0, 0, 0 and 5, 45, 5, 15, −5, 0. The starting joint angle and target joint angle of the slave arm
are set to 35, 30, 20, 0, 0, 0 and 0, −45, 30, −30, −15, 0, respectively. Due to the bounding
sphere collision detection model, the obstacles will eventually be equivalent to a sphere.
Therefore, this paper sets five spherical static obstacles of different sizes in the environment.
The center and radius of each obstacle are shown in Equation (10).

Osphere0 =


−0.55 −0.25 0.15
−0.5 0.3 −0.5
−0.45 −0.2 0.15
−0.3 0.3 0.15
−0.4 0.25 0.15

; R =
[

0.05 0.04 0.03 0.05 0.06
]

(10)

The obstacle is placed on the path of the dual-arm robot moving towards the target
point. The initial scene is shown in Figure 8a.

As shown in Figure 8b,c, if the robot arm does not plan the obstacle avoidance path,
the slave robot arm will collide with the static obstacle and the master arm link during
the movement. The final state of the dual-arm robot reaching the target point is shown in
Figure 8d.

Keeping the surrounding environment of robot arm unchanged, the obstacle avoid-
ance path planning algorithm of the dual-arm robot based on GA_RRT is added into
the simulation.

Figure 9a shows the exploration process of the main arm joint angle. In order to
visualize the six-dimensional exploration process, it is divided into the exploration process
of the first three joints and the exploration process of the last three joints.

The angle exploration process is shown in Figure 9. The final result of the exploration
is shown in Figure 10. From Figure 10, we can clearly observe the change process of the
joint angle. The starting joint angle and target joint angle of the main arm are 45, −15, −15,
0, 0, 0 and 5, 45, 5, 15, −5, 0, respectively.
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Similarly, Figure 11 shows the path exploration process for the slave arm. The starting
joint angle and target joint angle of the slave arm are 35, 30, 20, 0, 0, 0 and 0, −45, 30, −30,
−15, 0, respectively. We can draw similar conclusions from the search results in Figure 12.
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arm; (b) the posterior three joint angles of the main arm.

Appl. Sci. 2022, 11, x FOR PEER REVIEW 13 of 18 
 

Figure 9a shows the exploration process of the main arm joint angle. In order to vis-
ualize the six-dimensional exploration process, it is divided into the exploration process 
of the first three joints and the exploration process of the last three joints. 

_ (1,2,3)initθ

_ (1,2,3)goalθ

 

_ (4,5,6)initθ
_ (4,5,6)goalθ

 
(a) (b) 

Figure 9. Exploration process of the main arm joint angle: (a) the first three joint angles of the main 
arm; (b) the posterior three joint angles of the main arm.  

The angle exploration process is shown in Figure 9. The final result of the exploration 
is shown in Figure 10. From Figure 10, we can clearly observe the change process of the 
joint angle. The starting joint angle and target joint angle of the main arm are 45, −15, −15, 
0, 0, 0 and 5, 45, 5, 15, −5, 0, respectively.  

 
Figure 10. The final result of the path planning for the main arm.  

Similarly, Figure 11 shows the path exploration process for the slave arm. The start-
ing joint angle and target joint angle of the slave arm are 35, 30, 20, 0, 0, 0 and 0, −45, 30, 
−30, −15, 0, respectively. We can draw similar conclusions from the search results in Figure 
12.  

0 2 4 6 8 10 12
N

-20

-10

0

10

20

30

40

50

60

-20

-10

0

10

20

30

40

50

60

θ1
θ2
θ3
θ4
θ5
θ6

Figure 10. The final result of the path planning for the main arm.

Appl. Sci. 2022, 11, x FOR PEER REVIEW 14 of 18 
 

_ (1,2,3)goalθ

_ (1,2,3)initθ

 

_ (4,5,6)goalθ

_ (4,5,6)initθ

 
(a) (b) 

Figure 11. Exploration process of the salve arm: (a) the first three joint angles of the slave arm; (b) 
the posterior three joint angles of the slave arm.  

 

Figure 12. The final result of the path planning for the slave arm.  

The simulation realizes the search process and results of a total of 12 joint angles of 
the main arms and slave arms. It can be seen from the search process that the joint angle 
search starts from the green starting point. At the beginning, because of the obstacles, the 
random points directly extended to the target point were not able to pass the obstacle 
detection. The algorithm explores the joint angle to avoid obstacles. After avoiding obsta-
cles, all random nodes extended to the target point are quickly selected by the cost func-
tion, and the search efficiency is greatly improved. 

To analyze the effectiveness of the GA_RRT algorithm for obstacle avoidance, the 
visualization results are presented in Figures 13 and 14. 

in
it

go
al
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posterior three joint angles of the slave arm.
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Figure 12. The final result of the path planning for the slave arm.

The simulation realizes the search process and results of a total of 12 joint angles of the
main arms and slave arms. It can be seen from the search process that the joint angle search
starts from the green starting point. At the beginning, because of the obstacles, the random
points directly extended to the target point were not able to pass the obstacle detection. The
algorithm explores the joint angle to avoid obstacles. After avoiding obstacles, all random
nodes extended to the target point are quickly selected by the cost function, and the search
efficiency is greatly improved.

To analyze the effectiveness of the GA_RRT algorithm for obstacle avoidance, the
visualization results are presented in Figures 13 and 14.
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Figure 13. Static obstacle avoidance.

For static obstacles in the environment, as shown in Figure 13, the trajectory of the
main arm is far away from the static obstacles. This can also be seen in Figure 14a. For the
slave arm, the arm successfully avoids static obstacles, compared to Figure 8b. In addition,
through the comparison of Figures 14a and 8c, it can be seen that the slave arm realizes the
static obstacle avoidance and completes the dynamic obstacle avoidance of the main arm.
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After ten groups of angle planning experiments, the average planning time of the
robotic arms is 2.04 s. Due to the complexity of transplanting different algorithms into
the simulation of dual-arm robots, we here present a comparison by referencing the ex-
perimental data of algorithms that are similar [32]. The comparison results are shown in
Table 4.

Table 4. Calculation time.

RRT Bi-RRT S-RRT GA_RRT

Average Planning Time/s 9.86 5.23 2.42 2.04

Compared to the traditional RRT algorithm, the search time of the GA_RRT algorithm
is reduced by about 70% for the obstacle avoidance path planning of the dual-arm robot.
Although the simulation environment is different, it can be seen that the algorithm is
effective at accelerating the search efficiency.

Finally, in order to fully verify the effectiveness of the algorithm for dual-arm obstacle
avoidance path planning, this paper changes the position and radius of the obstacle sphere,
and records the experimental results of the GA_RRT algorithm several times. The center
and radius of each obstacle in scenarios 1 and 2 are shown in Equations (11) and (12).

Osphere1 =


−0.55 −0.2 0.15
−0.45 −0.2 0.15
−0.35 −0.2 0.15
−0.35 0.2 0.15
−0.35 0.2 −0.15

; R = [0 .05, 0.05, 0.05, 0.05, 0 .05] (11)
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Osphere2 =


−0.55 −0.2 0.15
−0.45 0.2 0.15
−0.3 0.3 0.15
−0.4 −0.25 0.15
−0.5 0.3 −0.05

; R = [0 .08, 0.1, 0.06, 0.06, 0 .06] (12)

The path planning algorithm is tested ten times in each scenario, and the final average
values of the tests are shown in Table 5.

Table 5. Simulation results in different obstacle environments.

Robotic Arm Path Length Average Planning
Time/s

Successful
Times

Scenario 0
The main arm 142.5 1.73 10
The slave arm 195.2 2.35 9

Scenario 1
The main arm 154.0 1.87 10
The slave arm 234.3 2.90 10

Scenario 2
The main arm 153.9 1.67 10
The slave arm 163.8 2.23 10

From the analysis of successful times, we can find that the algorithm realizes obstacle
avoidance path planning for the dual-arm robot in various scenarios. Compared with the
slave arm, the master arm only considers spherical obstacles, and its path planning will be
faster. This can also be seen from the experimental data. The slave arm needs to detect the
motion state of the main arm for dynamic obstacle avoidance. In each scenario of ten tests,
path planning time will be different. However, the final average in various scenarios is
about 2s. This fully demonstrates that the algorithm is effective, and its average efficiency
is reliable in the obstacle avoidance scenario of the dual-arm robot.

5. Conclusions

Based on the traditional RRT algorithm, this paper introduces the goal probability
bias and A* cost function algorithm. The search time and efficiency of the RRT algorithm
is greatly optimized. In addition, the generated paths are also locally optimized. The
effectiveness of the GA_RRT algorithm is first verified by the simulation of planar obstacle
avoidance path planning. Furthermore, the algorithm is applied to obstacle avoidance path
planning simulation of a dual-arm robot. In the process of obstacle avoidance, not only
static obstacles are considered, but also the influence of dynamic manipulator obstacles in
real time. Finally, the simulation results show that the algorithm can realize the cooperative
obstacle avoidance path planning of a dual-arm robot. In terms of search efficiency, it is
also superior to the traditional RRT algorithm.

As a future research task, the experimental verification process will first need to be im-
proved. In addition, the adaptive step size will be further used to improve the search efficiency
of the algorithm. The visual method is also considered to detect the dynamic obstacles in the
environment, so as to realize the dual-arm path planning in unstructured environments.
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