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Abstract: This study aims to update the existing SG PW laser system and improve the temporal
contrast and shape fidelity of a compressed pulse with a 150 fs level for multi-PW (5–10 PW).
The design of third-order dispersion (TOD) compensation via a birefringent crystal was studied
through numerical simulations and experiments. The dispersions introduced by the birefringent
crystal were calculated using the Jones matrix element by changing the in-plane rotation angle φ,
thickness d, incident angle θ, and temperature T, while also considering the transmission spectral
bandwidth. The group-velocity dispersion (GVD), TOD, and fourth-order dispersion (FOD) of the
existing SG PW laser system and its influence on the compressed pulse with different pulse durations
were analyzed. The results suggest that a TOD of 1.3 × 106 fs3 needs to compensate for the multi-
PW design. The compensation scheme is designed using a quartz crystal of d = 6.5 mm, θ = 90◦,
φ = 17◦, and T = 21 ◦C, corresponding to the thickness, inclination angle, in-plane rotation angle, and
temperature, respectively. Furthermore, we show a principle-proof experiment offline and measure
the GVD and TOD by the Wizzler, which is based on theoretical simulations. These results can be
applied to independently and continuously control the TOD of short-pulse laser systems.

Keywords: third-order dispersion compensation; birefringent crystal; SG PW laser system; temporal
contrast; shape fidelity; multi-PW laser

1. Introduction

Owing to the development of chirped pulse amplification (CPA) technology, high-
energy and short-pulse laser facilities have recently attracted considerable interest for
their physical applications [1–5]. Designing the stretcher and compressor and controlling
the dispersions to achieve the shortest pulse duration is an essential problem in CPA.
The group-velocity dispersion (GVD) caused by the transmission and amplifier mediums
can be compensated by stretcher or compressor adjustment in the laser system; however,
residual third-order dispersion (TOD) and fourth-order dispersion (FOD) are still important,
especially for shorter pulses, which can influence the intensity contrast and shape fidelity
of the compressed pulse. Therefore, many research groups have studied the control and
compensation of high-order dispersions by introducing different schemes [6–16].

As a significant pioneer devoted to high-power laser technology research in China,
the National Laboratory on High Power Laser and Physics (NLHPLP) has built many laser
facilities, formally named the ‘Shen Guang’ (SG) series facilities after 1986 [17]. Therefore,
the kilojoule-class Petawatt (PW) laser system is called the SG PW laser here. The SG PW
laser system [18] uses hybrid CPA technology combining OPCPA and Nd: glass CPA to
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achieve maximum energy of 1 kJ with a compressed pulse duration of approximately 1 ps,
and the focused intensity is up to 1020 W/cm2 with a diameter of 20.8 µm in 50% cycle,
which were achieved in 2016. The SG PW laser is generally used to heat and generate
energetic protons in various physical experiments, such as fast ignition, indirect drive
physics, laboratory astrophysics, and high energy density physics. Furthermore, to meet
the demand for further physical applications, the design of a multi-PW (5–10 PW) with
a pulse duration of 150 fs at 1053 nm has recently been approved, which is similar to
the aforementioned design [19–21] and can be updated from the existing SG PW laser
system. The amplified pulse, stretched by the Offner stretcher [22], is recompressed with a
four-grating compressor, which can cancel out the GVD introduced by the transmission and
amplifier materials in the system simultaneously. However, the residual TOD and FOD can
influence the intensity contrast and shape fidelity of the compressed pulse when the pulse
duration decreases and hence require compensation. The methods of compensating for
the TOD include object-image-grating self-tiling [6] and fiber [8–10,12,16], prism pair [13],
and acousto-optic programmable dispersion filter (AOPDF) [14,15], which are limited by
the damage threshold, apertures, and low transmission, and are mainly set in a position of
relatively low energy before amplification, leading to the lower energy of the input pulses.
On the other hand, the hybrid gratings scheme [7] and Gires–Tournois interferometer
(GTI) mirrors [11] can be used to compensate for the TOD with a large aperture but it
is difficult to process and is not convenient to adjust. Therefore, finding a method to
support high energy with a large aperture and convenient operation is required, especially
for the TOD compensation of a multi-PW design based on the existing SG PW laser
system. Birefringent crystals have been widely used to achieve gain-narrow compensation
in CPA amplifiers [23,24]; however, to the best of our knowledge, few applications and
considerations of birefringent crystals have been reported in detail for the introduced
spectral phase and dispersions, especially in the experiment. Therefore, we investigated
the design of TOD compensation for the SG PW laser system using a birefringent crystal.
The remainder of this paper is organized as follows.

First, the numerical model for the dispersions introduced by the birefringent crystal is
presented in Section 2. Second, the residual TOD and FOD for the existing SG PW laser
system for different pulse durations are calculated, and their influence on the contrast is
analyzed in Section 3.1. Third, in Section 3.2, the dispersion introduced by the birefringent
crystal is studied to vary the in-plane rotation angle φ, thickness d, incident angle θ, and
temperature T, while considering the transmission spectral bandwidth. Furthermore, a
scheme of 1.3 × 106 fs3 TOD compensation for the SG PW laser system is designed using
a quartz birefringent crystal with d = 6.5 mm, θ = 90◦, φ = 17◦, and T = 21 ◦C. Finally,
the dispersions of GVD and TOD introduced by the birefringent crystals are investigated
offline using a Wizzler for a proof-principle experiment, as described in Section 3.3.

2. Numerical Method

A schematic for when a birefringent plate is used in dispersion compensation, which
is similar to spectral modulation, is shown in Figure 1. θ is the angle between the incident
ray and the crystal surface, which denotes the inclination angle, and φ is the angle between
the crystal optical axis and the incident surface which denotes the in-plane rotation angle.
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Figure 1. Schematic of the dispersion compensation based on the birefringent plate. P1, P2: Polarizers;
HWP: Half-wave plate.
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The electric field of the pulsed laser after the polarizer P2 can be described by EOut =
EInm22, where m22 is the Jones matrix element of the birefringent plate [25,26], which can
be expressed as follows:

Mb =
(

1 − cos2 Φ sin2 θ
qn2

e

)

×


(

1 − sin2 θ
qn2

e

)
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(
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qn2
e

) 1
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e

) 1
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The thickness d is related to temperature according to

d(T) = d0[1 + α(T − T0)] (5)

A quartz birefringent crystal was used in this study. The expansion coefficient of quartz
was a = 13.3667 × 10−6 at 18 ◦C [27]. The refractive indices depend on both wavelength
and temperature. For quartz, the following empirical formula was used for the principal
refractive indices:

ni = [ti + si(λ − λ2i)](T0 − T) +
√

mi + m1iλ2/
(
λ2 − λ2

1i
)
− kiλ2 (6)

where the subscript i corresponds to o and e, for ordinary and extraordinary, respectively,
λ is the wavelength, T is the temperature, and ti, si, mi, and ki are parameters that are
evaluated from the literature [27].

The intensity and phase of the output field were obtained using IOut = EOutE∗
Out and

ϕ(ω)= tan−1[Im(EOut)/Re(EOut)]. The dispersions introduced by the birefringent plate
can then be described as

ϕ(ω) = ϕ0 + ϕ1(ω − ω0) +
1
2

ϕ2(ω − ω0)
2 +

1
6

ϕ3(ω − ω0)
3 + . . . (7)

where ω and ω0 are the laser and center frequencies, respectively. ϕ0 is the absolute phase,
ϕ1 is the group delay (GD), and ϕ2 and ϕ3 are GVD and TOD, respectively. The dispersion
of each order introduced by the crystal can be controlled by the thickness d, inclination
angle θ, in-plane rotation angle φ, and temperature T.

According to Equations (1)–(4), the center wavelength of transmission and dispersions
can be adjusted by a combination of length, angle, and temperature, which is a periodic
function and can be precisely controlled by tuning the temperature of the crystal, especially
when the length is fixed after processing.
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3. Results and Discussion
3.1. Residual TOD and FOD and Influence on the Multi-PW Design

As previously mentioned, in the process of chirped pulse amplification, the stretcher,
compressor, transmission materials, and amplifier media can introduce different magnitude
levels of GVD, TOD, and FOD. While the pulse can be compressed to the near Fourier
transform limit (FTL) after GVD is completely compensated, residual high-order disper-
sions are still present. As shown in Figure 2, the existing SG PW laser system [18] can
afford a compressed pulse duration of 1 ps with an energy level of 1 kJ and a bandwidth of
approximately 3 nm, which is mainly caused by the gain narrowing effect and system B
integral of 1.78. A multi-PW with a 150 fs level and energy of over 0.75 kJ can be achieved by
changing the oscillator to a pulse duration of 80 fs, updating the stretcher and compressor,
together with a bandwidth extension achieved by spectral shaping after OPCPA with an
energy of 1 J, which is similar to [28]. The bandwidth can be extended after compensation
for the gain-narrowing effect, which can also decrease the B integral to less than 1 and
improve the amplified pulse energy to over 0.75 kJ simultaneously. However, as the pulse
duration becomes shorter, the residual high-order dispersions of the TOD and FOD may
significantly influence the contrast and pulse shape.
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Figure 2. Block diagram of the existing SG PW laser system.

For the existing SG PW laser system, a 180 fs hyperbolic secant pulse shape centered
at 1053 nm from the oscillator is stretched to 3.3 ns by an eight-pass single-grating Offner
stretcher to suit the 6 ns pulse duration of the OPCPA pump. It is then amplified to 2 kJ
by the Nd:glass amplifier chain and finally compressed by a four-grating single-pass
compressor. In addition, the total length of the Nd:glass and BK7 lenses in the system
are approximately 3.35 m and 0.36 m [6]. The GVD can be adjusted using an adjustment
compressor set after the OPCPA, which can control the pulse duration from the FTL to 30 ps.

To confirm the criterion for high-order dispersion compensation, the residual TOD and
FOD for the multi-PW design are first analyzed, and then the influences of the dispersions
on the compressed pulse are illustrated. As can be seen in Figure 3, the absolute values of the
GVD, TOD, and FOD for pulse durations of 180 fs (Figure 3a–c) and 80 fs (Figure 3d–f) are
simulated using the Offner stretcher and compressor design [29–31] without considering the
dispersions of transmission materials and amplifier mediums, together with the differences
in dispersion between the stretcher and compressor. The pulse is stretched to 3.3 ns and
compressed to the FTL in the simulation. The stretcher affords a positive dispersion of
the GVD, and the compressor affords negative values. As illustrated in Figure 3, the GVD
introduced by the stretcher and compressor coincide and can be canceled at a central
wavelength of 1053 nm, but the residual TOD and FOD are 6 × 103 fs3 and −3.6 × 108 fs4

for a pulse duration of 180 fs, and 1.2× 102 fs3 and −8× 106 fs4 for a pulse duration of 80 fs.
These are mainly caused by the pulse with a longer duration according to a narrower
bandwidth, which demands a larger GVD to achieve the same stretched pulse duration
of 3.3 ns, and needs to pass through a longer optical path in the stretcher and compressor,
thereby introducing more aberrations for the TOD and FOD. The analysis dispersion
results are consistent with implementing a stretcher and compressor for the SG PW laser
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with a seed pulse duration of 180 fs. They can also provide a design basis for upgrading
to multi-PW.
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Figure 3. Absolute value of the GVD, TOD, and FOD for pulse durations of 180 fs and 80 fs, which
are stretched to 3.3 ns and compressed to FTL, together with the differences of dispersion between
stretcher and compressor. (a) The GVD and difference for the pulse duration of 180 fs; (b) the TOD
and difference for the pulse duration of 180 fs; (c) the FOD and difference for the pulse duration of
180 fs; (d–f) are similar as above for the pulse duration of 80 fs.

Compared with the pulse duration of 180 fs, the residual TOD and FOD are small in
the multi-PW design with a seed pulse duration of 80 fs. However, to compensate for the
dispersion caused by the transmission materials and amplifier mediums [6], in which the
GVD, TOD, and FOD are approximately 8.8 × 104 fs2, 1.54 × 105 fs3, and −1.69 × 105 fs4.
An adjustment compressor is used to compensate for the above GVD; however, this process
can introduce extra TOD and FOD simultaneously. The change in the distance for adjusting
the compressor gratings, GVD, TOD, and FOD for pulse durations of 180 fs (dotted line in
blue) and 80 fs (solid in black line) with adjustable pulse durations are shown in Figure 4a–d.
To achieve an FTL compressed pulse, the adjusted compressor needs to afford a GVD of
−8.8 × 104 fs2 and introduce an additional but the same TOD of 1.3 × 106 fs3 and FOD
of −3 × 107 fs4 simultaneously. After compensating for the GVD of the transmission
materials, the final TOD and FOD for the existing SG PW laser system are 1.3 × 106 fs3

and −3.9 × 108 fs4 for a pulse duration of 180 fs and 1.3 × 106 fs3 and −3.8 × 107 fs4 for
a pulse duration of 80 fs. The values agree with the implementation of pulse duration
controlled by the adjustment compressor in the SG PW laser and can provide a basis for
the multi-PW design.
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To illustrate the influence of the residual high-order dispersions of the TOD and FOD
on the contrast and pulse shapes, Figure 5a shows the intensity contrast for bandwidths of
3 nm, 5 nm, and 7 nm with the TOD of 1.3× 106 fs3 and FOD of −3.9× 108 fs4, according to
the gain narrowing effect and compressed FTL pulse durations of 388 fs, 233 fs, and 166 fs,
respectively. A comparison of the contrast with the compensation of TOD and the residual
FOD is shown in Figure 5b; the B integral is neglected in the simulation. Similarly, Figure 5c
shows the intensity contrast for bandwidths of 7 nm, 11 nm, and 15 nm, according to the
compressed FTL pulse durations of 388 fs, 105 fs, and 77 fs, respectively, and includes the
TOD of 1.3× 106 fs3 and FOD of −3.8× 107 fs4; only the residual FOD is shown in Figure 5d.
From the comparison results of Figure 5, we can see that the residual TOD and FOD had no
significant effect on the contrast for the existing SG PW laser with a bandwidth of 3 nm after
gain narrowing [18], but high-order dispersion should be considered if the pulse bandwidth
is broadened and compressed to the FTL. The simulated result for the bandwidth of 3 nm
can afford the measured contrast of 10−8, by which there is no additional TOD dispersion
adjustment in the SG PW laser. However, when the pulse bandwidth is broadened to
over 7 nm, and the duration is shorter than 150 fs in the multi-PW design, the TOD can
significantly distort the pulse shape and the pulse is no longer symmetric, which can cause
the peak power of the pulse to decrease. Therefore, the TOD must be compensated, but
the FOD is negligible. Furthermore, when the pulse duration is less than 100 fs, the FOD
should be considered to further improve the intensity contrast, which is consistent with the
results obtained in [32].
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Figure 5. (a) Intensity contrast for bandwidths of 3 nm, 5 nm, and 7 nm, which includes the TOD of
1.3 × 106 fs3 and FOD of −3.9 × 108 fs4; (b) the contrast only with the FOD, with other parameters
the same as in (a); (c) the contrast for bandwidths of 7 nm, 11 nm, and 15 nm including the TOD
of 1.3 × 106 fs3 and FOD of −3.8 × 107 fs4; (d) the contrast only considering the FOD, with other
parameters the same as in (c).

3.2. Design of TOD Compensation Using the Birefringent Plate

Here, we aim to compensate the TOD of 1.3× 106 fs3 for the multi-PW with a 150-fs level
design. As detailed in Figure 6a, we first analyze the variation of the maximum am-
plitude of TOD and free-spectral range (FSR) with the length of the birefringent plate
using Equations (1)–(7), where the parameters are θ = 90◦, φ = 17◦, and T = 21 ◦C. Similar
to the GTI, the maximum amplitude of the TOD increased, but the FSR decreased with
increasing plate length. Figure 6b shows the GVD and TOD change with φ, in which the
length of the plate is 6.5 mm, and the other parameters are the same as in Figure 6a. In
addition, the TOD can be adjusted from positive to negative with the scope of ±2 × 106 fs3,
which can compensate for the residual TOD of 1.3 × 106 fs3 for the multi-PW design when
φ is set to 17◦. Furthermore, the GVD is small and can be neglected. Additionally, the trans-
mission, GVD, and TOD curves changing with wavelength are also shown in Figure 6c,d,
respectively, when the birefringent plate is set to the compensation TOD of 1.3 × 106 fs3.
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As shown above, the dispersion scheme can support the bandwidth of approximately 7 nm
and the TOD of 1.3 × 106 fs3, which can be used to compensate for the demanded TOD for
the multi-PW design. In addition, similar to the results of crystal cascade increasing the
bandwidth [33], we observe from Figure 6 that the birefringent crystal can also be cascade
designed to afford larger bandwidth with the same TOD simultaneously in the dispersion
compensation. From the results, the residual TOD for multi-PW design can be compensated
by choosing the thickness and controlling the inclination angle, the in-plane angle, and the
temperature of the birefringent plate independently.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

Figure 6. (a) Maximum amplitude of TOD and FSR changing with the length of the birefringent 

plate; (b) The GVD and TOD change with ϕ, in which the length of the plate is 6.5 mm; (c) The 

transmission curve for TOD compensation; (d) The GVD and TOD curves changing with wave-

length for the TOD compensation parameters. 

3.3. Experiment 

Figure 7 shows the schematic diagram of the principle–proof experiment for TOD 

control using a quartz birefringent crystal, according to the arrangement in Figure 1. The 

spectral phase of short pulse is generally measured by commercial equipment of Fre-

quency-resolved optical gating or Wizzler. However, to measure the GVD and TOD di-

rectly with high precision, we used the Wizzler (Wizzler-1030) in the experiment. Consid-

ering the Wizzler needs the energy of several microjoules and a pulse duration of nearly 

FTL, the oscillator is not suitable anymore. Therefore, we used a laser source (Origami-

10XP) with a pulse duration of 400 fs (FTL = 280 fs), 100 kHz, and an energy of 30 µJ at 

1039 nm to satisfy the energy and pulse duration demand for the dispersion measurement. 

The light from the laser passes through the quartz birefringent crystal and polarizers of 

P1 and P2 using the reflecting mirrors M1 and M2 and is finally directed into the Wizzler. 

The energy of input Wizzler can be adjusted by half waveplate (HWP) and P1. It is worth 

noting that the laser has inherent GVD and TOD caused by a non-FTL compressed pulse 

and the seed of a fiber oscillator. To distinguish the GVD and TOD clearly in the experi-

ment, the quartz of length 11.98 mm was used with an environmental temperature of 25 

°C, the angle θ was set to 86° to reduce the effect of reflected light on the laser, and the 

angle ϕ can be varied in plane by a rotation adjustment mechanism. 
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(b) The GVD and TOD change with φ, in which the length of the plate is 6.5 mm; (c) The transmission
curve for TOD compensation; (d) The GVD and TOD curves changing with wavelength for the TOD
compensation parameters.

3.3. Experiment

Figure 7 shows the schematic diagram of the principle–proof experiment for TOD
control using a quartz birefringent crystal, according to the arrangement in Figure 1.
The spectral phase of short pulse is generally measured by commercial equipment of
Frequency-resolved optical gating or Wizzler. However, to measure the GVD and TOD
directly with high precision, we used the Wizzler (Wizzler-1030) in the experiment. Consid-
ering the Wizzler needs the energy of several microjoules and a pulse duration of nearly FTL,
the oscillator is not suitable anymore. Therefore, we used a laser source (Origami-10XP)
with a pulse duration of 400 fs (FTL = 280 fs), 100 kHz, and an energy of 30 µJ at 1039 nm to
satisfy the energy and pulse duration demand for the dispersion measurement. The light
from the laser passes through the quartz birefringent crystal and polarizers of P1 and P2
using the reflecting mirrors M1 and M2 and is finally directed into the Wizzler. The energy
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of input Wizzler can be adjusted by half waveplate (HWP) and P1. It is worth noting that
the laser has inherent GVD and TOD caused by a non-FTL compressed pulse and the seed
of a fiber oscillator. To distinguish the GVD and TOD clearly in the experiment, the quartz
of length 11.98 mm was used with an environmental temperature of 25 ◦C, the angle θ was
set to 86◦ to reduce the effect of reflected light on the laser, and the angle φ can be varied in
plane by a rotation adjustment mechanism.
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Figure 7. Schematic diagram of principle–proof experiment for dispersion control, which uses a
quartz birefringent crystal and measured by Wizzler; HWP is the half waveplate; M1 and M2 are
reflector mirrors; P1 and P2 are polarizers.

The changes in GVD and TOD with φ were measured with Wizzler, and the results
are shown in Figure 8a,b, in which the measured GVD and TOD introduced by the quartz
crystal are obtained using the difference between the measured values and the inherent
dispersion of the laser. The GVD and TOD periodically change with the angle φ, and the
non-symmetrical amplitudes of the peaks and valleys are caused by θ not being equal
to 90◦. To the best of our knowledge, the experimental results for the GVD and TOD
caused by birefringent crystals are first demonstrated here. The differences between the
experiments and simulations mainly caused the residual GVD of −6 × 104 fs2 and the
TOD of 5 × 106 fs3 from the laser, resulting in more deviation, especially when measuring
the peaks and valleys for TOD. Figure 8c shows the spectrum and phase with a GVD of
−6 × 104 fs2 and TOD of 5 × 106 fs3 from the initial laser without inserting quartz, and
Figure 8d shows the GVD of −8 × 104 fs2 and TOD of −1.3 × 107 fs3 when using the
birefringent quartz crystal, according to the valleys in Figure 8b. In addition, the spectrum
in Figure 8d is modulated mainly by the longer crystal, which can limit the FSR.

Furthermore, Compared to the case of spectral intensity shaping by using the bire-
fringent crystal, the initial position of φ = 0◦ should be confirmed when using the crystal
for dispersion compensation. The thickness and temperature should also be precisely
processed and controlled to fix the maximum TOD simultaneously. The results suggest that
the birefringent crystal can independently and continuously control the TOD through φ
and can be used to compensate for the TOD in the multi-PW design.
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Figure 8. (a) Experimental measurement results of GVD represented by the dotted black line,
compared with simulated results shown by the solid red line; (b) the measured and simulated TOD;
(c) the initial spectral and phase measurement with the residual GVD of −6 × 104 fs2 and TOD
of 5 × 106 fs3 from the laser without inserting quartz; (d) the spectral and phase with the GVD of
−8 × 104 fs2 and the TOD of −1.3 × 107 fs3, according to the valleys in Figure (b).

4. Conclusions

Motivated by the promising design for a multi-PW laser with a 150-fs level based on
the existing SG PW laser system, the temporal contrast and shape fidelity of the compressed
pulse influenced by TOD should be compensated. Hence, finding a method to support
increased energy with a large aperture, highly efficient transmission, and convenient
operation is required. Therefore, a TOD compensation scheme using a temperature-tuning
birefringent crystal is proposed in this paper. The GVD, TOD, and FOD of the existing SG
PW laser system and their influence on the compressed pulse with different bandwidths
are analyzed to provide an evaluation basis for compensating dispersions of the TOD
and FOD. The results indicated that TOD compensation is necessary for a pulse duration
of 150 fs. The TOD introduced by the quartz birefringent crystal was calculated, and the
compensation scheme for the TOD of 1.3 × 106 fs3 was designed using a quartz crystal.
Furthermore, a principle–proof experiment was investigated offline to measure the GVD
and TOD by a Wizzler, which is based on theoretical simulations. These results provide a
feasible method for controlling and compensating the TOD with a temperature-regulated
birefringent crystal, which to the best of our knowledge, is achieved for the first time. In
addition, they are important for supporting updates of the multi-PW (5–10 PW) at the
150-fs level.



Appl. Sci. 2022, 12, 4078 11 of 12

The large-scale laser system has higher residual TOD and needs a thicker birefringent
crystal to compensate. The FSR may be affected but can be controlled by cascaded crystals.
Further work is planned to use this scheme in an online laser system by using the designed
parameters and judging the dispersions and FSR in detail. Furthermore, the residual TOD
is lower for small-scale laser systems, such as high average power fiber lasers with a short
pulse. The method can afford more FSR and will be more beneficial and convenient for
achieving high time-domain fidelity for the compressed pulse after TOD compensation.
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