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Abstract: This paper establishes a numerical analysis model for the slope of a high-inclined angle
stratified foundation pit using support methods including row piles, pile-anchor supports, and
combined pile-bracing-anchor supports. The reliability of the analysis conclusion was verified by
comparing the stress and deformation laws of the support structures on the bedding rock side and the
toppling rock side in different schemes, in conjunction with the measured data from Sanhuan South
Road Station of Xuzhou Metro Line 3. In addition, on the basis of summarizing the deformation
characteristics of the support structures on the bedding rock side and the toppling rock side, the design
concept of sectionalized support based on the spatial effect was proposed, and the advantages of the
sectionalized support design were elaborated in combination with the numerical analysis results.

Keywords: numerical simulation; rock foundation pit; supporting force; optimal design; sectionalized
support control technique

1. Introduction

Commonly used support methods for rock foundation pits include anchor cable re-
taining walls, bolting shotcretes, and pile-plate retaining walls. These methods also present
some technical problems during construction in areas with complex conditions, such as
excessive deformation of the local support structure, failure of anchor cable support, and
excessively dense row pile spacing. These difficulties have something to do with com-
plicated geological conditions, generally caused by potential discontinuity surfaces [1,2],
which are difficult to fully detect [3].

The key to the difficulty of designing support for rock foundation pits lies in the
fact that slopes with different structures have different rock types and characteristics of
unfavorable geological structures; therefore, the geological properties and deformation
and failure mechanisms of foundation pits are also different [4]. In most cities in Central
China, the karst cave appears in the slope of urban rock foundation pit often because
the engineering project is located in the Hilly area. Longitudinal and transverse faults
under the bottom of foundation pit provide passage for groundwater. The layered slope
is eroded by rainwater flowing down from the top of the slope for a long time, which
forms the siphon phenomenon of groundwater. In other words, the surface water infiltrates
from the higher terrain and discharges from the lower terrain. In the process of flow,
limestone is eroded into karst caves. When excavation of foundation pit is affected by
gravity, a new destructive crack is formed between karst cave and structural plane, which
leads to penetration between karst caves and changes the state of sliding destruction
along a single structural plane (Jin Xu, Yansen Wang. Stability analysis and the support
design method of rock foundation pit with combination of structural plane and karst cave,
2022). For this rock foundation pit whose failure mode is changed by the karst cave, the
support deformation characteristics have not been fully mastered at this stage. Many
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scholars have analyzed the supporting methods of some typical rock foundation pits, such
as Liu et al. [5], who compared the support schemes for the power transmission tower
near a residential building and considered that pile-anchor support is safer than plate-rib
anchor rod support, which has been demonstrated during actual monitoring. Bai et al. [6]
suggested that retaining piles should be embedded into bedrock as much as possible to
prevent instability of the internal support for the soil–rock composite foundation pit in
the Qingdao subway using pile-anchor support. Liu et al. [7] mentioned in her study
that the micro steel pipe piles used in moderately weathered and slightly weathered rock
stratum with good geological properties, which have little effect on the foundation pit,
can be left out and the range of steel pipe piles used was determined. Some scholars have
proposed the application range of support methods such as anchor cables [8–11], anchor
shotcretes [12–14] and soil nailing walls [15,16] for rock slopes. These methods are not
compared in the analysis process for the suitability of the bedding rock side and the toppling
rock side of the side slope with bedded rock, while the actual situation is that both sides of
the bedded rock slope have their own deformation and failure characteristics [17–20], and
it is difficult to obtain satisfactory support effect by adopting the same support method,
which may lead to excessive deformation difference between the two sides. In addition,
compared with soil slope, rock slope generally does not suffer from long and wide sliding
damage, and its damage scope is usually determined by the position of vertical structural
planes on both sides, which is easy to form wedge damage [21,22]. At the same time,
the elastic fulcrum method is generally used for theoretical analysis of deformation of
enclosure piles caused by wedge failure. Even scholars have proposed density functional
theory (DFT) to calculate deformation behavior of materials [23] or to analyze changes
in mechanical properties [24]. However, these methods have not solved the problem of
predicting deformation of enclosure piles caused by potential discontinuities.

In conclusion, the rock foundation pit is mainly based on the design of soil founda-
tion pit, without considering the particularity of layered rock foundation pit. This paper
establishes a numerical analysis model for layered rocks by using support methods in-
cluding row pile, pile-anchor support and pile-support-anchor combination, analyses the
deformation regularity of pile body under traditional row pile support, and verifies the
accuracy of the model by combining the measured data of foundation pit of Sanhuan South
Road Station. Based on the above research results, the sectionalized support measures
are innovatively proposed for rock foundation pit, which solves the problem of excessive
local deformation of rock foundation pit caused by potential discontinuities in traditional
support methods.

2. Analysis of the Influence of Rock Slopes of Deep Foundation Pits with Karst Caves
and Structural Planes on the Failure Mode

During the simulation process, two parallel structural planes of 60◦ (45◦ + ϕ/2) with a
true spacing of 2.25 m were proposed at depths of 25 m and 20 m, as shown in Figure 1.
A 3D model was adopted, with longitudinal widths of 4 m and 50 m. In addition, along
the upper structural plane, a circular karst cave is set between parallel structural planes
6 m above the ground surface, and the diameter of the cave is 0.9 times the true spacing
length of the structural planes to analyze the influence of the cave on the failure mode of
the slope. The parameters of the rock mass and structural planes are shown in shown in
Tables 1 and 2. The mechanical parameters of moderately weathered limestone in the table
are taken from the middle value of the experience range in “Engineering Geology Manual”
(5th edition) as the basis for model parameter assignment. Where the main slip surface
has been determined, the parameters of the slip surface are based on fully weathered IV
clay. Planes below the penetration line of the karst cave indicate that the rock masses cross
through both structural planes, creating a penetrating failure mode between karst caves.
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Figure 1. Schematic diagram of the numerical analysis model.

Table 1. Rock mass parameters taken as references for the stability calculation model.

Description Density
(kg/m3)

Young’s
Modulus (Pa)

Poisson’s
Ratio

Cohesion
(Pa)

Internal Friction
Angle (◦)

Compressive Strength
(Pa)

Limestone 2300 21.0 × 109 0.22 3.0 × 106 30 1.0 × 106

Table 2. Structural plane parameters taken as references for the stability calculation model.

Description Normal Stiffness
(Pa)

Shear Stiffness
(Pa)

Cohesion
(Pa)

Angle of Internal
Friction

(◦)

Compressive
Strength

(Pa)

Structural plane IV 2.0 × 109 1.0 × 109 2.0 × 105 15 1.0 × 105

Based on the center line of the foundation pit width, the model selects five times the
excavation width of the foundation pit. The left and right boundaries of the model are
constrained by the displacement in the X direction (horizontal direction), and the bottom is
constrained by the displacement in the Z direction (vertical direction).

Figure 2a,b show a model with a longitudinal width of 4 m. The model uses a discount
factor of 1.2 to discount the c and ϕ values. Figure 2 illustrates the progressive expansion
of the failure from the cave to the structural plane, culminating in a broken-line failure.
As shown in Figure 2b, the final failure is divided into two parts. The first part is a large
triangular rock mass at the upper part of the structural plane, and the second part is the
area of rock mass between the parallel structural planes below the karst cave penetration
line, which indicates the rock masses crossing through both structural planes to form a
penetrating failure mode between karst caves. The calculation step in the figure is to
describe the deformation process of the retaining pile before the slope reaches its limit state,
i.e., before the karst cave in the rock mass penetrates. The deformation results are calculated
500 times per cycle and combined into the deformation process map of the retaining pile.

For the foundation pit model with a longitudinal width of 50 m, a 3D model of the
foundation pit with bedding rock and toppling rock slopes will be created to determine
the failure modes and ranges of the slopes on the bedding rock side and the toppling rock
side within 50 m. In the model, the positions of the karst cave and structural plane on the
slope with the bedding rock structural plane are the same as those in the 4 m model; on the
toppling rock side, a 60◦ reverse structural plane is set every 5 m along the depth direction
of the foundation pit, and the structural plane and the mechanical parameters of the rock
mass are the same as on the bedding rock side. On the bedding rock side, fissures with
different angles are set inside the upper slip cracking rock mass to make the rock slide in
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different ranges under different working conditions, while on the toppling rock side, the
rock mass is completely decomposed into rock blocks with an average diameter of 0.5 m to
simulate local tipping.
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Figure 2. Failure process of a 4 m-wide rock mass with circular karst caves penetrating into the
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As shown in Figure 3a,c, the slope on the bedding rock side forms a wedge-shaped
failure area, with the entire wedge gradually sinking along the first structural plane of the
penetration, while the lower part of the rock mass slides with the upper wedge, with the
same failure mode as in the 4 m model. Toppling failure of the strip rock mass between the
structural planes is formed on the slope at the toppling rock side, as shown in Figure 3b,c.
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Therefore, from the calculation results of the two length models mentioned above, the
bedding rock side is characterized by broken line slip failure under karst cave conditions,
while the toppling rock side is characterized by approximately arc-shaped toppling failure.
The following support design analysis will be based on these two analysis models.

3. Numerical Simulation of Pile-Anchor Support Technology for Rock Slopes of Deep
Foundation Pits

In the design and analysis of foundation pit support, it is assumed that there is a
holistic penetrating failure of a single slip surface or that the breakthrough failure of a karst
cave between parallel structural planes is deemed an extreme state of the foundation pit.

The row piles are set with spacings of 1.5 times, 2 times, 3 times and 4 times the pile
diameter. The pile is made of C35 concrete with a length of 34 m, and the anchor cable is
arranged at the maximum displacement point of the pile body. This method is widely used
in Tunnel Engineering [25,26]. The length of the anchor cable is 15 m, with an anchoring
section length of 7 m and an inclination angle of 15◦, forming a joint pile-anchor support
system in the form of one pile and one anchor.

It can be seen from Figures 4 and 5 that karst cave penetration failure still occurs
after the installation of the retaining piles, which shows that the slope of the foundation
pit slope supported by cantilever piles does not change the failure pattern in the cave
containing condition.
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Figure 5. Pile diameter of 0.8 m, 2.0 times pile spacing, cantilever pile support (three retaining piles).

Figure 6 shows the displacement curve for a cantilever pile with a 0.8 m pile diameter
and 1.5 times the pile spacing, with a maximum horizontal displacement of 0.7 mm at the
ultimate condition (8000 steps). The displacement curve of the pile began to bulge slightly
at 4000 steps. The position of the maximum displacement increment at the top of the pile
remained unchanged, with a small displacement range until 7000 steps. After 7000 steps,
the displacement increases sharply between 7000 steps and 8000 steps, with an increment
in displacement twice as large as the first 7000 steps.
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If a pile spacing of 2.0 times the pile diameter is used to support the foundation pit, the
overall deformation trend of retaining piles is similar to that of the 1.5 times pile spacing
case (as shown in Figure 7), and the maximum displacement values achieved at the same
analysis step are consistent between the two. For the 4 m model, when the total number of
retaining piles is the same, the change in pile spacing does not affect the final deformation
but only slightly affects the depth of the maximum displacement point.
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If the foundation pit is supported at a pile spacing of 3.0 times the pile diameter, the
number of retaining piles will be reduced from 3 to 2. The extreme state is reached at
3500 steps in the calculation, as shown in Figure 8a. As shown in the working condition
of the three retaining piles, there is a steep increase in the maximum displacement of the
retaining piles when the foundation pit reaches extreme failure. When the crown beam is
installed at the top of the retaining pile, its displacement is shown in Figure 8b. Compared
with the support method without the crown beam, the occurrence time of the extreme
state has shifted backward, and the displacement at the top of the retaining pile is greatly
suppressed with the increase in calculation steps. After the crown beam is installed, the
steep increase in pile displacement before reaching the extreme state disappears. This
shows that the crown beam is necessary to avoid the collapse of the foundation pit due to
the increase in instantaneous residual sliding force when the slip surface of the rock mass
is penetrated.
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the cantilever pile is 0.8 m. (b) The pile diameter is 0.8 m and the crown beam is set. (c) The pile
diameter is 0.8 m, and the crown beam and anchor cable are set.

In response to the maximum displacement of the retaining pile at the slip surface,
under the condition that there are crown beams, two prestressed anchor cables are set in
parallel at a depth of 18 m in the foundation pit, with a prestress of 300 kN applied. As
shown in Figure 8c, the application of anchor cable can significantly prolong the occurrence
time of the extreme state, and the maximum displacement of the pile body under the
extreme state is also significantly reduced, but the maximum displacement point has
changed, which appears at the application point of the anchor cable.

The pile spacing is expanded to 4.0 times the pile diameter, as shown in Figure 9. A
comparison with Figure 9a shows that the final deformation of the retaining piles does not
change and that the time to reach the extreme state remains unchanged after enlarging the
pile diameter and keeping the total number of retaining piles constant.

When crown beams and anchor cables are applied, as shown in Figure 9b, the dis-
placement of the pile top and pile body is greatly restrained. However, due to the influence
of anchor cable spacing, the final pile displacement is greater than that under 3.0 times pile
spacing. Thus, the combined pile-anchor support effect is easily affected by the anchor
cable spacing, and, therefore, when anchor cable support is used, the anchor cable spacing
needs to be strictly controlled.
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Figure 9. Displacement curve of pile body with 4.0 times pile spacing (2 piles). (a) The diameter of
the cantilever pile is 0.8 m. (b) The pile diameter is 0.8 m, and the crown beam and anchor cable
are set.

4. Numerical Simulation of Pile-Bracing Support Technology for Rock Slopes of Deep
Rock Foundation Pits

For the model with a longitudinal length of 50 m, the following supports will be set
up: concrete supports with a spacing of 7.5 m will be set at the top of the pile, with the
same mechanical parameters as those of retaining piles; steel supports with a spacing of
3 m are set at 10 m of the pile body, with a support diameter of 800 mm. When the pile
spacing is 1.5 times the pile diameter, the model of the foundation pit retaining pile is as
shown in Figure 10a. The model, using a discount factor of 1.5, is analyzed to 12,000 steps,
and the calculation results are shown in Figure 10b,c.

Figure 10b,c show the failure displacement cloud of the rock mass after supporting the
bedding rock side and the toppling rock side. The slip of the slope on the left bedding rock
structural plane has a greater impact on the retaining piles in the middle of the foundation
pit, and the maximum impact is located in the middle and lower parts of the pile body.
After the slope with the toppling rock structural plane on the right side of the foundation
pit has been supported, the toppling area in the middle is well restrained. The areas with
a greater influence on the pile deformation are scattered to both sides of the foundation
pit. Due to the limitation of the longitudinal length of the foundation pit model, stress
concentration is found at the boundary. The support of the toppling area in the middle area
will be the focus of our discussion later.
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Figure 10. Numerical analysis of pile-bracing support with 1.5 times pile spacing. (a) schematic
diagram for setting analysis points of retaining piles (unit: m, scale: 1:100); (b) failure and deformation
cloud of bedding rock side; (c) failure and deformation cloud of toppling rock side.

Two retaining piles on the left side and right side of the model at longitudinal distances
of 20 m (side pile) and 25 m (middle pile) are used for analysis, as shown in Figure 10a,
hereinafter referred to as the middle pile and side pile. At the same time, the displacement
and bending moment data for the crown beams and steel waist beams on the left and right
sides are used to draw curve diagrams, as shown in Figures 11 and 12.
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Figure 11. Stress analysis of pile-bracing support with 1.5 times pile spacing (pile body analysis).
(a) displacement diagram of the pile; (b) bending moment diagram of the pile.

The retaining pile on the bedding rock side is subjected to rock mass sliding and
creates a maximum displacement in the area near the upper slip surface, resulting in a
displacement toward the outside of the foundation pit. The piles below the lower slip
surface slightly incline toward the rock mass, as shown in Figure 11a. The maximum
deformation position of the retaining pile at the bedding rock structural plane is similar to
the deformation curve of the 4 m-wide model at the structural face penetration.

The deformation of the pile on the slope with the toppling rock structural plane forms
a tendency of deformation toward the inside of the foundation pit at the top of the pile,
while the middle part of the piles is affected by the sliding of the bedding rock structural
plane, and the stress is transmitted from the steel support to the toppling rock side, forming
a slight deformation toward the rock mass. In general, the deformation of the piles on the
bedding rock side slope is greater than that of the piles on the toppling rock side, and the
difference in deformation between the pile and the side pile on the bedding rock side slope
is significant. Due to the influence of the support structure, the sliding deformation of
the rock mass in the sliding part causes the deformation of the pile structure toward the
inside of the foundation pit, while the nonsliding area is also affected by the corresponding
deformation but constrained by the steel support. However, the difference in deformation
between the middle pile and the side pile is not significant on the toppling rock side due to
the large collapse area and the dispersion of stresses.
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It can be seen from the bending moment diagram of the pile body that, as shown in
Figure 11b, the maximum bending moment point of the pile body on the bedding rock side
appears near the upper structural plane, followed by the lower structural plane, while that
of the pile body on the toppling rock side appears at the steel support, followed by the
excavation depth of the foundation pit. The deformation curve of the bending moment of
the pile body coincides with the deformation characteristics of the rock mass.

The stress analysis curve of the crown beam and the waist beam is shown in Figure 12.
From the displacement curve in Figure 12a, it can be seen that the largest deformation
occurs in the middle part of the waist beam, forming bulges toward the inside of the
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foundation pit. On the other hand, the crown beam on the bedding rock side moves toward
the rock mass, while the middle part of the crown beam on the toppling rock side moves
toward the inside of the foundation pit but with minimal displacement. The deformation
and failure characteristics of the bedding rock side and the toppling rock side are consistent.

As seen from the bending moment diagrams of crown beams and waist beams, most
turning points of the bending moment correspond to the supporting point on the waist
beam, as shown in Figure 12b. Specifically, the maximum bending moment of the crown
beams and waist beams on the bedding rock side occurs at the edges of the slip surface; the
maximum moments of the crown beams and waist beams on the toppling rock side occur
around the inclination surface.

5. Contrastive Analysis of Different Supporting Schemes of Rock Slopes of Deep
Foundation Pits

The pile spacing on both sides of the slope is changed to 2, 3, and 4 times the pile
diameter to further compare and study the effect of the pile spacing on the support effect.
The pile diameter is taken as 1 m, and a discount factor of 1.5 times the pile spacing under
the same conditions is adopted to calculate the extreme state to analyze the supporting
effect under different pile spacings.

5.1. Supporting Analysis of the Pile Bracing Structure of the Rock Foundation Pit

For the pile-bracing support structure with a pile diameter of 2.0 times, the displace-
ment curve is mapped out through the middle pile and the side pile, as shown in Figure 13a.
The displacement change trend of the middle pile and the side pile on the bedding rock
side is the same, indicating that changing deformation in the middle of the pile spacing
becomes less influential on the side piles. The displacement change trend of the pile body
on the toppling rock side is the same as that under a pile spacing of 1.5 times. As a whole,
when the pile spacing is taken as two times the pile diameter, the maximum displacement
is approximately 0.25 mm more than that of 1.5 times the pile spacing. In other words, the
displacement of the pile body on the bedding rock side has increased by approximately
12.5%, while that on the toppling rock side has doubled.
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Figure 13. Analysis on the stress of pile-bracing support system. (a) displacement of retaining piles
with a pile spacing of 2.0 times; (b) displacement of retaining piles with a pile spacing of 3.0 times;
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As seen from Figure 13b,c, the displacement of the pile body generated by 3.0 times
the pile spacing and the displacement produced by 4.0 times the pile spacing are each
increased. The basic rules are that the maximum displacement of the pile body is increased
by approximately 1 mm when the pile spacing is increased once by the pile diameter each
time; the zero point of displacement also starts moving downward; if a pile spacing of 4.0
times is reached, the deformation of the middle and side piles occurs almost simultaneously,
indicating that the whole support system starts to fail. At this moment, the sliding force of
the rock mass is born by the retaining pile within the range of slip. The retaining pile on
the toppling rock side also faces the same conditions, and deformation on the middle piles
and side piles occurs nearly synchronously when the pile spacing reaches 4.0 times.

5.2. Analysis of the Combined Support of the Pile-Bracing Anchor of the Rock Foundation Pit

The design system of the pile bracing-anchor supports is based on the 4.0 times of the
pile bracing model in the previous section, with a 15 m long prestressed anchor cable set
at a depth of 18 m for the bedding rock side of the retaining pile and the same length of
anchor cable set at a depth of 14 m for the retaining pile on the toppling rock side to restrict
the area of maximum displacement of retaining piles. The anchorage section of anchor
cables is 7 m long, with an inclination angle of 15◦ and 300 kN prestress being applied. The
layout form of “one anchor for one pile” is adopted, as shown in Figure 14a,b.
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Figure 14. Analysis on the stress of combined support system of pile-bracing-anchor with 4.0 times
pile spacing. (a) layout of anchor cables (unit: m); (b) displacement cloud on bedding rock side;
(c) displacement of pile.

As shown in Figure 14c, when the anchor cable is applied to the 4.0 times pile spacing
retaining pile, the maximum displacement value of the retaining pile on the bedding rock
side decreases by approximately 12% compared to that without the anchor cable, while that
of the retaining piles on the toppling rock side is decreased by only 0.2 mm. The design of
the anchor cables plays no significant role in the overall safety control, considering that the
pile body produces less displacement on the toppling rock side.

The rock mass on the toppling rock side is inclined toward the inside of the foundation
pit. There is a supporting point on the pile body from which rotation occurs, and the anchor
cable is applied with a portion of the force component generating an additional bending
moment. Therefore, when anchor cables are provided for displacement control for the
side slopes on the toppling rock side, the stress to the retaining piles may be increased.
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According to simulation results, the anchor cables of the side slopes on the toppling rock
side can be canceled.

6. Analysis Based on the Foundation Pit Project of Sanhuan South Road Station of
Xuzhou Metro Line 3

Located at the intersection between the Sanhuan South Road and Beijing Road, the
Third Ring Road South Station of Xuzhou Metro Line 3 has an SN layout and is a transfer
station of Metro Line 3 and Metro Line 4, as shown in Figure 15. The foundation pit is
close to Mount Zhai. The terrain is gradually rising from north to south, and groundwater
movement is intense. Caves are formed along the fissures and structural surfaces by
long-term seepage of surface water in the site. The water pumping test shows that the
permeability coefficient is about 3.5 m/d.
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Figure 15. Location diagram of Sanhuan South Road Station.

The foundation pit is excavated to a depth of approximately 30 m, where limestone is
mainly developed. The construction method of “cut-bottom up” is adopted for the main
foundation pit of the station, and the retaining structure of “retaining pile + horizontal
inner supports (anchor cables)” is adopted. A geological section of foundation pit cross
section is shown in Figure 16.
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The western side slope of the pit is the bedding rock structural plane (C35 concrete
pouring) with a Ø 1000 mm @ 1500 mm cast-in situ bored pile (dip angle: 70◦). The eastern
side slope is the toppling rock structural plane with a Ø 1000 mm @ 2000 mm cast-in situ
bored pile. Concrete supports (C35 concrete pouring) are used as the first support; steel
supports (diameter: 800 mm) are used as the second support; and the third steel support
can be set locally. The mechanical parameters of rock mass are shown in Table 3. Structural
plane parameters are shown in Table 2.
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Table 3. Mechanical parameters of the foundation pit slope.

Description Density
(kg/m3)

Young’s
Modulus (Pa) Poisson’s Ratio Cohesion (Pa)

Internal
Friction

Angle (◦)

Compressive
Strength

(Pa)

Limestone 2680 21.18 × 109 0.17 3.0 × 106 34 1.0 × 106

The slopes of the toppling rock structure plane are monitored by two retaining piles
on the east side of the pit under study, while four retaining piles are selected to monitor the
slopes of the bedding rock structural plane on the west side, as shown in Figure 17a. Six
monitoring points for reinforcement meters are set on the soil-facing side of each retaining
pile, and six concrete strainmeters are set on the soil backing side for data calibration, as
shown in Figure 17b. Meanwhile, reinforcement meters (soil backing side) and concrete
strainmeters (soil facing side) are set on the crown beam, and 13 monitoring points are set
correspondingly. A total of seven monitoring points for metal surface strainmeters are set
on the steel waist beam, as shown in Figure 17c.
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Figure 18 shows the horizontal displacement curve of the piles monitored on the bed-
ding rock side and the toppling rock side of the foundation pit, as E1 and W2 were broken 
during construction and were not analyzed here. The E2 retaining pile is located on the 
side slopes on the toppling rock side. As seen from Figure 18a, the top of the retaining pile 
basically slopes toward the interior of the foundation pit until the foundation pit is exca-
vated to −3F (−20 m), which is the same as the trend as the pile displacement curve in 
Figure 11a. When the foundation pit is excavated to −30 m, the mid- and lower-part of the 
pile body starts inclining toward the inside of the foundation pit, indicating that the lower 
rock mass of the foundation pit also starts inclining toward the inside of the foundation 
pit. 
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Figure 17. Monitoring point of foundation pit. (a) monitoring point for inclination (unit: mm, scale:
1:200); (b) monitoring points for stress and strain meters of retaining piles (unit: mm, scale: 1:50);
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Figure 18 shows the horizontal displacement curve of the piles monitored on the
bedding rock side and the toppling rock side of the foundation pit, as E1 and W2 were
broken during construction and were not analyzed here. The E2 retaining pile is located on
the side slopes on the toppling rock side. As seen from Figure 18a, the top of the retaining
pile basically slopes toward the interior of the foundation pit until the foundation pit is
excavated to −3F (−20 m), which is the same as the trend as the pile displacement curve in
Figure 11a. When the foundation pit is excavated to −30 m, the mid- and lower-part of the
pile body starts inclining toward the inside of the foundation pit, indicating that the lower
rock mass of the foundation pit also starts inclining toward the inside of the foundation pit.
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Figure 18. Horizontal displacement curve of retaining pile. (a) E2; (b) W1; (c) W3; (d) W4.

The W1, W3, and W4 retaining piles are located on the side slopes on the bedding rock
side in Figure 18b–d. The displacement curve of the W1 pile shows that, as the excavation
depth of the pit increases, the salient point of horizontal displacement gradually moves
downward with the increase in excavation depth of the foundation pit. Since the third
support is set for W1 at −20 m, the maximum displacement occurs between −10~−20 m
when excavation progresses to −30 m.
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As the top of the foundation pit at the position corresponding to the W3 retaining pile
is located in the stacking area of steel, there is a significant amount of deformation in the
front half of the pile under the additional overlying load. Meanwhile, this indicates that
the slip surface at the second half of the pile body is not connected with the top surface.
Moreover, severe deformation occurred after excavation of W4 to −30 m. In combination
with the detection and analysis results of the geological radar, there is a large karst cave at
a depth of approximately −15 m, so the structural plane may be connected.

Figure 19a–d shows the change curve of the reinforcement axial force of retaining piles
against monitoring duration. The reinforcement meters on the soil facing side basically
change from tensile stress to pressure stress during the whole construction period, while the
strainmeters show the opposite trend, which is not shown again due to space limitations.
According to the deformation curve of the reinforcement meter, the retaining pile deforms
from the top under a cantilever state toward the foundation pit at the beginning with the
excavation of the foundation pit, gradually being restrained by the support. The middle
and lower parts of the pile deform toward the pit and finally become compressed. The
entire process corresponds to the measured displacement curve.
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Figure 19. Reinforcement axial force curve of retaining piles. (a) E2; (b) W1; (c) W3; (d) W4.

Figures 20 and 21 show the stress change curve of crown beams and the strain change
curve of waist beams, respectively. To clearly present the change characteristics of the
whole support beam, only some points of the deformation curve are mapped.
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Figure 21. Strain curve of steel waist beam. (a) side slopes on the toppling rock side; (b) side slopes
on the bedding rock side.

According to Figure 20a,b, the reinforcement meters of the crown beams on both sides
basically show a shift from tensile to stressed, with the maximum stress position located at
both ends of the crown beam, where the overall strain of the crown beam on the bedding
rock side shows a phenomenon of small in the middle and large on both sides, which is
consistent with the displacement curve deformation trend simulated in Figure 12.

The monitored deformation curves for the waist beams are shown in Figure 21a,b.
Unlike the simulated situation, steel circuit purlins with a length of approximately 6 m
are used for steel waist beams on site, which are not connected to each other as a whole.
However, it can also be seen that the strain around the two steel supports in the middle of
the toppling rock side is significantly higher than the strains at the other monitoring points
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under the effect of steel supports. This indicates an obvious trend of deformation toward
the inside of the foundation pit at a depth of −10 m. The strain on the bedding rock side
is basically stable (except for some points), indicating no local slip from W1 to W3, which
matches the displacement curve.

In order to verify the rationality of the model, the numerical simulation results, the
elastic fulcrum method and the measured horizontal displacement calculation results are
drawn in Figure 22. In the numerical model, the most disadvantageous situation to select
the fracture angle of rock mass is equivalent to an internal friction angle of 62◦. Other
parameters of rock mass are shown in Table 3. The setting scheme of enclosure piles and
selection of the center pile are the same as Figure 11a. It can be seen from Figure 22 that the
displacement trends of the three calculation methods are consistent in the bedding rock
side of the foundation pit.
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In summary, the measured value at monitoring points of the foundation pit may be
affected by measuring error and blasting. However, the deformation trend on the bedding
rock side is basically identical to that shown by the results of the simulation taking the
most unfavorable structural plane inclination; the deformation on the toppling rock side is
related to the angle and spacing of the model structural plane, and there is a certain error
between the late excavation and the simulation results.

7. Analysis of Optimizing the Foundation Pit Supporting System Based on the
Space Effect

It can be identified through the research above that conventional supporting methods
have certain disadvantages in controlling the deformation of retaining piles, especially
when the slip surface is uncertain. Narrowing the spacing of retaining piles will remarkably
increase the supporting cost and construction period, but the greater the excavation depth
of foundation pit, the more obvious the space effect [27,28]. Therefore, this paper attempts
to adopt the spatial effect-based sectionalized support control technique to artificially
construct a dense space to improve the engineering efficiency and support effect, avoiding
the influence of weak structure on the overall stability of rock mass [29].

As shown in Figure 23a, the retaining piles on both sides of the reinforcing point are
deleted based on the original layout of a pile spacing of 3.0 times, forming the layout mode
of “dense in the middle and sparse on both sides”. When a combination of zoning and
sparse-dense piles is adopted, the middle piles and side piles on the bedding rock side and
the toppling rock side deform almost synchronously, as shown in Figure 23b. This indicates
that the remaining sliding force of the entire rock mass is concentrated in the middle of the
divided area and that the deleted retaining piles on both sides of the reinforcing point have
no influence on the overall supporting effect.
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Figure 23. Stress analysis of sectionalized support system (design of sparse-dense pile). (a) schematic
diagram of sectionalized sparse-dense pile support model (Unit: m); (b) displacement of retaining
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body at the reinforced point (toppling rock side).
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At the reinforcing point, the tops of the four reinforcement piles were deformed to a
large extent, as shown in Figure 23c,d. Specifically, the bedding rock side has the greatest
influence on the deformation of the retaining piles in the first row of the reinforcing point,
while the toppling rock side has the most pronounced effect on the retaining piles in the
fourth row.

To solve the problems of inconsistent deformation and a sharp increase in pile body
displacement at the reinforced point, an additional tie beam is considered to be added
to the top of the pile top at the reinforced point to form a whole structure with the top
beam, thereby restraining the deformation of the retaining pile at the reinforced point and
increasing the integrity of the support structure, as shown in Figure 24a.
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Figure 24. Stress analysis of the sectionalized support system (arrangement of sparse-dense pile and
tie-beam). (a) schematic diagram of the support model of sparse-dense pile and tie beam (Unit: m);
(b) displacement of retaining pile body; (c) displacement of pile body at reinforced point (bedding
rock side); (d) displacement of pile body at the reinforced point (toppling rock side).

It can be seen from the displacement curve of the pile body that the deformation trend
of the pile body displacement curve of the middle pile and the side pile on the bedding
rock side is synchronized, as shown in Figure 24b, and the maximum deformation of the
row pile is the same as when no tie beam is applied.

After the application of the tie beam, the four reinforcement piles on the bedding rock
side and on the toppling rock side show the same trend, as shown in Figure 24c,d. The
displacement of the pile top of the reinforced pile on the bedding rock side tends to be
zero, which shows that the tie beam maintains the consistency of the deformation of the
reinforced pile body. Therefore, the application of a tie beam is helpful for the deformation
control of retaining piles on bedding rock side slopes. However, since the deformation on
the toppling rock side is less than that on the bedding rock side, nonapplication of the tie
beam can be considered. Displacement comparison tables of the above support schemes
are shown in Table 4.

Table 4. Analysis results of rock slope support.

The Type of
Support

The Basic Parameters Basic Law of Displacement
Increase/Decrease after Pile

Spacing Change in Bedding Slope
(on the Basis of the Previous Level)

The Pile
Diameter (m)

Pile Spacing
(Multiple of Pile

Diameter)

Longitudinal
Length of Model

(m)

Pile-bracing 1.0 1.5, 2.0, 3.0, 4.0 50

1.5 times to 2 times displacement
increase by about 12.5%.
2 times to 3 times displacement
increase by about 40%.
3 times to 4 times displacement
increase by about 18%.

Pile-brace-anchor
combination 1.0 4.0 50

Displacement is reduced by about 12%
compared to 4.0 times of the
pile-bracing structure.

Sectionalized
support 1.0 3.0 50

Sparse-dense pile: displacement is
reduced by about 14% compared with
3.0 times of pile-bracing.
Sparse-dense pile and tie beam:
displacement is reduced by 13%
compared with 3.0 times of
pile-bracing.
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8. Conclusions

In this paper, the models of bedding slope and toppling slope of rock slope are
established by numerical simulation. On this basis, the deformation characteristics of the
traditional row pile supporting scheme are analyzed, and the concept of sectionalized
support control is innovatively proposed in view of the limitations of the traditional
scheme. The following conclusions could be drawn based on the comprehensive results of
the above studies:

(1) For bedding rock slopes, the failure on the bedding rock side is prone to be affected
by karst caves and thus changes the final sliding path to form a broken line landslide,
while arc-shaped toppling failure is prone to be formed on the toppling rock side.

(2) For bedding rock foundation pits, it is recommended to use prestressed anchor cables
in conjunction with the anchor cables, which can reduce the maximum displacement
by about 12%, while the anchor cable spacing needs to be strictly controlled to max-
imize the supporting effect of the anchor cables. However, the additional bending
load from anchor cables on the pile body on the toppling rock side should be taken
into consideration.

(3) For the foundation pit side slope with a long longitudinal distance, the sectionalized
support of the retaining pile could effectively restrict the deformation of the retaining
structure and the range of rock landslides. Taking three times the spacing of piles as
an example, the maximum displacement of the retaining piles in the bedding direction
can be reduced by about 13% under the same spacing of piles.

(4) On the basis of spatial effect support, the top of the foundation pit on the bedding
rock side can be provided with a tie beam for overall reinforcement to maintain the
integrity of the support structure. The tie beam can replace the anchor cable, and its
support effect can reduce the maximum horizontal displacement by 13% compared
with the pile anchor support in the toppling slope.

(5) For the foundation pit side slope with sectionalized support, if the requirement of final
displacement control on the bedding rock side could not be met, prestressed anchor
cables could be set above the slip surface, which can further control the deformation
of the pile body, while the toppling rock side slope can basically meet the maximum
displacement requirements by adopting the sectionalized support design. At the same
time, the spacing of piles in the bedding rock side can be extended by 0.5 times as that
of the toppling side.

(6) When using anti-sliding piles to divide the foundation pit section, it is necessary to
calculate the stability against sliding of the anti-sliding piles so as to ensure that the
integral damage will not occur.

(7) From the results of monitoring and numerical simulation, the foundation pit of
Sanhuan South Road Station is in a safe state. If the traditional pile-anchor support
method is adopted, the spacing between piles can be enlarged by three times or the
local stability can be improved by using the sectional support method.
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