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Abstract: Ship position prediction plays a key role in the early warning and safety of inland waters
and maritime navigation. Ship pilots must have in-depth knowledge of the future position of their
ship and target ship in a specific time period when maneuvering the ship to effectively avoid collisions.
However, prediction accuracy and computing efficiency are crucial issues that need to be worked
out at present. To solve these problems, in this paper, the deep long short-term memory network
framework (LSTM) and genetic algorithm (GA) are introduced to predict the ship trajectory of inland
water. Firstly, the collected actual automatic identification system (AIS) data are preprocessed and a
series of typical trajectories are extracted from them; then, the LSTM network is used to predict the
typical trajectories in real time. Considering that the hyperparameters of the LSTM network have
difficulty obtaining the optimal solution manually, the GA is used to optimize hyperparameters of
LSTM; finally, the GA-LSTM trajectory prediction model is constructed with the optimal network
parameters and compared with the traditional support vector machine (SVM) model and LSTM
model. The experimental results show that the GA-LSTM model effectively improves the accuracy
and speed of trajectory prediction, with outstanding performance and good generalization, which
possess certain reference values for the development of collision avoidance of unmanned ships.

Keywords: trajectory prediction; inland water; LSTM; GA; SVM

1. Introduction

“A country with strong transportation, parallel by land and water.” As one of the
comprehensive transportation modes, waterway transportation undertakes nearly 90%
of the world’s bulk trade freight volume. Due to its characteristics of low cost and large
volume, the activity of the waterway transportation industry is regarded as a barometer
of world and regional economic recovery. [1]. With the rapid development of China’s
shipping industry, the number of ships in the oceans, especially inland rivers, has increased
dramatically, leading to an increasing trend of ship traffic accidents. Therefore, in ports
or waters with high traffic density and complex conditions, improving the safety of ship
navigation is a key issue [2,3]. Vessel Traffic Service (VTS) [4,5] can accurately and effectively
monitor and predict the real-time trajectory of ships, which provides a technical support
for the early warning of marine traffic accidents. In order to improve the safety of ship
navigation in inland river environments, it is necessary to provide real-time trajectory
prediction and risk warning functions for the ship’s intelligent navigation system. However,
the inland river environment is complex and changeable, and traffic accidents are prone to
occur, especially in crowded docks and bridge areas. Consequently, it is difficult to predict
the trajectory of ships [6].
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In recent years, domestic and foreign scholars have proposed a series of ship trajectory
prediction models. Anderson [7] takes time as the independent variable, obtains the
measured value of the trajectory in discrete time, and regards the trajectory as a one-
dimensional Gaussian process. A prior continuous time is defined by a nonlinear time-
varying stochastic differential equation driven by white noise. By obtaining the joint prior
density and covariance matrix of the observed and the predicted value, the posterior
distribution of the predicted value is calculated, and the smoothing trajectory is predicted
by combining with dynamics. This method is computationally intensive, and its accuracy
gradually decreases over time. Jiang [8] proposed the polynomial Kalman filter method to
fit the ship trajectory. This method implements trajectory prediction in a recursive manner,
which occupies less memory space in the calculation process and can achieve short-term
prediction. However, the assumptions of initial state and ideal conditions of the model
have a greater impact on the prediction results. Literature [9] divides the specified sea
area into grids, calculates the grid state with the ship’s position, speed, and direction as
the key factors, and uses the K-order Markov chain to establish a state transition matrix
for prediction; however, the utilization rate of historical track information is poor when
calculating the grid state at each moment. Zhang [10] proposed a spatial clustering method
based on hierarchical density clustering, adopting the DBSCAN model to cluster and
denoise the original AIS trajectories to achieve the purpose of predicting ship trajectories.
Rong [11] proposed a new probabilistic trajectory prediction model, which described the
uncertainty of the future position of the ship trajectory through a continuous probability
distribution and has high prediction accuracy.

With the continuous in-depth research of artificial neural networks (ANN) [12,13],
the ship trajectory prediction model based on ANN is becoming more and more popular
and is widely used in the field of ship navigation [14–16]. Literature [17] uses the back-
propagation (BP) neural network model to train and predict ship trajectory with longitude,
latitude, and speed information in the AIS data, but the BP neural network has a weak
ability to deal with nonlinear problems, and only in the case of a short track are the
prediction results more accurate. Literature [18] uses a support vector machine (SVM) to
establish a ship trajectory prediction model and adopts speed over ground (SOG), course
over ground (COG), longitude (LON), latitude (LAT), and time stamp as the input sample
features, which improves the prediction efficiency and accuracy to a certain extent; however,
SVM has shortcomings such as weak generalization ability and ease of falling into local
extreme values. Brian [19] proposed a dual linear auto-encoder method to predict the
future trajectories of selected ships. The auto-encoder consists of two modules, encoding
and decoding, which can extract hidden features of AIS data, and the model can predict
the trajectory of multiple ships. However, in the process of trajectory features extraction,
useless data features cannot be effectively filtered, so the prediction effect of the model
is poor. Mao [20] proposed a method for predicting ship trajectory based on an extreme
learning machine (ELM). As a single-hidden-layer feed-forward neural network model, the
ELM does not require weights and biases of the iterative network and has a high calculation
speed. However, the number of hidden-layer nodes in the ELM model is difficult to
determine, which affects the generalization performance of the network.

Recurrent neural networks (RNNs) have been extensively developed due to their pow-
erful ability to process sequence information and predictable time information. Hochreater
et al. [21] improved the RNN unit structure and proposed a long short-term memory
network (LSTM) model, which solved the problems of gradient disappearance, gradient
explosion, and insufficient information memory ability by designing the “gate” structure,
and LSTM networks can effectively use long-distance timing information [22]. LSTM
networks have been successfully applied in speech recognition [23], text processing [24],
and other fields, yet there are some defects key hyperparameters, such as the number of
hidden-layer neurons, learning rate, etc., which are difficult to determine [25]. Because the
number of hidden-layer neurons plays a decisive role in the fitting ability of the model, the
learning rate directly affects the convergence speed and calculation time of the model and
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the topology of the model is controlled directly by the LSTM network structure parameters.
Therefore, the prediction performance of the model established by different hyperparame-
ters is quite different, and how to select the appropriate parameters is very important for
the establishment of the model. At present, the hyperparameters of the network model
are often selected based on the experience of the researchers and the results of multiple
experiments. The randomness is relatively large, which affects the prediction performance
of the model to a certain extent.

In order to predict the ship trajectory quickly and accurately, this paper adopts the
LSTM network model [26–28] as the technical basis to establish an inland river ship tra-
jectory prediction model. Considering that the key hyperparameters of the current LSTM
model are difficult to determine, such as the number of hidden-layer neurons, learning rate,
etc., the genetic algorithm (GA) is proposed to optimize the key hyperparameters of LSTM
networks. The model takes LOG, LAT, SOG, and COG as the input features and the future
position of the ship as the target output. The LSTM neural network model optimized by
the GA (GA-LSTM) is used to predict the ship trajectory. The experimental results show
that, compared with the current classical LSTM and SVM, the algorithm proposed in this
paper can predict the ship trajectory more quickly and accurately to a certain extent.

The remainder of this paper is organized as follows. Section 2 describes the ship
trajectory prediction model. Section 3 describes the theoretical background of the LSTM,
GA and GA-LSTM models. Moreover, Section 4 mainly contains experiments and analysis.
Finally, Section 5 concludes the paper.

2. Ship Trajectory Prediction Model

An automatic identification system (AIS) can provide real-time ship trajectory data
for detecting the navigation status of ships. Nowadays, it is widely used in ship collision
avoidance, maritime monitoring, ship traffic flow forecasting, and maritime accident
investigation mechanisms [29]. When a ship is sailing, it mainly relies on the AIS data from
the target ship to obtain its navigation behavior, so as to make timely and accurate collision
avoidance decisions in complex encounters. In actual navigation, the navigation behavior
of a ship is mainly reflected in the changes of characteristic variables such as ship position,
SOG, and COG [30]. It is assumed that the navigation behavior of a ship at time t can be
characterized as:

y(t) = {latt, lont, sogt, cogt} (1)

where lont, latt, sogt, and cogt are respectively LON, LAT, SOG, and COG of the ship at
time t.

Generally speaking, the navigation behavior of the ship at the next moment is the
result of the current behavior and historical behavior. Therefore, in order to improve the
accuracy of the model, the navigation behavior of the ship at the past three moments,
y(t− 2), y(t− 1), and y(t), is taken as the input of the model and the LON and LAT of the
ship at the next moment as the output of the model, namely:{

Iinput = {y(t− 2), y(t− 1), y(t)}
Ooutput = {latt+1, lont+1}

(2)

This is the functional relationship between Iinput and Ooutput:Ooutput = f (Iinput) where
f (·) is the nonlinear transformation function.

Therefore, for ship trajectory prediction, with some samples of AIS data as the training
data set {[y(t− 2), y(t− 1), y(t)], y(t + 1), t = 1, 2, . . . , l}, obtaining the best estimate of the
nonlinear transformation between the input sample Iinput and the target output sample
Ooutput is a problem. This paper selects the GA-LSTM model to fit the nonlinear transfor-
mation function f (·), the GA-LSTM model is constructed with training data, and then the
test data are input into the GA-LSTM model, and finally the real-time prediction of the ship
trajectory is carried out.
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3. LSTM Network Optimized by GA
3.1. LSTM Network Model

The LSTM neural network solves the problem of gradient disappearance and the
explosion of traditional recursive neural networks linked by network units in a chain way,
which can effectively improve the learning time. In dealing with the prediction of time
series and nonlinear mapping problems, the LSTM model with memory ability shows
strong advantages [22]. A structure called a memory cell is added to LSTM to memorize
past information, and three gate structures, input gate, output gate, and forget gate, are
added to control the transmission of historical information [31].

The structure of the LSTM neural network is shown in Figure 1. Supposing that the
network input is (x1, x2, . . . , xT) and the hidden-layer state is (h1, h2, . . . , hT), at time t, the
calculations of each unit and gate are shown in Equations (3)–(8):

it= σ(wi · [ht−1, xt]+bi) (3)

ft= σ(wf · [ht−1, xt]+bf) (4)

c̃t= tanh(wc · [ht−1, xt]+bc) (5)

ct = ft ◦ ct−1 + it ◦ c̃t (6)

ot= σ(wo · [ht−1, xt]+bo) (7)

ht = ot ◦ tanh(ct) (8)

Figure 1. The LSTM neural network structure.

In Formulas (3)–(8), it, ft, and ot are the calculations of input gate, forget gate, and
output gate, respectively; among them, the input gate is mainly used to determine how
much input information at the current moment is retained to the unit state at the current
moment; the forget gate is mainly used to determine how much information of the unit
state ct−1 from the previous moment is retained in the current cell state ct; the output
gate is mainly used to determine how much output the current cell state has. ht is the
final output of the network, c̃t is the current input unit state; ct is the current moment
unit state; wi, wf, wc, and wo are the weight matrices of the three gates and unit states;
bi, bf, bc, and bo are respectively the bias of each gate and unit state; σ(·) and tanh(·)
are transfer functions; · represents the vector inner product; and the symbol ◦ represents
element-wise multiplication.
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3.2. Genetic Algorithm

The GA is usually a biological scientific algorithm that simulates Darwin’s theory of
biological evolution by a computer, proposed by J. Holland [32] in 1975. In the genetic
evolution of populations in the GA, it is found that chromosomes are used as the main
carrier of population inheritance, and with the help of a variety of random operations—
gene selection, gene crossover, and gene mutation—a new solution set population is
constantly evolving. According to the value of individual fitness and the selection function,
the optimal population individual can be selected, which is the optimal solution of the
optimization problem in the GA.

In this paper, the GA is used to optimize the key hyperparameters of the LSTM
network and the powerful global random search ability of the GA is adopted to obtain the
optimal combination of the number of neurons and the learning rate in the LSTM network.
The basic idea is as follows:

(1) Chromosome coding

The number of hidden-layer neurons and the learning rate in the LSTM network are
taken as the initialization objects of the GA, and chromosome coding is carried out in the
form of real-number coding. The interval range of hidden-layer neurons is set to [2, 40],
and the interval range of the learning rate is set to [0.001–0.1].

(2) Fitness function

The fitness function is applied to determine which individuals in the population can
perform next-generation genetic operations. According to differing individual fitness, the
“survival of the fittest” is used for screening individuals. The selection-of-fitness function
directly affects the performance of the optimized network by the GA and then affects the
performance of prediction. This paper mainly constructs the fitness function based on the
overall fit between the estimated value and the true value of the ship navigation position.
In order to make the network parameters obtained by the GA more suitable for the LSTM
model and improve the generalization ability of the model, the AIS data are divided into
training samples and test samples. The training samples are utilized for LSTM network
training. After reaching the limit of the number of iterations, the training sample output
value and test sample output value of the LSTM network are obtained. Then the individual
fitness function is defined as:

f itness= 0.5× 1
J

J

∑
j=1

(
_
y

j
t − yj

t

)2
+0.5× 1

K

K

∑
k=1

(
_
y

k
v − yk

v

)2
(9)

where
_
y

j
t and

_
y

k
v are the predicted value of the training sample and the predicted value

of the test sample, respectively, and yj
t and yk

v are the actual value. The error of the test
sample directly reflects the prediction effect of the model; therefore, the fitness function
f itness includes not only the fitting error of the training sample but also the verification
error of the test sample. In the experiment, the error of the training sample and the error of
the test sample are given the same weight, which is 0.5, and the sum of the two multiplied
with the weight is used as the fitness function of the model.

(3) Selection operator, crossover operator, and mutation operator

The selection operator selects individuals with better adaptability as parents in the
current population and passes genetic information to the offspring. Here, the tournament
selection algorithm is used as the GA selection strategy. This selection strategy has the char-
acteristics of efficient algorithm execution rate and easy implementation, and its algorithm
complexity is much lower than other selection strategies and is easy to parallelize. It is
not easy to fall into the local optimal individual during the selection process and does not
require sorting the fitness values of all individuals. The crossover operator takes the shuffle
crossover algorithm. Before the crossover, the random.shuffle function is used to perform
the shuffle operation in the parent, and then when the random number generated between
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0 and 1 is less than the given crossover rate, the crossover transformation is performed. In
the mutation operator, when the random number generated between 0 and 1 is less than
the given mutation rate, the mutation operation is performed. The rule of variation about
the number of hidden-layer neurons and learning rate is shown in Equation (10):

c.Ln= abs(c.Ln+random.randint(− 3, 3))
c.lr= abs(c.lr+random.uniform(− 0.001, 0.001))

(10)

where c.Ln is the number of hidden-layer neurons in a population and c.lr is the learning
rate.

3.3. GA-LSTM Model

In this paper, the GA and LSTM neural network models are combined to construct a
ship trajectory prediction model based on GA-LSTM. Firstly, the GA is adopted to optimize
the hyperparameters of the LSTM network, and then the best combination of learning
rate and the number of hidden-layer neurons is obtained to further improve the nonlinear
mapping ability of the model; in addition, the GA-LSTM model constructed by the optimal
parameter combination is used as the nonlinear transformation function f (·) between the
input sample and output sample; on this basis, the nonlinear transformation function f (·)
is applied to obtain the position information of the ship at the next moment. The specific
operation process of the model is as follows:

(1) Selecting training data set.

In order to obtain the best-fitting effect of the function f (·), the input data of the
GA-LSTM model are composed of the navigation information of the ship at the past three
moments, which are represented by the vector u, and the target output is represented by
the vector M. As shown in Formula (11):

ui = [lati−2, lati−1, lati, loni−2, loni−1, loni, sogi−2, sogi−1, sogi, cogi−2, cogi−1, cogi]
T

Mi =

[
lati+1
loni+1

]
(11)

(2) Optimizing LSTM network parameters with the GA.

a. Taking the learning rate and the number of hidden-layer units of LSTM model as
the optimization objects, and then performing the initialization of the population and the
chromosome encoding and decoding operations.

b. Calculating the fitness value of each individual in the initial population.
c. Performing selection, crossover, and mutation operations on chromosomes.
d. Decoding chromosomes and calculating the fitness of individuals in the population.

The smaller the fitness value in this algorithm, the more the individual should be retained;
otherwise, the individual should be eliminated.

e. If the genetic termination conditions are not met, it will return to Step c. If the
genetic termination conditions are met, the optimal parameters calculated by the GA are
taken as the final parameters of the LSTM network model.

(3) Training the GA-LSTM model.

Inputting u and M into the GA-LSTM network of the optimal parameter combination,
the output of the GA-LSTM network model is the position of the ship at the next moment.
The difference between the target output M and the predicted output f (u) of the model is
represented by the error e, which is e = M− f (u). The GA-LSTM model minimizes the
fitting error E(eTe) according to the mean square error and finally obtains the best-fitting

function
_
f (·) between the input samples and the output samples.

(4) Predicting ship trajectory.
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The experimental data are sent to the GA-LSTM model, and then the ship navigation

position at the next moment is calculated by using the best-fitting function
_
f (·).

The ship trajectory prediction model framework is shown in Figure 2. The framework
is mainly composed of three parts: data preprocessing, model analysis, and error analysis.
Data preprocessing is an essential part of GA-LSTM model, and the data after preprocessing
can improve the overall performance of the model to a certain extent. For model analysis,
the GA is introduced into the selection of network hyperparameters based on the LSTM
network model, which reduces the influence of artificial determination to some extent. For
error analysis, visualization and index evaluation are used to further verify the feasibility
and performance of the proposed method.

Figure 2. Flowchart of the vessel trajectory prediction framework.

4. Experiments and Analysis
4.1. Model Evaluation Index

In this paper, the overall performance of the model is evaluated through mean square
error (MSE) [13] and mean absolute error (MAE) [12]. The smaller the value of MSE and
MAE are, the higher the prediction accuracy is. The calculation formulas of MSE and MAE
as follows:

MSE =
1
P

p

∑
i=1

(Yi − yi)
2 (12)

MAE =
1
P

p

∑
i=1
|Yi − yi| (13)

where P is the total AIS data, Yi is the predicted value of the network model, and yi is the
expected output value.

4.2. AIS Data Sources and Preprocessing

The AIS data were collected in November 2020, and the experimental area was from
the Zhuankou waterway of the Wuhan section of the Yangtze River to the Baihushan
crossing area. Because of the interrupted or missing data in the process of AIS signal
sending, transmission, and reception and that the time series data with large deviations
may appear in the AIS data, it is necessary to preprocess the data appropriately. The
preprocessing process [33] of the collected AIS data in this paper is as follows:

Firstly, removing invalid data, mainly including:
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(1) MMSI is not a 9-bit data value.
(2) AIS attribute information contains a large amount of data with null values.
(3) In this paper, the LAT range of the track point is set to [110.00, 115.00], the LON

range is set to [30.00, 32.00], the SOG range is set to [2.0–14.0], the SOG range is set
to [0–360], and the distribution of research data after AIS data cleaning is shown in
Figures 3 and 4.

(4) Treatment of missing values.

Figure 3. LON and LAT distributions.

Figure 4. SOG and COG distributions.

In the experimental data in this paper, there are some missing AIS data for individual
ships. As for the problem of missing values for ship LON and LAT, the method of cubic
spline interpolation [34] is used to complete the model, as shown in Figure 5 for the
interpolation results of completing missing values of LON and LAT data in two AIS data
values. For the missing of SOG and COG during this period, considering the relatively
constant characteristics of ship SOG and COG in a short period of time, the average value
is used for interpolation.
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(5) The attribute data contained in AIS information have different dimensions, so the
trajectory data are normalized between 0 and 1. In this paper, the deviation method [3]
is used for processing, and the normalization formula is shown in Equation (14):

X′ =
X− Xmin

Xmax − Xmin
(14)

where Xmin is the minimum value in the experimental data, Xmax is the maximum
value, X is the original data value, and X′ is the normalized data value.

Figure 5. Cubic spline interpolation results.

4.3. Experimental Methods

After data preprocessing, a series of typical ship trajectories with large turning ampli-
tudes is selected for experiments. In this paper, considering model calculation complexity,
calculation time, and prediction performance for the SVM model, the radial basis function
K(x, y) = exp(−

∣∣∣∣x− y
∣∣∣∣2/σ2) is selected as the kernel function, where the values of ker-

nel function parameter σ and penalty coefficient C are σ2 = 3 and C = 50, respectively. For
the LSTM network model, 30 hidden-layer neurons are selected, the number of iterations
is 1000, and the learning rate is 0.01. The parameter values for the GA [35,36] are shown
in Table 1, where MaxGenerations is the maximum number of iterations before the GA
stops optimization and PopulationSize is the size of the initial population. The smaller
its value is, the more prone sick populations are to appear. The larger the population
size is, the more difficult the algorithm is to converge and the lower robustness it has.
CrossoverPop is the crossover probability; if the value is too large, it is easy to miss the
optimal individual and the randomness is large, while the crossover probability is too small
to effectively update the population. MutationPop is the mutation probability; if its value
is too small, the diversity of population decreases too quickly, which easily leads to the loss
of effective solutions and is hard to repair. If its value is too large, the probability of the
optimal individual being destroyed also increases, which is not conducive to finding the
optimal solution.

Table 1. Parameter values for GA.

MaxGeneration PopulationSize CrossoverPop MutationPop

100 40 0.8 0.2
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4.4. Visualized Comparative Analysis of Experimental Results

After data preprocessing, two typical trajectories are selected for experiments. This
paper selects AIS data with MMSI values of 413826669 (ship-1) and 413997528 (ship-2)
and compares the experiments with the LSTM model and the SVM model. The original
trajectories of the two ships are shown in Figure 6.

Figure 6. The original trajectories of experimental ships.

4.4.1. Visual Analysis of Ship-1 Trajectory Prediction

It can be seen from Figure 6 that ship-1 has a tendency of greater steering amplitude
and continuous maneuvering. Firstly, the AIS data of ship-1, LOG, LAT, SOG and COG, are
taken as the input samples of the GA-LSTM network model. The position of ship-1, LON
and LAT, are taken as the output samples of the model, and the experimental results are
shown in Figure 7.

Figure 7. Prediction results of LON and LAT of ship-1.

The collected AIS data of ships are divided into training and test sets according to the
above method. Figure 7 shows the LON and LAT of the ship predicted by the GA-LSTM
model proposed in this paper. It can be seen that the LON and LAT predicted by this
model are basically consistent with the actual LON and LAT of ship-1, which can accurately
predict the position of ships in inland rivers.
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In order to further prove the feasibility and effectiveness of the proposed model,
this paper conducts a comparative analysis of the LSTM model and the SVM model. The
experimental results are shown in Figure 8. It can be seen that: (1) For the location prediction
of ship-1, the SVM model performs the worst; even if the predicted ship trajectory has
the same general trend, the position information has a larger deviation. This is due to the
weak generalization ability of the SVM model and its ease of falling into local extreme
values. (2) The prediction effect of the LSTM method is slightly better than that of the
SVM method; however, the two methods are not as good as the method proposed in this
paper. This is because the network hyperparameters of the LSTM method have difficulty
manually obtaining the optimal solution, which makes the model prediction performance
lower than that of GA-LSTM method. (3) In order to better compare the pros and cons
of the three methods, zoom in and analyze the position of ship-1′s navigation status: the
LSTM and GA-LSTM methods have comparable predictive performance in ship-1′s direct
navigation state (see 1© in Figure 8). The GA-LSTM model shows better performance when
performing large-scale steering or continuous steering (Figure 8 at 2©). In general, the
GA-LSTM model performs best and can predict ship-1′s sailing position more accurately.
The reason is that the GA obtains a better combination of LSTM network parameters, which
makes the method proposed in this paper better than the ship trajectory predicted based
on the SVM and LSTM models.

Figure 8. Comparison of experimental results of ship-1 trajectory prediction.

4.4.2. Visual Analysis of Ship-2 Trajectory Prediction

The AIS data of ship-2 are also used to predict the LON and LAT of the trajectory by
the GA-LSTM model. The experimental results are shown in Figure 9. It can be seen from
Figure 9 that the LON and LAT of ship-2 predicted by GA-LSTM are basically the same
as the LON and LAT of the actual position in the position prediction of ship-2. Similarly,
the trajectory was predicted by the SVM and LSTM models, and the experimental results
are shown in Figure 10. It can be seen that the method proposed in this paper has higher
prediction performance and better effect, and it can effectively predict the navigation
position of ship-2, which further proves the effectiveness and feasibility of the method
proposed in this paper.
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Figure 9. Prediction results of LON and LAT of ship-2.

Figure 10. Comparison of experimental results of ship-2 trajectory prediction.

4.5. Model Performance Index Analysis

In order to further analyze the prediction effect of the GA-LSTM model on the two
typical trajectories, this paper adopts MSE and MAE to evaluate the performance of the
models. The index analysis results of the three methods are shown in Table 2.

It can be seen from Table 2 that the GA-LSTM model is the lowest in both evaluation
indicators, its accuracy is relatively the highest, and its model prediction performance
is better. For ship-1, when the optimal parameter combination is (11, 0.0165), the LAT
MSE and MAE predicted by this method are 1.6393 × 10−6 and 0.0014, respectively;
meanwhile, when the optimal parameter combination for LON prediction is (7, 0.023), the
MSE and MAE are 4.3188 × 10−6 and 0.0024, respectively. For ship-2, the LAT MSE and
MAE predicted with the optimal parameter combination (13, 0.0163) are 3.0375 × 10−6

and 0.0017, respectively; the LON MSE and MAE predicted by the optimal parameter
combination (14, 0.0105) are 1.8304 × 10−6 and 0.0012, respectively. Both indicators are the
lowest. It can be seen that firstly adopting the GA to optimize the key hyperparameters of
the LSTM network model and then using the optimal parameter combination to construct
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the GA-LSTM trajectory prediction model can effectively improve the performance and
accuracy of prediction.

Table 2. Performance index analysis of models on 3 models.

Model Position MSE MAE Optimal Paramter
Combination

Numb of
Neuron

Learning
Rate

ship-1 SVM LAT 9.979 × 10−6 0.002
LON 1.4957 × 10−5 0.0034

LSTM LAT 2.6257 × 10−6 0.0015
LON 7.8145 × 10−6 0.0026

GA-LSTM LAT 1.6393 × 10−6 0.0014 11 0.0165
LON 4.3188 × 10−6 0.0024 7 0.0230

ship-2 SVM LAT 1.3404 × 10−5 0.0035
LON 1.0037 × 10−5 0.0029

LSTM LAT 5.4005 × 10−6 0.0023
LON 8.742 × 10−6 0.0027

GA-LSTM LAT 3.0375 × 10−6 0.0017 13 0.0163
LON 1.8304 × 10−6 0.0012 14 0.0105

4.6. Real-Time and Popularization Analysis of Model

The experiment was carried out using the Windows 10 system, the central processing
unit was a 2.90 GHz i5 processor with a memory of 32.0 GB, and the experiment was carried
out with MATLAB2021b. In the comparison experiment of this paper, the initial population
of the GA algorithm was set to 40, and the maximum number of iterations was 100. The
training time of the network and the execution time after training were used to compare
and discuss the real-time analysis and generalization of the network. The experimental
results are shown in Table 3.

Table 3. Comparison of real-time analysis of 3 models.

Model Training Time T/S Execution Time T/S

LON LAT LON LAT

ship-1 SVM 55.915569 56.1377 0.426141 0.424251
LSTM 53.9218 53.766166 0.403474 0.404457

GA-LSTM 154.213806 166.647849 0.129239 0.129546

ship-2 SVM 56.137049 56.586795 0.427225 0.433015
LSTM 53.671202 53.841451 0.400593 0.401865

GA-LSTM 145.977239 142.860358 0.117013 0.123151

From the comparative analysis in Table 3, we can see that the methods adopted in the
experiment require a certain amount of time to construct the network, and the difference in
network structure makes the time used for network training different. It can be seen from
Table 3 that: 1© In the network training stage, the training times of the LSTM method and
the SVM method are equivalent; after adding GA, the time consumption of the network
training stage is increased by about two times; 2© In the network execution stage, the
time consumptions of the LSTM and SVM methods are basically the same. Compared
with the other two algorithm models, the time consumption of the GA-LSTM method is
not significantly increased but decreases slightly. In the MATLAB2021b environment, the
execution time of GA-LSTM is about 0.2 s.

It can be seen that in practical applications, except for about 3 min in the program start-
up training phase, the ship trajectory prediction results can be obtained quickly in other time
periods. If another compiled language such as C writes the algorithm into the hardware to
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run, the running speed will be further improved. Therefore, the method proposed in this
paper can meet the needs of certain scenarios in terms of real-time performance and has a
good generalization.

5. Conclusions

In the background of world economic globalization, shipping has become one of the
most important modes of transportation in international trade. The number, types, and
new routes of ships continue to increase. Although the shipping trade shows a thriving
atmosphere, it also makes the channel congested and the load increases, which affects
the safety of ship navigation and seriously threatens the life and property safety of ship
personnel. From the analysis of the ship accident investigation organization, it can be seen
that human error is the main cause of marine and inland river accidents. The key to the safe
navigation of ships lies in the perception of the surrounding navigation environment during
the navigation process and the effective use of varied information for correct analysis and
decision making. As a common navigation environment perception means, AIS has some
deficiencies in the process of receiving and sending ship information, which restricts the
maneuvering behavior of the ship. Knowing how to use the AIS information to accurately
predict the trajectories of their own ship and the target ship in a specific time is vital for a
ship driver to make a correct evaluation and decision.

In order to improve the prediction accuracy and calculation efficiency when predicting
the future position of the ship in a specific period, this paper introduces the LSTM network
and the GA optimization algorithm to the future position prediction of the ship and
proposes a new method based on GA-LSTM to predict the course and position of inland
ships. Considering the disadvantages of AIS equipment in the process of receiving and
sending ship information, firstly, the collected real-time AIS data are preprocessed and
the cubic spline interpolation method is adopted to interpolate data for the data loss of
individual ships. Then, RNNs have powerful time-series processing capabilities, and
are able to use historical information to accurately predict future state, building the ship
trajectory prediction model based on the LSTM network model, and utilizing the GA
optimizes the hyperparameters of the LSTM network. The GA-LSTM prediction model can
minimize the impact of hyperparameter factors on the accuracy of ship trajectory prediction.
In this paper, two typical ship trajectories in the Wuhan section of the Yangtze River are
selected for prediction experiments and compared with the classic SVM method and the
LSTM method. The experimental results show that the GA-LSTM model proposed in this
paper has higher prediction accuracy and prediction speed; this model not only performs
well in predicting the trajectory of the ship sailing in a straight line but also has a strong
advantage in trajectory prediction when the ship starts to maneuver or maneuvers at a
large angle. On the basis of high computing efficiency, it can predict ship trajectory in real
time and accurately provide effective guarantee measures for the safe navigation of ships,
and it has better generalization ability.

This model solves the problems of low prediction accuracy and complex calculation of
ship trajectory prediction to a certain extent and has good practical application value in
the intelligent navigation of inland river ships. The GA-LSTM model is similar to other
time-series models, and the effect of ship trajectory prediction with long-term information
is not ideal. On the basis of ensuring the prediction accuracy and speed, if the accuracy of
long-distance ship position prediction can be improved, it will provide great help for ship
collision avoidance and other maneuvering processes. Even though the model in this paper
is based on a recursive network model, the calculation cost is relatively high in long-distance
ship position prediction, and it is not practical in the collision avoidance maneuvering of
unmanned ships. How to predict the ship’s position without losing prediction accuracy
and efficiency and how to decrease the computational cost as well will be carried out in
further work.
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