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Abstract: Stock portfolio management consists of defining how some investment resources should
be allocated to a set of stocks. It is an important component in the functioning of modern societies
throughout the world. However, it faces important theoretical and practical challenges. The contri-
bution of this work is two-fold: first, to describe an approach that comprehensively addresses the
main activities carried out by practitioners during portfolio management (price forecasting, stock
selection and portfolio optimization) and, second, to consider uptrends and downtrends in prices.
Both aspects are relevant for practitioners but, to the best of our knowledge, the literature does not
have an approach addressing them together. We propose to do it by exploiting various computational
intelligence techniques. The assessment of the proposal shows that further improvements to the
procedure are obtained when considering downtrends and that the procedure allows obtaining
portfolios with better returns than those produced by the considered benchmarks. These results
indicate that practitioners should consider the proposed procedure as a complement to their current
methodologies in managing stock portfolios.

Keywords: short selling; stock portfolios; artificial neural networks; evolutionary algorithms;
computational intelligence

1. Introduction

Both individual and organizational investors commonly seek to take profits from stock
markets. Among the different ways to exploit these markets, the literature has focused
on the idea of buying cheap and selling expensive. The authors of [1] point out that
there is an assumption in classical portfolio theory to manage the selected assets with the
simplest trading strategy, which is a buy-and-hold approach. However, it is also common
for practitioners to also seek profits when prices go down. There are several mechanisms
that allow an investor to take profits in this situation (e.g., [2–4]).

Investing in stocks when their prices are expected to rise is known as opening a long
position. In this scenario, the investor adopts the idea that stocks should be bought when
they are the cheapest and sold when they are as expensive as possible; the difference
between selling and buying prices constitutes the investor’s basic earning. On the other
hand, opening a short position means that the investor expects the stock prices to go down.
According to [5], short selling allows the investor to profit from their belief that the price
of a security will decline. Moreover, short selling is used by top-down and quantitative
managers as a part of a neutral strategy (cf. [5]). In this case, the investor can, for example,
borrow shares of the stock, sell them in this very moment and commit to return them at a
moment in the future; so, to return them, the investor will have to buy them at whatever the
price of the stock is at that moment in the future. Therefore, the earning of the investment
here is also calculated as the difference between the selling and buying prices—just that the
sell is produced first.
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The highly complex decision-making process of allocating resources considering both
uptrends and downtrends of prices requires sophisticated models and tools to achieve
competitive results. Thus, this work proposes a comprehensive procedure based on com-
putational intelligence that aids defining how investors should allocate their resources in
the presence of both scenarios.

First, an artificial neural network (ANN) (cf. [6]) is used to estimate future prices.
There are evident tendencies in the literature showing that ANNs have high accuracy,
fast prediction speed and clear superiority in predictions related to financial markets
(e.g., [7–9]). To perform these estimations, the ANN takes historical performances of the
stocks considering the most common factors of the literature, such as stock prices and
financial ratios (cf. [10]). Some additional financial indicators are used here to determine if
the forecasted tendency (that the price will go up or down) is supported. These indicators
are taken from the so-called fundamental analysis, a type of indicators often considered
by practitioners (cf. [11]). Evolutionary algorithms (EAs) are then used to ponder these
indicators altogether with the price estimation and determine which stocks should be
considered by the investor for investment, either with a downtrend or an uptrend. Finally,
EAs are also used to determine how much of the resources should be allocated to each
of the selected stocks on the basis of statistical analysis to historical data. Here, only
historical prices of the selected stocks are taken into consideration according to the approach
described in [12].

The literature review presented in Section 3 shows that, although there are studies
that consider both uptrends and downtrends in stock prices, as far as we know, there are
no published works that comprehensively address the problem the way that is proposed
here. That is, not only taking advantage of a future increase in prices by opening long
positions but also taking advantage of future decrease in prices by opening short positions,
while also forecasting stock prices, selecting the most plausible stocks and optimizing the
stock portfolio. Our hypothesis is that a procedure that effectively implements all this
provides better overall earnings for the investor. The hypothesis is based on the activities
and interests of practitioners. We test this hypothesis by using extensive experiments with
actual historical data.

The rest of the paper is structured as follows. Section 2 describes the fundamental
theories that support this research. Section 3 presents the related literature. Section 4
describes the details of the techniques that compose the proposed procedure. In Section 5,
we explained the experiments to test this work’s hypothesis. Finally, Section 6 concludes
this paper.

2. Background

This section provides a brief overview of the concepts and methods used in the
proposed approach. These concepts and methods are (i) fundamental analysis, (ii) artificial
neural networks and (iii) evolutionary multi-objective optimization. Furthermore, we
provide a short description of multiobjective optimization problems in order to present a
complete theoretical basis of the proposed approach.

2.1. Fundamental Analysis

One of the most used sources of information in the management of stock portfolios
comes from the so-called fundamental analysis. The fundamental indicators provided by
this analysis allow the practitioner to evaluate stocks from multiple perspectives. Such
indicators are constructed from the financial statements that the companies (underlying the
stocks) present publicly on a regular basis.

Fundamental indicators provide information that is often exploited in the literature
to forecast future stock performance and to select the most competitive stocks. These
indicators can be used both qualitatively and quantitatively. Regarding the latter, the
financial information published by companies is synthesized in the form of ratios that shed
light on the current state of the company, providing remarkable information on what can
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be expected from the financial health of the company and the possible future price of its
stock. When this analysis is used in the literature, the fundamental indicators are usually
aggregated in an overall assessment value that requires subjective preferences from the
practitioner (cf. e.g., [13]); however, the aggregation procedure is not straightforward and
represents an important challenge.

On the other hand, different fundamental indicators could be more convenient for
companies with different types of activities ([14]). Some fundamental indicators that can be
used for trans-business companies are described in Section 4.1 (cf. [10,11,13,14]).

2.2. Artificial Neural Networks

Artificial neural networks are nowadays very popular among techniques from com-
putational intelligence that have been used for many applications, such as classification,
clustering, pattern recognition and prediction in diverse scientific and technological disci-
plines ([15,16]). Similarly to other computational intelligence techniques, applications of
ANN are very diversified due to its capability to model systems and phenomena from the
fields of sciences, engineering and social sciences.

Analogously to a nervous system, an ANN is built from neurons, which are the
basic elements for processing signals. Neurons are interconnected to form a network,
with additional connections (synaptic relations) for input and output signals. Weights
are assigned to each of these and other connection. The computing of suitable values for
these weights is performed by training algorithms. An ANN needs to be trained before
it can be used by using data from the system or phenomenon to model. Neurons are
configured to form layers, in which neurons have parallel connections for inputs and
outputs. ANN complexity varies from a network with a single layer of a single neuron to
networks with several layers, each having several neurons. Networks with only forward
connections are known as feedforward networks. Networks with forward and backward
connections are known as feedbackward networks ([15]). The term deep learning refers to
ANN with complex multilayers ([17]). Roughly speaking, deep learning has more complex
connections between layers and also more neurons than previous types of networks. Some
neural networks that form deep learning networks are convolutional networks, recursive
networks and recurrent networks.

2.3. Multi-Objective Optimization Problem

Without loss of generality, a multi-objective optimization problem (MOP) can be
defined in terms of maximization (although minimization is also common) as follows:

maximize F(x) = [ f1(x), f2(x), . . . , fk(x)]>

subject to x ∈ Ω

where Ω is the set of decision variable vectors x = [x1, x2, . . . , xm)]> that fulfill the set of
constraints of the problem, and then F : Ω→ Rk, where Rk is the so-called objective space.

It is evident that the notation used here states that all functions fi (objectives) should be
maximized; however, it is also possible that one requires some functions fi to be minimized
instead. To keep standard notation, we assume that the latter can be simply achieved by
multiplying the minimizing function by −1.

In the context of stock portfolio management, the functions fi are usually in conflict
with each other. This means that improving f j deteriorates fk for some j 6= k. Therefore,
there is no solution x ∈ Ω that maximizes all the k objectives simultaneously. Nevertheless,
it is still possible to define some solutions x that poses the best characteristics in terms
of their impact on the objectives; this is commonly carried out through Pareto optimality
(cf. [18]).

Let u, vs. ∈ Rk denote impacts of solutions x and y, respectively. u dominates v if and
only if ui ≥ vi for all i = 1, . . . , k, and uj > vj for at least one j = 1, . . . , k. Then, a solution
x∗ ∈ Ω is Pareto optimal if there is no solution y ∈ Ω such that F(y) dominates F(x∗). Note
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that there can be more than one Pareto optimal solution. The set of all the Pareto optimal
solutions is called the Pareto set (PS), and the set of all their corresponding objective vectors
is the Pareto front (PF).

2.4. Evolutionary Multi-Objective Optimization

Multi-objective evolutionary algorithms (MOEAs) are high-level procedures designed
to discover good enough solutions to MOPs (solutions that are close to the global optimum).
They are especially useful with incomplete or imperfect information or a limited computing
capacity ([19]).

MOEAs address MOPs using principles from biological evolution. They use a pop-
ulation of individuals, each representing a solution to the MOP. The individuals in the
population reproduce among them, using so-called evolutionary operators (selection,
crossover, mutation), to produce a new generation of individuals. Often, this new genera-
tion of individuals is composed of both parents and children that posses the best fitness; this
fitness represents the impact on the objectives of the MOP. Since each individual encodes a
solution to the MOP, MOEAs can approximate a set of trade-off alternatives simultaneously

The performance of MOEAs has been assessed in different fields (e.g., [20,21]). They
have been widely accepted as convenient tools for addressing the problem of stock portfolio
management ([10–12]). The main goal of MOEAs is to find a set of solutions that approxi-
mate the true Pareto front in terms of convergence and diversity. Convergence refers to
determining the solutions that belong to the PF, while diversity refers to determining the
solutions that best represent all the PF. Thus, the intervention of the decision maker is not
traditionally used in the process. Thus, rather little interest has been paid in the literature
to choosing one of the efficient solutions as the final one in contrast to the interest paid in
approximating the whole Pareto front.

Usually, two types of MOEAs are highlighted in the literature: differential evolution
and genetic algorithms. Differential evolution (DE) has been found to be very simple
and effective ([22]), particularly when addressing non-linear single-objective optimization
problems ([23,24]). On the other hand, in a genetic algorithm (GA), solutions to a prob-
lem are sought in the form of strings of characters (the best representations are usually
those that reflect something about the problem that is being addressed), virtually always
applying recombination operators such as crossing, selection and mutation operators. GAs
compose one of the most popular meta-heuristics applied to the Portfolio Optimization
Problem ([12]).

As a very effective and efficient way to address MOPs, the authors of ([25]) exploited
the idea of creating subproblems underlying the original optimization problem. This
way, addressing these subproblems the algorithm proposed in ([25]) indirectly addresses
the original problem. In that work, the so-called Multiobjective Evolutionary Algorithm
Based on Decomposition (MOEA/D) was presented. The goal of MOEA/D is to create
subproblems such that, for each subproblem, a simpler optimization problem can be more
effectively and efficiently addressed; each subproblem consists on the aggregation of all
the objectives through a scalar function. MOEA/D was extended to the context of interval
numbers in [12].

3. Literature Review

There are many contributions to portfolio management literature in recent years. In
this section, we give an overview of some recent and relevant works on the following
subjects: price forecasting, stock selection and portfolio optimization, as well as works
on portfolio management by algorithms that exploits both uptrends and downtrends in
stock prices.

Due to the non-linearity of stock data, a model developed using traditional approaches
with single intelligent techniques may not use the resources in an effective way. Therefore,
there is a need for developing a hybridization of intelligent techniques for an effective
predictive model [26].
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3.1. Portfolio Management: Price Forecasting, Stock Selection and Portfolio Optimization

In recent years, there have been plenty of contributions on price forecasting based
on either statistical or computational intelligence methods (see [10,27]). The stock market
is characterized by extreme fluctuations, non-linearity, and shifts in internal and external
environmental variables. Artificial intelligence techniques can detect such non-linearity,
resulting in much-improved forecast results [28].

Among the computational intelligence methods used for price forecasting are deep
learning (e.g., [29–32]) and machine learning (e.g., [33–35]). In [10], a hybrid stock selection
model with a stock prediction stage based on an artificial neural network (ANN) trained
with the extreme learning machine (ELM) training algorithm ([6,36]) was proposed. The
ELM algorithm has been tested for financial market prediction in other works (see [7–9]).

There are important works on methods for stock selection, which have several different
fundamental theories, from operations research methods (e.g., [37,38]) to approaches
originating in modern portfolio theory (Mean-variance model) (e.g., [38,39]) and soft
computing methods (e.g., [40,41]), including hybrid approaches (e.g., [10,42,43]).

The fundamental theory for portfolio optimization is Markowitz’s mean-variance
model ([44]). Its formulation marked the beginning of Modern portfolio theory ([45]). How-
ever, Markowitz’s original model is considered too basic since it neglects real-world issues
related to investors, trading limitations, portfolio size and others ([43]). For evaluating
a portfolio’s performance, the model is based on measuring the expected return and the
risk; the latter is represented by the variance in the portfolio’s historical returns. Since
the variance takes into account both negative and positive deviations, other risk measures
have been proposed, such as the Conditional Value at Risk (CVaR) ([46,47]). As a result,
numerous works have improved the model, creating more risk measures and proposing
restrictions that bring them closer to practical aspects of stock market trading ([27]). Conse-
quently, many optimization methods based on exact algorithms (e.g., [48–55]) and heuristic
and hybrid optimization (e.g., [29,56–65]) have been proposed to solve the emerging port-
folio optimization models ([27,40,45]).

According to [12], the investor or decision maker in the portfolio selection problem
manages a multiple criteria problem in which, along with the objective of return maximiza-
tion, he/she faces the uncertainty of risk. Different attitudes assumed by decision makers
may lead them to select different alternatives. A way of modeling both risk and subjectivity
of the decision maker in terms of significant confidence intervals was first proposed in [12].
The probabilistic confidence intervals of the portfolio returns characterize the portfolios
during the optimization. The optimization is performed by means of a widely accepted
decomposition-based evolutionary algorithm, the MOEA/D ([25,66]). This approach is
inspired on the independent works of ([67,68]) on interval analysis theory.

3.2. Exploiting Uptrends and Downtrends in Strategies for Stock Investment

Regarding alternative strategies to the known buy-and-hold approach for stock in-
vestment, in ([69]), the authors propose two new trading strategies to outperform the
buy-and-hold approach, which is based on the efficient market hypothesis. The proposed
strategies are based on a generalized time-dependent strategy proposed in ([70]) but pro-
pose different timing for changing the buying/selling position. According to ([71]), the
decision to adopt a long or short position in an asset requires a view of its immediate future
price movements. A typical short seller would have to assess the potential future behavior
of the asset price by means of evaluating several factors, such as past returns and market
effects as well as and technical indicators, such as market ratios ([71]). There are a few
works published in the literature to address the problem of trading strategies for the short
position. An interesting work that considers not only the short position but both the short
and long position is ([72]), in which a simultaneous long-short trading strategy (SLS) is
proposed. Such a strategy is based partially on the property that a positive gain with zero
initial investment is expected, which holds for all discrete and continuous price processes
with independent multiplicative growth and a constant trend. Other works based on SLS
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are ([73–75]). However, these works show the results of the algorithm on a previously
defined stock portfolio, unlike the proposed approach that comprehensively performs price
forecasting, stock selection and portfolio optimization in the presence of both uptrends
and downtrends.

4. Methods and Materials

The procedure followed here consists of applying several techniques from the so-called
computational intelligence to address the complexity of stock investments in the presence
of both increasing and decreasing prices. Future stock prices are forecasted using an ANN,
as well as the tendency that such prices will show. These estimations are then combined
with certain indicators from the fundamental analysis to define the stocks that will likely
receive resources (the selected stocks). Finally, another evolutionary algorithm is used to
optimize portfolios, i.e., to define the proportions of resources to be allocated to each stock.

4.1. An Artificial Neural Network to Estimate Future Prices

In this work, the immediate next period price of the considered stocks are estimated
by means of an ANN. Following the recommendations of ([6,10,36]), we use a single-layer
feedforward network (whose setting is created once per each stock) and train the ANN
by means of the so-called extreme learning machine algorithm because of its superior
capacities in similar problems to the one addressed here (cf. [7–9]).

The ANN works independently per stock to estimate its price in the subsequent
immediate period. The return of each stock is used as the target variable, while thirteen
variables are used as input to train the ANN. Let rt denote the stock return for a given
period t. rt is calculated from the stock price for that period (pt) and the immediate previous
one (pt−1), as defined by Equation (1).

rt =
pt − pt−1

pt−1
(1)

The high complexity involved in forecasting future stock prices requires one to con-
sider a variety of transaction data as explanatory variables. Therefore, we followed the
recommendations provided in ([10,76,77]) to determine sixteen transaction data as explana-
tory variables to the forecasting model used here. The sixteen input variables are described
as follows:

Close price. Last transacted price of the stock before the market officially closes.
Open Price. First price of the stock at which it was traded at the open of the period’s
trading.
High. Highest price of the stock in the period’s trading.
Low. Lowest price of the stock in the period’s trading.
Average Price. Average price of the stock in the period’s trading.
Market Capitalization. Price per share multiplied by the number of outstanding shares
of a publicly held company.
Return Rate. Profit on an investment over a period, expressed as a proportion of the
original investment.
Volume. Number of shares traded (or their equivalent in money) of a stock in a given
period.
Total asset turnover. Net sales over the average value of total assets on the company’s
balance sheet between the beginning and the end of the period.
Fixed asset turnover. Net sales over the average value of fixed assets.
Volatility. Standard deviation of prices.
General Capital. Number of preferred and common shares that a company is autho-
rized to issue.
Price to Earnings. Market value per share over earnings per share.
Price to Book. Market price per share over book value per share.
Price to Sales. Market price per share over revenue per share.
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Price to Cash Flow. Market price per share over operating cash flow per share.

The training process consists of taking sixty historical values for these sixteen variables
randomly out of a set of ninety historical periods and leaving the rest of values to test the
ANN. After the ANN is trained, two errors are computed: training error and testing error.
The lower the testing error, the better the predictive capacity the ANN has. Nevertheless,
since the extreme learning machine algorithm uses a random procedure to compute the
weights and bias of the network, we do not always obtain the same results. Therefore, we
run the algorithm na times and chose the one with better results. It is important to highlight
that each input variable is normalized taking into account the sixty periods of the training
data (the target variable is not normalized).

As mentioned before, our approach seeks to take advantage of market downtrends. To
achieve this, we use the ANN’s forecast. A long or a short position will be chosen according
to the forecasted value of the return; that is, if the forecasted value for a stock return is
positive, a long position is chosen, otherwise a short position is chosen

4.2. Evolutionary Algorithms to Select Stocks

It is common that practitioners use indicators from the so-called fundamental analysis
to assess the financial health of stocks. Besides these indicators, here, we use the stock
prices and tendencies forecasted by the ANN to define which stocks should be further
considered for investment. To ponder all these values, we establish an optimization problem
following the recommendations in ([78]) and use an evolutionary algorithm to address it as
recommended in ([10]).

Let S = {s1, s2, . . . , card(S)} be the set of considered stocks, vj(si) be the evaluation of
stock si on the jth indicator, j = 1, . . . , N (for the sake of simplicity, assume that v1 is the
forecasted return as calculated by Equation (1)), and wi be the relative importance of each
indicator and forecasted return (the latter is denoted by w1). The score of stock si can be
calculated as follows (cf. [10,79]):

score(si) =
N

∑
J=1

wjvj(si) (2)

Since increasing vj(si) for j = 1, . . . , N indicates the convenience of the stock, de-
termining the most appropriate values for wj becomes crucial to determining the most
plausible stocks as those that maximize Equation (2).

If we want to take advantage of market downtrends, sometimes we will be interested
in obtaining the more negative returns to invest in a short position. To implement this
idea, the value of each factor vj is taken as positive or negative according to the prediction
given by the ANN model on the previous stage. Namely, if the ANN model predicts a
positive stock return, a long position will be chosen for this stock and the factor values are
taken as they are. However, if the ANN model predicts a negative stock return, a short
position is chosen for this stock and the return and each factor value are multiplied by −1,
so Equation (2) is still valid.

To determine the most convenient values for wj (j = 1, . . . , N), we use the function
recommended in ([78]). Let us define this function.

For a given historical period t, a set of predefined weights will allow one to determine
the score of each stock; thus, the top, say, 5% of the stocks can be selected. These top stocks
constitute the set of “selected” stocks, and the rest constitute the set of “non-selected” stocks
for period t. Let Rt

selected and Rt
non−selected be the average returns of the stocks in these sets

(as calculated by Equation (1)), respectively. The convenience of the predefined weights is
then calculated as the arithmetic difference between the average returns of the selected and
non-selected stocks that they produce, that is:

Maximize ξ(W) =
1
T

T

∑
t=1

(Rt
selected − Rt

non−selected) (3)
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where T is the number of historical returns used to assess the weights in W, W =
[w1, w2, . . . , wN ]

> and ξ(W) is the convenience of the weights in W.
As was stated in Section 2.4, the differential evolution (DE) algorithm has been found

to be highly effective in non-linear mono-objective optimization problems, especially
in problems related to financial problems ([11,23,24]); therefore, this type of algorithm
represents serious advantages over other optimization algorithms, particularly over other
meta-heuristics. We use here a basic version of the DE algorithm as presented by Algoritm 1
in ([80]). Let us describe this algorithm.

To determine the best values for wj (i = 1, . . . , N), the decision variables considered
by the DE will be the values wj such that each individual in the DE will contain the values
for wj fulfilling the constraints of the problem: wj ≥ 0 and ∑N

j=1 wj = 1.
Lines 1–8 of Algorithm 1 randomly initialize the population of the DE; that is, the lines

initialize feasible individuals by placing them in a random position within the search space.
To ensure feasibility, the values for wj in each individual are normalized in Lines 5 and 6.

The parameters used by the DE algorithm consist of a crossover probability, CR ∈
[0, 1], a differential weight, F ∈ [0, 2], and a number of individuals in the population,
populationsize ≥ 4. Each individual in the population is represented by a real-valued vector
z = [z1, z2, . . . , zN ]

>, where zj is the value assigned to the jth decision variable and N is the
number of decision variables (in Problem (2), the decision variables are the N weights). The
termination criterion used here for the search procedure consists of a predefined number of
iterations (generations). The evolutionary process is performed in Lines 9–22. Here, for
each generation of the DE, the solutions in the population are evolved such that the new
population is composed of the best solutions found so far. Finally, the best solution found
overall is selected in Line 23.

Algorithm 1 Differential evolution used to address Problem (3).

Require: Niterations, CR, F, populationsize
Ensure: The values w1, w2, . . . , wN found that best solves Problem (3)

1: P← ∅
2: i← 1
3: while (i ≤ populationsize) do
4: Randomly, define zk ∈ [0, 1] for z = [z1, z2, . . . , zN ]

>

5: sum← ∑N
k=1 zk

6: zk ← zk/sum (k = 1, 2, . . . , N)
7: P← P ∪ {z}
8: end while
9: j← 1

10: while (j ≤ Niterations) do
11: for all (z ∈ P) do
12: Randomly, define a, b, c ∈ P, such that z, a, b, c are all different
13: Randomly, define r ∈ {1, . . . , N}
14: for all (i ∈ {1, . . . , N}) do
15: Randomly, define u ∈ [0, 1]
16: If u < CR or i = r, set yi = ai + F · (bi − ci), otherwise set yi = zi
17: end for
18: sum← ∑N

k=1 yk
19: yk ← yk/sum (k = 1, 2, . . . , N)
20: If ξ(z) ≤ ξ(y), then replace z for y in P (see Equation (3))
21: end for
22: end while
23: Select the individual z ∈ P with the highest value ξ(z); this individual represents the

best set of weights w1, w2, . . . , wN for Equation (2).

Different fundamental indicators could be more convenient for companies with differ-
ent types of activities (see, e.g., [14]). We use here some fundamental indicators that can be
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used for trans-business companies following the works in ([10,11,13,14]). In this work, we
use N = 13 factors to define the score of each stock as described below.

Forecasted return: Output of the ANN.
Return on equity: Net income over average shareholder’s equity.
Return on asset: Net income over total assets.
Operating income margin: Operating earnings over revenue.
Net income margin: Total liabilities over total shareholder’s equity.
Levered free cash flow: Amount of money the company left over after paying its
financial debts.
Current ratio: Current assets over current liabilities.
Quick ratio: (Cash and equivalents + marketable securities + accounts receivable) over
current liabilities.
Inventory turnover ratio: Net sales over ending inventory.
Receivable turnover ratio: Net credit sales over average accounts receivable.
Operating income growth rate: (Operating income in the current quarter − operating
income at the previous quarter) over operating income in the previous quarter.
Net income growth rate: (Net income after tax in the current quarter − net income
after tax at the previous quarter) over net income after tax in the previous quarter.

4.3. Optimizing Stock Portfolios

The final activity to perform stock investments consists of determining how the
resources should be allocated. A given distribution of resources among the selected stocks
is known as the stock portfolio. Defining the most convenient distribution of resources
is known as portfolio optimization. In this final activity, the decision alternatives are no
longer individual stocks but complete portfolios. Thus, it is necessary to determine multiple
criteria to comprehensively assess portfolios.

Formally, a stock portfolio is a vector x = [x1, x2, . . . , xm]> such that xi is the proportion
of the total investment that is allocated to the ith stock. Let ri be the return of the ith stock
calculated according to Equation (1); the return of a given portfolio x is defined as follows:

R(x) =
m

∑
i=1

xiri (4)

Of course, if we knew the t + 1 return of the stocks, we could allocate resources that
maximize R(x) without uncertainty; however, since this is impossible, the multiple criteria
used to assess portfolios are estimations of R(x). These estimations usually come from
probability theory.

According to ([12]), the most convenient portfolio x can be determined by optimizing
a set of confidence intervals that describe the probabilistic distribution of the portfolio’s
return:

Maximize
x∈Ω

{θ(x) = (θβ1(x), θβ2(x), . . . , θβk (x))} (5)

where θβi (x) = {[ci, di] : P(ci ≤ E(R(x)) ≤ di) = βi}, E(R(x)) is the expected return of
portfolio x, P(ω) is the probability that event ω occurs and Ω is the set of feasible portfolios.

Maximizing confidence intervals as conducted in Equation (5) does not mean increas-
ing the wideness of the intervals; rather, it refers to the intuition that rightmost returns in
the probability distribution are desired. We use the so-called interval theory ([68]) to mea-
sure the possibility that a confidence interval is greater than another one. In interval theory,
an interval number allows one to encompass the uncertainty involved in the definition of
a quantity.

Since we are trying to find the best portfolios in terms of confidence intervals around
their expected return, intervals further to the right are better (rather than comparing
intervals in terms of their width). Therefore, the comparison method used must provide
this feature. There are several works in the literature describing methods that possess
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this property (e.g., [81,82]); however, the method proposed in [83] is the most broadly
mentioned in the literature [84].

The authors of [83] presented a possibility function to define the order between two
interval numbers that has been increasingly used in the literature (e.g., [12,85–87]). Let
I = [i−, i+] and J = [j−, j+] be two interval numbers, and the possibility function presented
in [83] is defined as follows:

possibility(I ≥ J) :=


1, if p(I, J) > 1
0, if p(I, J) < 0

p(I, J), otherwise

where p(I, J) = i+−j−

(i+−i−)+(j+−j−) .

Moreover, if i = i+ = j− and j = j+ = j−, then

possibility(I ≥ J) :=
{

1, if i ≥ j
0, otherwise

Since Problem (5) can potentially have many objectives defined as interval numbers
as well as multiple constraints, we use MOEA/D (see Section 2.4), as advised by ([12]).
In ([12]), MOEA/D was adapted to deal with these types of objectives; the adaptation
has been proven to provide good results in contexts related to stock investments. For
reasons of space in this paper, the reader is referred to ([12]) for specific details about this
improvement to MOEA/D.

5. Experiments

The hypothesis that a procedure that comprehensively addresses the practitioners’
main activities while also considering uptrends and downtrends produce better total
earnings for the investor than when not doing it is tested by using extensive experiments
with actual historical data.

5.1. Experimental Design

We used well-known data for our experiments; the historical prices and financial
information about the stocks within the Standard and Poor’s 500 (S&P500) index. The
officially reported financial information was used to build criterion performances.

Data from some of the most recent ninety months were used as input in the experi-
ments, i.e., from November 2013 to April 2021. This dataset contains both uptrends and
downtrends, so it is convenient for the kind of tests performed here. From these periods,
sixty are used to prepare (say, train) the algorithms, and the rest are used to assess the
approach performance in a window-sliding manner. For example, the information on
November 2013–October 2018 is used to determine the investments that should be carried
out at the beginning of November 2018, and these investments are maintained the whole
month. Then, the performance of the approach (i.e., the returns) is calculated at the end of
November 2018 using Equation (4). Such a performance is compared to the benchmarks
in that period. Later, the investments are neglected, and, independently, the lapse is slid
one period; thus, now, the information of the sixty months—December 2013–November
2018—is used to determine the investments for December 2018, where the new approach
performance is calculated and compared to the benchmarks. This procedure is repeated
thirty times; so, the conclusions can shed light on the robustness and overall performance
of the approach with a high degree of confidence.

5.2. Benchmarks

The Standard and Poor’s 500 index is used to define the relative performance of the
proposed approach. Stock indexes are often used by practitioners as benchmarks because
they summarize valuable information regarding the main sectors of an economy. The
S&P500 is perhaps the most well-known and used index; it aggregates information about
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the five hundred biggest publicly traded companies in the United States of America. Since
we are making decisions considering information only from this index, comparing the
performance of the proposed approach with it is fair. In addition to the S&P500 index,
in order to validate our approach, we have included several benchmarks to measure the
effectiveness of our proposal. These benchmarks are: the approach of ([10]), the approach
of ([12]) and our approach without including downtrends.

5.3. Parameter Setting

The parameter values used by each of the techniques mentioned in Section 4 are
defined here.

As explained above, the number of periods used to train the ANN for each stock is 60.
The only hidden layer uses sixteen neurons. We observed in preliminary experiments that
the ANN showed more efficiency when it uses the same number of neurons as inputs; the
more neurons, the more unstable the ANN was and the fewer neurons, the less predictive
capacity the ANN had. Each neuron of the ANN used the sigmoidal function as the
activation function. The ANN was run na = 50 times to train the ANN for each stock;
finally, the ANN model with fewer testing errors was used to predict the return at time
t + 1.

Regarding the selection of stocks, the DE defined to select the factor weights that
maximize the objective function shown in Equation (3) uses common parameter values.
The crossover probability was set to 0.9; the differential weight was set to 0.8; the population
size was set to 200; the number of iterations was set to 100. After scoring and ranking
the stocks, we only select the top 5% of all the stocks originally considered following the
recommendations in [10].

Finally, the genetic algorithm used to address Problem (5) was described in detail
in ([12]), where it was based on the well-known MOEA/D and adapted to deal with
parameter values defined as interval numbers. We use one hundred generations as the
stopping criterion, two solutions as the maximum number of solutions replaced by each
child solution, a probability of selecting parents only from the neighborhood (instead
of the whole population) of 0.9, one hundred subproblems, and twenty weight vectors
in the neighborhood of each weight vector. Two confidence intervals are considered by
MOEA/D as objectives to be maximized (see Equation (5)): θβ30(x) and θβ50(x) according
to the recommendations in ([12]). The constraints considered by MOEA/D are xi ≥ 0 and
∑ xi = 1.

It is worth mentioning that the code for implementing the algorithms described here
are original developments of the authors. The code was written in Matlab and Java and
will be probably publicly presented in the form of a complete software system.

5.4. Results

The proposed approach uses components that exploit randomness to explore the
search space. Here, we intend to discard the effects produced by such randomness by
running our approach many times; particularly, each stochastic component runs twenty
times for each of the thirty back-testing periods mentioned in Section 5.1. Doing it this way
sheds light on the robustness of our approach and allows us to reach sound conclusions. By
following the recommendations in [88], the performance of our approach is evaluated by
using the quantiles Q10, Q20, Q50 (median), Q80 and Q90 (see Figure 1). As is noted in [88],
distribution solutions of stochastic optimization algorithms are often asymmetrical; hence
by using quantiles, we could obtain more insights into our approaches. However, Figure 1
shows that, in our case, Q50 and the mean are almost always overlapped. Furthermore,
(Q10, Q20) and (Q80, Q90) are symmetrical with respect to the mean. This behavior indicate
that the performance of our approach is practically normally distributed.

Therefore, in this study, the average returns of our approach is used to be compared
with several benchmarks, as shown in Table 1 and Figure 2. For simplicity, the results are
discussed hereafter as if the returns were not averages. In order to validate our approach,
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in this section, we have included several benchmarks to measure the effectiveness of our
proposal. These benchmarks are: (a) the market index S&P500, (b) the approach of [10], (c)
the approach of [12] and (d) our approach without including downtrends.

From Table 1 and Figure 2, we can see that, in terms of the expected value, the worst
overall return was produced by investing according to the S&P500 index, while the best
overall return was achieved by investing in a portfolio produced by the proposed approach
that takes advantage of both positive and negative trends. Figure 2 shows that the portfolio
that considers negative trends is almost always in the top two from all the approaches.
Furthermore, the returns obtained using this approach show that this model is not affected
by the downtrends in the market as the benchmarks, as seen in the fall of all approaches
from Jan 2020 to Mar 2020. Remarkably, this behavior did not prevent the proposed
approach from exploiting the clear overall uptrend produced from Apr. 2020 to Apr. 2021,
as can be clearly seen in Table 1.

Figure 1. Monthly returns of our approach for the mean and several quantiles.
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Figure 2. Monthly returns comparison.
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Table 1. Returns produced per period. In the case of the algorithms, the return is averaged in
twenty runs.

S&P500
Index

Yang
et al. (2019)

Solares
et al. (2019)

Without
Negative Trends

With
Negative Trends

Nov. 2018 1.75% 1.01% 1.87% −5.11% −4.87%
Dec. 2018 −10.11% −9.18% −8.81% −9.56% −9.14%
Jan. 2019 7.29% 10.88% 6.71% 6.77% 9.00%
Feb. 2019 2.89% 7.47% 4.19% 7.00% 6.52%
Mar. 2019 1.76% 0.20% 2.17% 0.89% 0.81%
Apr. 2019 3.78% 4.29% 4.65% 3.88% 4.06%
May. 2019 −7.04% −7.22% −5.65% −7.66% −5.77%
Jun. 2019 6.45% 8.45% 7.53% 8.06% 9.33%
Jul. 2019 1.30% 0.25% 0.92% 2.66% 2.64%
Aug. 2019 −1.84% −1.08% −1.78% −0.03% −3.19%
Sep. 2019 1.69% −1.63% 0.83% −6.20% −4.96%
Oct. 2019 2.00% 3.12% 1.67% 5.85% 5.09%
Nov. 2019 3.29% 2.58% 4.00% 4.17% 5.43%
Dec. 2019 2.78% 1.13% 2.39% 0.13% 0.36%
Jan. 2020 −0.16% 0.81% 1.67% 2.13% 1.29%
Feb. 2020 −9.18% −9.09% −9.28% −7.22% −4.96%
Mar. 2020 −14.30% −10.27% −14.03% −6.59% −4.94%
Apr. 2020 11.26% 14.33% 12.53% 19.64% 20.02%
May. 2020 4.33% 7.09% 7.02% 11.54% 11.11%
Jun. 2020 1.81% −0.29% 0.15% 1.95% 2.88%
Jul. 2020 5.22% 4.18% 5.87% 5.28% 10.65%
Aug. 2020 6.55% 4.68% 3.90% 4.18% 5.94%
Sep. 2020 −4.08% −3.95% −1.10% −3.20% −3.04%
Oct. 2020 −2.85% −4.74% −2.05% −5.88% −2.31%
Nov. 2020 9.71% 11.50% 11.91% 8.28% 4.97%
Dec. 2020 3.58% 2.95% 5.39% 3.33% 4.37%
Jan. 2021 −1.13% −2.23% −0.53% −3.06% −3.76%
Feb. 2021 2.54% 3.43% 8.35% 1.51% 5.23%
Mar. 2021 4.07% 7.22% 3.23% 0.88% 3.75%
Apr. 2021 4.98% 6.05% 5.09% 6.00% 6.84%
Average 1.28% 1.73% 1.96% 1.65% 2.45%
Std desv. 5.61% 6.06% 5.76% 6.35% 6.27%

From Table 2, we can see that the proposed approach outperforms the benchmarks at
the end of the thirty periods: the sum of returns is approximately 41% better than Yang et al.
2019 ([10]), 25% better than Solares et al. 2019 ([12]), 48% better than the one that only
considers positive trends and more than 90% better than the market index. Moreover, the
cumulative returns of our proposal is 63% better than Yang et al. 2019 ([10]), 35% better
than Solares et al. 2019 ([12]), 75% better than the one that only considers positive trends
and 141% better than the market index. This performance can be seen in Figures 3 and 4.

Both Figures 3 and 4 describe the evolution of the portfolio returns in an aggregate
way throughout the whole time lapse (i.e., November 2018 to April 2021). However,
Figure 3 shows this evolution from the perspective of the sums of the returns, while
Figure 4 shows the cumulative returns. Both figures can be relevant to the practitioner.
The former shows the overall performance of the approach without considering the exact
period where the return was obtained, while Figure 4 allows one to ponder the impact of
the period where such a return was obtained. Let us unfold the latter. Figure 4 shows the
amount that the investor would obtain if he/she takes their investment in a given period.
For instance, an investment of USD 1000 at the beginning of November 2018 using the
proposed model would have become USD 992 (i.e., −0.80%) if the investor would have
withdrawn the investment at the end of May 2019. However, if he/she continues until
April 2021, the investment would have become USD 1952 (i.e., +95.28%). In this sense, it
is clear that the proposed approach outperformed the benchmarks by creating a portfolio
that includes long and short positions. This result shows the potential of our proposal,
which could be improved in future approaches by including stocks from other indexes,
more technical/fundamental variables, etc.
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In both Figures, it can be seen that, for the first fourteen periods (November 2018 to
December 2019), the market does not move significantly in any direction; however, for
the remaining periods, the market starts both negative and positive trends. A higher final
return achieved by our proposal indicates that it is taking advantage of these trends overall.
These results also show that considering negative trends is crucial. The figures show that
the final average return is better if negative trends are considered when building stock
portfolios.

Table 2. Sum of returns and cumulative returns. In the case of the algorithms, the return is averaged
over twenty runs.

Sum of Returns Cumulative Returns

S&P500
Index

Yang et al.
(2019)

Solares et al.
(2019)

Without
Down-
Trends

With
Down-
Trends

S&P500
Index

Yang et al.
(2019)

Solares et al.
(2019)

Without
Down-
Trends

With
Down-
Trends

Nov. 2018 1.75% 1.01% 1.87% −5.11% −4.87% 1.75% 1.01% 1.87% −5.11% −4.87%
Dec. 2018 −8.35% −8.17% −6.94% −14.67% −14.01% −8.53% −8.27% −7.11% −14.18% −13.56%
Jan. 2019 −1.06% 2.70% −0.24% −7.89% −5.01% −1.86% 1.71% −0.88% −8.37% −5.79%
Feb. 2019 1.83% 10.17% 3.95% −0.89% 1.51% 0.98% 9.31% 3.28% −1.95% 0.36%
Mar. 2019 3.59% 10.37% 6.12% 0.00% 2.32% 2.76% 9.53% 5.52% −1.08% 1.17%
Apr. 2019 7.37% 14.66% 10.77% 3.88% 6.38% 6.64% 14.23% 10.42% 2.76% 5.28%
May. 2019 0.33% 7.44% 5.12% −3.78% 0.61% −0.87% 5.98% 4.18% −5.11% −0.80%
Jun. 2019 6.78% 15.89% 12.65% 4.28% 9.94% 5.53% 14.93% 12.03% 2.54% 8.46%
Jul. 2019 8.08% 16.14% 13.58% 6.94% 12.58% 6.89% 15.22% 13.07% 5.27% 11.32%
Aug. 2019 6.24% 15.06% 11.80% 6.91% 9.39% 4.93% 13.97% 11.05% 5.23% 7.77%
Sep. 2019 7.92% 13.43% 12.63% 0.70% 4.43% 6.70% 12.11% 11.98% −1.29% 2.43%
Oct. 2019 9.93% 16.54% 14.30% 6.56% 9.52% 8.83% 15.61% 13.85% 4.48% 7.64%
Nov. 2019 13.22% 19.12% 18.30% 10.72% 14.95% 12.42% 18.59% 18.40% 8.84% 13.48%
Dec. 2019 16.00% 20.25% 20.68% 10.85% 15.31% 15.54% 19.93% 21.22% 8.97% 13.89%
Jan. 2020 15.84% 21.06% 22.36% 12.98% 16.60% 15.35% 20.90% 23.25% 11.30% 15.36%
Feb. 2020 6.65% 11.98% 13.07% 5.76% 11.64% 4.76% 9.92% 11.81% 3.26% 9.64%
Mar. 2020 −7.65% 1.71% −0.96% −0.83% 6.70% −10.22% −1.37% −3.88% −3.54% 4.23%
Apr. 2020 3.61% 16.04% 11.57% 18.81% 26.73% −0.12% 12.77% 8.16% 15.40% 25.10%
May. 2020 7.94% 23.13% 18.58% 30.36% 37.84% 4.21% 20.76% 15.75% 28.72% 38.99%
Jun. 2020 9.75% 22.84% 18.73% 32.31% 40.72% 6.09% 20.41% 15.91% 31.24% 43.00%
Jul. 2020 14.97% 27.01% 24.60% 37.59% 51.37% 11.63% 25.43% 22.72% 38.16% 58.23%
Aug. 2020 21.52% 31.69% 28.51% 41.77% 57.31% 18.94% 31.30% 27.51% 43.94% 67.63%
Sep. 2020 17.43% 27.74% 27.41% 38.57% 54.28% 14.09% 26.12% 26.11% 39.33% 62.54%
Oct. 2020 14.59% 23.01% 25.36% 32.68% 51.97% 10.84% 20.14% 23.53% 31.13% 58.80%
Nov. 2020 24.30% 34.51% 37.27% 40.97% 56.94% 21.60% 33.97% 38.24% 41.99% 66.69%
Dec. 2020 27.88% 37.47% 42.66% 44.30% 61.31% 25.96% 37.92% 45.70% 46.73% 73.97%
Jan. 2021 26.75% 35.23% 42.14% 41.24% 57.55% 24.54% 34.85% 44.93% 42.24% 67.43%
Feb. 2021 29.29% 38.66% 50.48% 42.75% 62.78% 27.70% 39.47% 57.03% 44.39% 76.18%
Mar. 2021 33.36% 45.88% 53.71% 43.63% 66.52% 32.90% 49.54% 62.10% 45.66% 82.78%
Apr. 2021 38.35% 51.93% 58.80% 49.64% 73.36% 39.52% 58.59% 70.35% 54.41% 95.28%
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Figure 3. Sum of returns comparison.



Appl. Sci. 2022, 12, 4067 15 of 20

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Nov.

2018

Dec.

2018

Jan.

2019

Feb.

2019

Mar.

2019

Apr.

2019

May.

2019

Jun.

2019

Jul.

2019

Aug.

2019

Sep.

2019

Oct.

2019

Nov.

2019

Dec.

2019

Jan.

2020

Feb.

2020

Mar.

2020

Apr.

2020

May.

2020

Jun.

2020

Jul.

2020

Aug.

2020

Sep.

2020

Oct.

2020

Nov.

2020

Dec.

2020

Jan.

2021

Feb.

2021

Mar.

2021

Apr.

2021

Cumulative returns

S&P's 500 Without Downtrends Yang et. al (2019) With Downtrends (Proposal) Solares et. al (2019)

Figure 4. Cumulative returns comparison.

According to Figure 2 and Table 1, the worst return obtained by our approach was
in Dec 2018. This is also shown in Figure 4, where the detriment is caused by the higher
negative return produced in this period. In that moment, the system decided to open long
positions and allocate high proportions of investments to some stocks with bad actual
returns. This was due to the good historical performance of such actions that indicated a
good statistical behavior. Several external issues affect the performance of a stock in the
market, such as the case of Nvidia corporation as reported in the news [89]. Thus, a way of
improving the proposed system in the future is by considering criteria coming from the
so-called sentiment analysis [90] that takes into consideration such factors.

On the other hand, as a way of measuring the performance of our proposal and
comparing the results with some benchmarks, the Sharpe ratio rsharpe and Sortino ratio
rsortino are used. These ratios are defined as

rsharpe =
Rp − R f

σp

and

rsortino =
Rp − R f

σpd

where Rp is the average portfolio return, R f is the best available risk-free security rate,
σp is the portfolio standard deviation and σp,d is the portfolio standard deviation of the
downside. These indexes measure the risk per return obtained in comparison with a risk-
free asset. In particular, the Sharpe ratio describes how much return is received per unit of
risk; meanwhile, the Sortino ratio describes how much return is received per unit of bad
risk. Therefore, the higher these indexes are, the more convenient for investment the asset
is. We have considered the Treasure Bond of USA a risk-free security, with a value of 3% of
annual return. We also considered the Treasure Bond of USA as the minimal acceptance
ratio (MAR) to compute the downside deviation. Rp, σp and σp,d are taken from Table 1.
Table 3 shows the Sharpe and Sortino ratios for the all the benchmarks and our proposal.
According to the results, our proposal has the best performance for both indexes; overall,
it has higher returns by considering the risk.
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Table 3. Comparison of benchmarks with the proposal by using the Sharpe and Sortino ratios.

Sharpe
Ratio

Sortino
Ratio

S&P’s 500 0.1831 0.2529
Yang et al. (2019) 0.2445 0.4072
Solares et al. (2019) 0.2966 0.4551
Without downtrends 0.2213 0.3884
With downtrends 0.3502 0.7223

6. Conclusions

Building stock portfolios with high returns and low risk is a common challenge for
researchers in the financial area. Usually, the most common practice is to select the more
promising stocks according to several factors, such as financial information, news of the
market and technical analysis. Several approaches that use computational intelligence
algorithms have been proposed in the literature to deal with the overwhelming complexity
of building a stock portfolio. Usually, these approaches consider up to three activities to
build a portfolio: return forecasting, stock selection and portfolio optimization. These
activities decide which stocks should be supported, as well as the proportions of the
investment to be allocated to them, by comparing the historical and forecasted performance
of potential stock investments. However, to the best of our knowledge, these approaches
do not comprehensively address the three activities when considering downtrends in
stock prices.

In this paper, a comprehensive approach to stock portfolio management is proposed;
the approach includes stock price forecasting, stock selection and stock portfolio optimiza-
tion while taking advantage of market downtrends.

Stock price forecasting is carried out through an artificial neural network (ANN)
trained by the extreme learning machine (ELM) algorithm. Forecasting the price of a given
stock allows the comprehensive approach to focus on uptrends or downtrends (i.e., going
long or short, respectively) for that stock. Stock selection is modeled as an optimization
problem that seeks to determine the most plausible stocks; thus, a differential evolution is
exploited on the basis of the forecasted price and a set of factors of the so-called fundamental
analysis. Finally, portfolio optimization is conducted through a genetic algorithm that uses
confidence intervals of the portfolio returns to determine the best stock portfolio.

Using preliminary experimentation, we found that the ELM was better than other
methods (ANN with back-propagation, random forest, support vector regression) at fore-
casting the trend of the stock price but not the best at forecasting stock returns. Therefore,
more research should be conducted to discover better configurations of the ANN with ELM
or to decide if the forecasting stage should be changed. However, further research on this,
as well as on methods to increase the performance of the next stages of the comprehensive
approach, is beyond the scope of this work, so the authors will address these issues in
future works.

Regarding the assessment of the comprehensive approach, the obtained results show
that stock selection and portfolio optimization stages make more profitable portfolios when
negative trends of stocks are taken into account to take advantage of downtrends of the
market (see Table 2 and Figures 3 and 4). Furthermore, the results show that not only a
traditional benchmark, the Standard and Poor’s 500 index, is outperformed by the proposed
approach but also approaches that do not exploit negative market trends (e.g., [10,12]).

This research work could be improved by the following possible future directions:

I A deeper study of the forecasting stage to test the performance of several AI methods
by employing more data or different financial variables;

II A deeper study on the selection stage to evaluate the performance of the system by
employing different financial variables to build the stock portfolio;
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III A deeper study of the performance of the system by modifying different parameters
in the optimization stage and comparing the results with other approaches;

IV New experiments to show the robustness of the approach regarding (i) the number
and type of alternatives in the universe of stocks, (ii) the number of selected stocks
and (iii) the parameter values.
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